
A Short Introduction to Type Theory

January 7, 2007

Introduction

The purpose of this note is to explain shortly some features and notations of Type Theory for
a mathematician.

1 Analogy between implication and exponentiation

In set theory, if we write A→ B the set of functions from the set A to the set B, one can find
“uniform” inhabitants to the sets

A→ A: the identity function x 7−→ x
A→ (B → A): the parametric constant functional x 7−→ (y 7−→ x)
(A→ (A→ B)) → (A→ B): the diagonalisation functional f 7−→ (x 7−→ f(x)(x))
(B → C) → ((A→ B) → (A→ C)): the composition functional f 7−→ (g 7−→ g ◦ f)
(We have actually listed some of Hilbert’s axioms for the implication.) This suggests a

strong analogy between the notion of implication in logic and the notion of exponentiation in
set theory. A schematic formula, such as

A→ ((A→ X) → X) (1)

being provable if, and only if, it has an uniform inhabitant. (In this case, the functional
x 7−→ (f 7−→ f(x)) which transforms an element into a functional on functions.)

This analogy goes deeper. For instance, the false proposition ⊥ naturally corresponds to
the empty set ∅. The fact that we have ⊥→ A corresponds then to the fact that there is a map
∅ → A. In propositional logic, one can define ¬A to be A →⊥ and the formula (1) for X =⊥
corresponds to the provable formula A→ ¬¬A.

What about the converse? This would be the formula ¬¬A → A. This is a possible way
to state the law of Excluded Middle. Now the set ¬¬A is empty if A is empty, and has only
one element if A is not empty. To have the law of Excluded Middle would require to have an
uniform inhabitant of ¬¬A → A, which would mean an uniform way to pick an element from
any non empty set. This is a strong form of the axiom of choice. (Hence, this simple analogy
hints to connections between the axiom of choice and the law of Excluded Middle, that are
indeed confirmed in the form of Diaconescu’s Theorem, see below.)

2 Dependent Products and Sums

So far, we have only looked at propositional logic. What about universal and existential quan-
tification?

1



In set theory, we have the notion of family of sets Ai indexed over a set I. We have also
the notion of dependent product (Πi ∈ I)Ai which is the set of all family (ai)i∈I and dependent
sum (Σi ∈ I)Ai, which is the set of pairs (i, a) with i ∈ I and a ∈ Ai. The dependent product
corresponds to universal quantification (and actually the notation (Πx ∈ I)φ(x) can be found
instead of ∀x ∈ I.φ(x) in early work on first-order logic) and dependent sum corresponds to
existential quantification.

When the family Ai is constant, Ai = A for all i ∈ I, it is natural to write I → A instead of
Πi ∈ I.Ai and I ×A instead of Σi ∈ I.Ai. With this notation in mind, the type

((Πx ∈ A)B(x))× ((Πx ∈ A)C(x)) → (Πx ∈ A)(B(x)× C(x))

corresponds to the first-order tautology

(∀x.φ(x)) ∧ (∀x.ψ(x)) → ∀x.φ(x) ∧ ψ(x)

and it is inhabited uniformely by the function (g, h) 7−→ (x 7−→ (g(x), h(x))).
If f ∈ (Πx ∈ A)B(x) and a ∈ A then we have f(a) ∈ B(a).
If z ∈ (Σx ∈ A)B(x) then z is a pair and we write p(z) ∈ A its first component and

q(z) ∈ B(p(z)) its second component.

3 The lambda calculus notation

This notation was introduced by Church around 1930 for denoting functions: we write λx.x2 for
instance for the square function x 7−→ x2. The following equality then holds: λx.x2(3) = 32 = 9.
In general, we have

(λx.t(x))(a) = t(a)

which corresponds to the fact that if f is the function x 7−→ t(x) we have f(a) = t(a). Another
convenient notation is to write f (a1, . . . , an) instead of (. . . ((f(a1))(a2)) . . .)(an). We write
also (A1, . . . , An) → A instead of A1 → (A2 → (. . . → An) . . .). For instance λf.λx.f(x, x) is
the diagonalisation operation, of type (A,A→ B), A→ B.

For a given family of type B(x) over a type A, if we have t(x) element of B(x) for x ∈ A
then λx.t(x) is an element of (Πx ∈ A)B(x).

The corresponding rule for dependent sum is: if a ∈ A and b ∈ B(a) then (a, b) is an element
of (Σx ∈ A)B(x).

4 Context

Type Theory brings elegant new notations and new notions. One of them is the notion of
context. This is a list of the form

x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1)

where A1 is a type, A2(x1) is a family of type over the type A1, A3(x1, x2) is a family of types
depending on x1 ∈ A1 and x2 ∈ A2(x1) and so on.

There is a natural notion of vectors (a1, a2, . . . , an) fitting such a context: we ask a1 ∈
A1, a2 ∈ A2(a1), . . . , an ∈ An(a1, . . . , an−1).

This can be seen as the formal representation of a notion of contexts of mathematical
hypothesese. For instance, consider a statement of a proposition, starting with: “let x be a
natural number, assume that φ(x) holds for x, and let y be a rational number, . . .”. This would
be represented by the context x ∈ N, h ∈ B(x), y ∈ N where N is the type of natural number,
B(x) the type representing the proposition φ(x), . . .. Compared to the usual mathematical
notation, notice that we have an explicit name for the hypothesis that φ(x) holds.

2



5 The Intensional Axiom of Choice

Bishop made the following remark: “A choice function exists in constructive mathematics,
because a choice is implied by the very meaning of existence” (more precisely, in his own termi-
nology, he should have said “A choice operation”). This can be elegantly “explained” using type
theoretic notions: we suppose given two sets A andB and a relationR between elements of A and
elements of B. In Type Theory, this is represented as a dependent type R(x, y), x ∈ A, y ∈ B.
The type theoretic formulation of the intensional axiom of choice is then

((Πx ∈ A)(Σy ∈ B)R(x, y)) → (Σf ∈ A→ B)(Πx ∈ A)R(x, f(x)) (2)

It is quite easy indeed to build an element of this type: take λF.(λx.p(F (x)), λx.q(F (x))).
If F ∈ (Πx ∈ A)(Σy ∈ B)R(x, y) we have F (x) ∈ (Σy ∈ B)R(x, y) and so p(F (x)) ∈ B
and q(F (x)) ∈ R(x, p(F (x))). We deduce that we have f = λx.p(F (x)) ∈ A → B but also
λx.q(F (x)) ∈ Πx ∈ A.R(x, f(x)). Notice that we have used the equality

R(x, f(x)) = R(x, (λx.p(F (x)))(x)) = R(x, p(F (x)))

6 Set theory and type theory

It is possible to represent Bishop set theory in a most natural way in type theory, where a
Bishop set is represented as a type with an equivalence relation and type theoretic functions
give a direct formal representation of Bishop’s notion of operations.

Notice that the type theoretic formulation of the axiom of choice (2) does not correspond
really to the set-theoretic form of the axiom of choice (hence the name “intensional”). If RA

is an equivalence relation on A and RB an equivalence relation on B, the set-theoretic axiom
of choice requires, given (Πx ∈ A)(Σy ∈ B)R(x, y) to build f ∈ A → B such that, not only
(Πx ∈ A)R(x, f(x)) holds (is inhabited), but also

(Πx1 ∈ A)(Πx2 ∈ A) (RA(x1, x2) → RB(f(x1), f(x2)))

Contrary to the form (2), there is no direct way to justify this axiom, which can be called
the extensional axiom of choice.

This phenomenum is well-know in constructive mathematics. Let us consider the case where
A = B = N → N2 where N is the type of natural numbers, corresponding to the set N and
N2 is a type with two elements, corresponding to the set {0, 1}. Any element of N → N2

defines a real number in [0, 1]. It is possible in type theory to define RA such that RA(f1, f2) is
inhabited iff f1, f2 define the same real. We consider also RB such that RB(f1, f2) is inhabited
iff f1, f2define the same function. We clearly have (Πf ∈ A)(Σg ∈ B)RB(f, g). The extensional
axiom of choice will require to have F ∈ A→ B such that, not only RB(f, F (f)) but also

(Πf1 ∈ A)(Πf2 ∈ A) (RA(f1, f2) → RB(F (f1), F (f2)))

There is no computable such functional, and hence we cannot expect to have such a functional
in Type Theory. More reflection on the example would indicate that the extensional axiom of
choice implies Bishop’s principle of omniscience. It can be shown that the extensional axiom of
choice implies the law of Excluded-Middle (¬¬A) → A.

If extensional choice is not validated in type theory, some weak form of the axiom of choice in
set theory, namely the axiom of countable choices and dependent choices, are however validated
when one represents Bishop set theory in type theory.

3



Conclusion

Type Theory is an attempt to build a foundation of mathematics where logic and basic set
theoretical notions are developped simulatenously and where the analogy between implication
and exponentiation is taken as a guiding principle.

Working in Type Theory is similar to working in set theory, but where all operations have
a direct computational meaning [2]. It can be thought as a language similar to the ones used
in computer algebra system, but with a way to formulate properties (and proofs) of algorithms,
and with a rich collection of types (for instance one has a type of groups of order n, a type of
ordered lists, . . .)

It is interesting to build category theory directly in type theory, and some current works
explore such a representation of higher-order category theory. In such works, it is actually more
appropriate to think of types as a very general formal representation of topological spaces (and
a family of types should be thought of as a continuous family of spaces over a given space).

References

[1] E. Bishop. Foundations of Constructive Analysis. New York: McGraw-Hill 1967.

[2] P. Martin-Löf. Constructive Mathematics and Computer Programming. In Logic, Method-
ology and Philosophy of Science VI, p. 153-175. Amsterdam: North-Holland 1982.

[3] P. Martin-Löf. 100 years of Zermelo’s axiom of choice: what was the problem with it? to
appear, 2007.

4


