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Abstract

A number of authors have exported domain-theoretic techniques from
denotational semantics to the operational study of contextual equivalence
and order. We further develop this, and, moreover, we additionally export
topological techniques. In particular, we work with an operational notion
of compact set and show that total programs with values on certain types
are uniformly continuous on compact sets of total elements. We apply this
and other conclusions to prove the correctness of non-trivial programs that
manipulate infinite data. What is interesting is that the development applies
to sequential programming languages, in addition to languages with parallel
features.

1 Introduction

Domain theory and topology in programming language semantics have been ap-
plied to manufacture and study denotational models, starting with the Scott model
of PCF [32]. As is well known, for a sequential language like this, the match of
the model with the operational semantics is imprecise: computational adequacy
holds but full abstraction fails [29]. The main achievement of the present work
is a reconciliation of a good deal of domain theory and topology with sequential
computation. This is accomplished by side-stepping denotational semantics and
reformulating domain-theoretic and topological notions directly in terms of pro-
gramming concepts, interpreted in an operational way.

Regarding domain theory [3, 11], we replace directed sets by rational chains,
which we observe to be equivalent to programs defined on a “vertical natural num-
bers” type. Many of the classical definitions and theorems go through with this
modification. In particular,
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1. rational chains have suprema in the contextual order,

2. programs of functional type preserve suprema of rational chains,

3. every element (closed term) of any type is the supremum of a rational chain
of finite elements,

4. two programs of functional type are contextually equivalent iff they produce
a contextually equivalent result for every finite input.

Moreover, we have an SFP-style characterization of finiteness using rational chains
of deflations, a Kleene-Kreisel density theorem for total elements, and a number of
continuity principles based on finite elements.

We work with a restricted kind of increasing chain because we must: Dag Nor-
mann [25] has shown that, even in the presence of oracles (see below), increasing
chains in the contextual order fail to have suprema in general. A counter-example
is given for type level 3. On the other hand, it is known that rational chains always
have suprema, even in the absence of oracles — see e.g. [27].

Regarding topology [23, 35], we define open sets of elements via programs
with values on a “Sierpinski” type, and compact sets of elements via Sierpinski-
valued universal-quantification programs. Then

1. the open sets of any type are closed under the formation of finite intersections
and rational unions,

2. open sets are “rationally Scott open”,

3. compact sets satisfy the “rational Heine–Borel property”,

4. total programs with values on certain types are uniformly continuous on
compact sets of total elements.

In order to be able to formulate certain specifications of higher-type programs
without invoking a denotational semantics, we work with a “data language” for
our programming language, which consists of the latter extended with first-order
“oracles”. The idea is to have a more powerful environment in order to get stronger
program specifications. We observe that program equivalence defined by ground
data contexts coincides with program equivalence defined by ground program con-
texts, but the notion of totality changes.

It is worth mentioning that the resulting data language for PCF defines precisely
the elements of games models [2, 17], with the programming language capturing
the effective parts of the models. Similarly, the resulting data language for PCF
extended with parallel-or and Plotkin’s existential quantifier defines precisely the

2



elements of the Scott model, again with the programming language capturing the
effective part [29, 10]. But we don’t rely on these facts.

We illustrate the scope and flexibility of the theory by applying our conclu-
sions to prove the correctness of various non-trivial programs that manipulate in-
finite data. We take one such example from [33]. In order to avoid having exact
real-number computation as a prerequisite, as in that reference, we consider modi-
fied versions of the program and its specification that retain their essential aspects.
We show that the given specification and proof in the Scott model can be directly
understood in our operational setting.

Although our development is operational, we never invoke evaluation mecha-
nisms directly. We instead rely on known extensionality, monotonicity, and rational-
chain principles for contextual equivalence and order. Moreover, with the excep-
tion of the proof of the density theorem, we don’t perform syntactic manipulations
with terms.

1.1 Related work

The idea that order-theoretic techniques from domain theory can be directly under-
stood in terms of operational semantics goes back to Mason, Smith, Talcott [21]
and Sands (see Pitts [27] for references). Already in [21], one can find, in addition
to rational-chain principles, two equivalent formulations of an operational notion
of finiteness. One is analogous to our Definition 4.1 but uses directed sets of closed
terms rather than rational chains, and the other is analogous to our Theorem 4.8.
In addition to redeveloping their formulations in terms of rational chains, here we
add a topological characterization (Theorem 4.16).

The idea that topological techniques can be directly understood in terms of
operational semantics, and, moreover, are applicable to sequential languages, is due
to the first-named author [10]. In particular, we have taken our operational notion
of compactness and some material about it from that reference. A main novelty
here is a uniform-continuity principle, which plays a crucial role in the sample
applications given in Section 7. This is inspired by unpublished work by Andrej
Bauer and Escardó on synthetic analysis in (sheaf and realizability) toposes.

The idea of invoking a data language to formulate higher-type program specifi-
cations in a sequential operational setting is already developed in [10] and is related
to relative realizability [5] and TTE [37].

1.2 Organization

Section 2: Language, oracles, extensionality, monotonicity and rational chains.
Section 3: Rational chains, open sets and continuity principles.
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Section 4: Finite elements, continuity principles and density of total elements.
Section 5: Compact sets and uniform-continuity principles.
Section 6: A data language, contextual equivalence and totality.
Section 7: Sample applications.
Section 8: Remarks on parallel convergence, and open problems and further work.

2 Preliminaries

2.1 The programming language

We work with a simply-typed λ-calculus with function and finite-product types,
fixed-point recursion, and base types Nat for natural numbers and Bool for booleans.
We regard this as a programming language under the call-by-name evaluation strat-
egy. In summary, we work with PCF extended with finite-product types [13, 27].
Other possibilities are briefly discussed in Section 8.2.

For clarity of exposition, we explicitly include a Sierpinski base type Σ and a
vertical-natural-numbers base type ω, although such types can be easily encoded
in other existing types if one so desires (e.g. via retractions [31]). The type Σ will
have elements⊥ (non-terminating computation) and> (terminating computation).
Intuitively, we think of programs of type ω as clocks that either tick for ever or else
tick finitely often and then fail (see Section 2.5 below for a precise mathematical
statement). What is relevant for our purposes is that, for any type σ, functions
σ → Σ will correspond to semi-decidable or open sets of elements of σ, and
functions ω → σ will correspond to certain ascending chains of elements of σ in
the contextual order (in fact, precisely the rational chains, to be defined below). In
this sense, Σ will classify open sets (this belongs to the realm of topology) and ω
will co-classify rational chains (this belongs to the realm of domain theory).

Formally, we have the following term-formation rules for these two types:

(1) > : Σ is a term.

(2) If M : Σ and N : σ are terms then (if M then N) : σ is a term.

(3) If M : ω is a term then (M +1): ω, (M−1) : ω, and (M > 0) : Σ are terms.

Notice that there is no “else” clause in the above construction. The only value (or
canonical form) of type Σ is >, and the values of type ω are the terms of the form
M + 1. The role of zero is played by divergent computations, and a term (M > 0)
can be thought of as a convergence test. The big-step operational semantics for
these constructs is given by the following evaluation rules:

(i) If M ⇓ > and N ⇓ V then (if M then N) ⇓ V .
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(ii) If M ⇓ N + 1 and N ⇓ V then M − 1 ⇓ V .

(iii) If M ⇓ M ′ + 1 then M > 0 ⇓ >.

For any type σ, we define⊥σ = fix x.x, where fix denotes the fixed-point recursion
construct. In what follows, if f : σ → σ is a closed term, we shall write fix f as an
abbreviation for fixx.f(x).

2.2 Oracles

We also consider the extension of the programming language with the following
term-formation rule:

(4) If Ω: N → N is any function, computable or not, and N : Nat is a term, then
ΩN : Nat is a term.

Then the operational semantics is extended by the rule:

(iv) If N ⇓ n and Ω(n) = m then ΩN ⇓ m.

We think of Ω as an external input or oracle, and of the equation Ω(n) = m as
a query with question n and answer m. Of course, the extension of the language
with oracles is no longer a programming language. We shall regard it as a data
language in Section 6.

2.3 Underlying language for Sections 3–5

We take it to be either (1) the programming language introduced above, (2) its
extension with oracles, (3) its extension with parallel features, such as parallel-or
and Plotkin’s existential quantifier, or else (4) its extension with both oracles and
parallel features. The conclusions of those sections hold for the four possibilities,
at no additional cost. To emphasize that a closed term doesn’t include oracles, we
refer to it as a program.

2.4 Notation for contextual equivalence and (pre)order

We write M = N and M v N to denote contextual equivalence and order of terms
of the same type.

2.5 Elements of a type

By an element of a type we mean a closed term of that type. We adopt usual set-
theoretic notation for the elements of a type in the sense just defined. For example,
we write x ∈ σ and f ∈ (σ → τ) to mean that x is an element of type σ and f is
an element of type σ → τ .
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The elements of Σ. The elements ⊥ and > of Σ are contextually ordered by
⊥ v >, they are contextually inequivalent, and any element of Σ is equivalent to
one of them. We think of Σ as a type of results of observations or semidecisions,
with > as “observable true” and ⊥ as “unobservable false”.

The elements of ω. We denote by ∞ the element fixx.x + 1 of ω, and, by an
abuse of notation, for n ∈ N we write n to denote the element succn(⊥) of ω,
where succ(x) = x + 1. The elements 0, 1, 2, . . . , n, . . . ,∞ of ω are all contextu-
ally inequivalent, and any element of ω is contextually equivalent to one of them.
They are contextually ordered by

0 v 1 v 2 v . . . v n v . . . v ∞.

C.f. Section 3.1 below. Notice that 0− 1 = 0, (x + 1)− 1 = x, (0 > 0) = ⊥ and
(x + 1 > 0) = > hold for x ∈ ω. In particular, ∞− 1 = ∞ and (∞ > 0) = >.

2.6 Extensionality and monotonicity

Contextual equivalence is a congruence: for any f, g ∈ (σ → τ) and x, y ∈ σ,

if f = g and x = y then f(x) = g(y).

Moreover, application is extensional:

f = g if f(x) = g(x) for all x ∈ σ.

Regarding the contextual order, we have that application is monotone:

if f v g and x v y then f(x) v g(y).

Moreover, it is order-extensional:

f v g if f(x) v g(x) for all x ∈ σ.

Standard congruence, extensionality and monotonicity principles also hold for prod-
uct types. Additionally, ⊥σ is the least element of σ.

2.7 Rational chains

For any g ∈ (τ → τ) and any h ∈ (τ → σ), the sequence h(gn(⊥)) is increasing
and has h(fix g) as a least upper bound in the contextual order:

h(fix g) =
⊔
n

h(gn(⊥)).

A sequence xn of elements of a type σ is called a rational chain if there exist
g ∈ (τ → τ) and h ∈ (τ → σ) with

xn = h(gn(⊥)).
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2.8 Proofs

The facts stated in this background section are all well known. The extensional-
ity, monotonicity and rational-chain principles follow directly from Milner’s con-
struction [22]. Even though full abstraction of the Scott model fails for sequential
languages, proofs exploiting computational adequacy are possible [18] (see [26]).
Proofs using game semantics can be found in [2, 17], and operational proofs can
be found in [27, 28] (where an earlier operational proof of the rational-chains prin-
ciple is attributed to Sands). For a call-by-value untyped language, an operational
proof of the rational-chains principle was previously developed in [21]. Regard-
ing the above description of the elements of the vertical-natural-numbers type, a
denotational proof using adequacy is easy, and operational proofs are obtained ap-
plying [12] or [27] (see [16]).

3 Rational chains and open sets

We begin by developing fundamental order-theoretic and topological properties of
the types of our language.

3.1 Order

By the results recalled in the previous section, every rational chain is increasing
and has a least upper bound in the contextual order.

Lemma 3.1. The sequence 0, 1, 2, . . . , n, . . . in ω is a rational chain with least
upper bound ∞, and, for any l ∈ (ω → σ),

l(∞) =
⊔
n

l(n).

Proof. n = succn(⊥) and ∞ = fix succ.

Moreover, this is the “generic rational chain” with “generic least upper bound∞”
in the following sense:

Lemma 3.2. A sequence xn ∈ σ is a rational chain if and only if there exists
l ∈ (ω → σ) such that for all n ∈ N,

xn = l(n),

and hence such that
⊔

n xn = l(∞).
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Proof. (⇒): Given g ∈ (τ → τ) and h ∈ (τ → σ) with xn = h(gn(⊥)),
recursively define

f(y) = if y > 0 then g(f(y − 1)).

Then f(n) = gn(⊥) and hence we can take l = h ◦ f .
(⇐): Take h = l and g(y) = y + 1.

This easy observation seems to be new.
Elements of functional type are “rationally continuous” in the following sense:

Proposition 3.3. If f ∈ (σ → τ) and xn is a rational chain in σ, then

1. f(xn) is a rational chain in τ , and

2. f(
⊔

n xn) =
⊔

n f(xn).

Proof. By Lemma 3.2, there is l ∈ (ω → σ) such that xn = l(n). Then the
definition l′(y) = f(l(y)) and the same lemma show that f(xn) is a rational chain.
By two applications of Lemma 3.1, f(

⊔
n xn) = f(l(∞)) = l′(∞) =

⊔
n l′(n) =⊔

n f(l(n)) =
⊔

n f(xn).

Corollary 3.4. For any rational chain fn in (σ → τ) and any x ∈ σ,

1. fn(x) is a rational chain in τ , and

2. (
⊔

n fn)(x) =
⊔

n fn(x).

Proof. Apply the proposition to F ∈ ((σ → τ) → τ) defined by F (f) = f(x).

3.2 Topology

Definition 3.5. We say that a set U of elements of a type σ is open if there is
χU ∈ (σ → Σ) such that for all x ∈ σ,

χU (x) = > ⇐⇒ x ∈ U.

If such an element χU exists then it is unique up to contextual equivalence, and we
refer to it as the characteristic function of U . Notice that in this case U is closed
under contextual equivalence, i.e., any element equivalent to a member of U is also
a member of U . For example, the subset {>} of Σ is open, as its characteristic
function is the identity, but {⊥} is not, because a characteristic function would
have to send ⊥ to > and > to ⊥, violating monotonicity.
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We say that a sequence of open sets in σ is a rational chain if the corresponding
sequence of characteristic functions is rational in the function type (σ → Σ). The
following says that the open sets of any type form a “rational topology”:

Proposition 3.6. For any type, the open sets are closed under the formation of

1. finite intersections and

2. rational unions.

Proof. (1): χT
∅(x) = > and χU∩V (x) = χU (x) ∧ χV (x), where ∧ is defined as

p ∧ q = if p then q.

(2): Because U ⊆ V iff χU v χV , we have that if l ∈ (ω → (σ → Σ)) and
l(n) is the characteristic function of Un, then l(∞) =

⊔
n χUn = χS

n Un
.

However, unless the language has parallel features, the open sets don’t form a
topology in the classical sense. Recall that a collection of subsets of a given set X is
called a topology on X if it is closed under the formation of finite intersections and
arbitrary unions. The thrust of this work is that a wealth of classical theorems on
topological spaces, in particular Scott domains under the Scott topology, happen to
hold for program types, even though the types of sequential languages don’t form
topological spaces in the usual sense.

Proposition 3.7. The following are equivalent:

1. For every type, the open sets are closed under the formation of finite unions.

2. There is (∨) ∈ (Σ× Σ → Σ) such that

p ∨ q = > ⇐⇒ p = > or q = >.

Proof. (⇑): χS
∅(x) = ⊥ and χU∪V (x) = χU (x) ∨ χV (x).

(⇓): The sets U = {(p, q) | p = >} and V = {(p, q) | q = >} are open in the
type Σ×Σ because they have the first and second projections as their characteristic
functions. Hence the set U ∪ V is also open, and so there is χU∪V such that
χU∪V (p, q) = > iff (p, q) ∈ U ∪ V iff (p, q) ∈ U or (p, q) ∈ V iff p = > or
q = >. Therefore (∨) = χU∪V gives the desired conclusion.

Moreover, even if parallel features are included, closure under arbitrary unions
fails in general (but see [10, Chapter 4]). The following easy observation says that
elements of functional type are continuous in the topological sense:
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Proposition 3.8. For any f ∈ (σ → τ) and any open subset V of τ , the set
f−1(V ) = {x ∈ σ | f(x) ∈ V } is open in σ.

Proof. If χV ∈ (τ → Σ) is the characteristic function of the set V then χV ◦ f ∈
(σ → Σ) is that of f−1(V ).

The following says that the contextual order is the “specialization order” of the
topology:

Proposition 3.9. For x, y ∈ σ, the relation x v y holds iff x ∈ U implies y ∈ U
for every open subset U of σ.

Proof. Ground contexts of type Σ suffice to test the operational preorder — see
e.g. [27, Remark 2.10]. Because x and y are closed terms, applicative contexts, i.e.
characteristic functions of open sets, suffice.

Open sets are “rationally Scott open”:

Proposition 3.10. For any open set U in a type σ,

1. if x ∈ U and x v y then y ∈ U , and

2. if xn is a rational chain with
⊔

xn ∈ U , then there is n ∈ N such that
already xn ∈ U .

Proof. (1): By monotonicity of χU .
(2) By rational continuity of χU : If

⊔
xn ∈ U then > = χU (

⊔
n xn) =⊔

χU (xn) and hence > = χU (xn) for some n, i.e., xn ∈ U .

4 Finite elements

We develop a number of equivalent formulations of a notion of finiteness. Corol-
lary 4.3 says that an element b is finite if and only if any attempt to build b as the
least upper bound of a rational chain already has b as a building block. The official
definition is a bit subtler:

Definition 4.1. An element b is called (rationally) finite if for every rational chain xn

with b v
⊔

n xn, there is n such that already b v xn.
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4.1 Algebraicity

The types of our language are “rationally algebraic” in the following sense:

Theorem 4.2. Every element of any type is the least upper bound of a rational
chain of finite elements.

A proof of this will be given later in this subsection. For the moment, we
develop some consequences.

Corollary 4.3. An element b is finite if and only if for every rational chain xn with
b =

⊔
n xn, there is n such that already b = xn.

Proof. (⇒): If b =
⊔

n xn then b v
⊔

n xn and hence b v xn for some n. But, by
definition of upper bound, we also have b w xn. Hence b = xn, as required.

(⇐): By Theorem 4.2, there is a rational chain xn of finite elements with
b =

⊔
n xn. By the hypothesis, b = xn for some n, which shows that b is finite.

The following provides a proof method for contextual equivalence based on
finite elements:

Proposition 4.4. f = g holds in (σ → τ) iff f(b) = g(b) for every finite b ∈ σ.

Proof. (⇒): Contextual equivalence is an applicative congruence. (⇐): By ex-
tensionality it suffices to show that f(x) = g(x) for any x ∈ σ. By Theorem 4.2,
there is a rational chain bn of finite elements with x =

⊔
n bn. Hence, by two

applications of rational continuity and one of the hypothesis, f(x) = f(
⊔

n bn) =⊔
n f(bn) =

⊔
n g(bn) = g(

⊔
n bn) = g(x), as required.

Of course, the above holds with contextual equivalence replaced by contextual
order. Another consequence of Theorem 4.2 is a third continuity principle, which
is reminiscent of the ε–δ formulation of continuity in real analysis (cf. Section 4.4),
and says that finite parts of the output of a program depend only on finite parts of
the input:

Proposition 4.5. For any f ∈ (σ → τ), any x ∈ σ and any finite c v f(x), there
is a finite b v x such that already c v f(b).

Proof. By Theorem 4.2, x is the least upper bound of a rational chain bn of finite
elements. By rational continuity, c v

⊔
n f(bn), and, by finiteness of c, there is n

with c v f(bn).

Corollary 4.6. If U is open and x ∈ U , then there is a finite b v x such that
already b ∈ U .
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Proof. The hypothesis gives > v χU (x), and so there is some finite b v x with
> v χU (b) because > is finite. To conclude, use maximality of >.

In order to prove Theorem 4.2, we invoke the following concepts (see e.g. [3]):

Definition 4.7.

1. A deflation on a type σ is an element of type (σ → σ) that

(a) is below the identity of σ, and

(b) has finite image modulo contextual equivalence.

2. A (rational) SFP structure on a type σ is a rational chain idn of idempotent
deflations with

⊔
n idn = id, the identity of σ.

3. A type is (rationally) SFP if it has at least one SFP structure.

Theorem 4.8.

1. Each type of the language is SFP.

2. For any SFP structure idn on a type σ, an element b ∈ σ is finite if and only
if b = idn(b) for some n.

In particular, because idn is idempotent, idn(x) is finite and hence any x ∈ σ
is the least upper bound of the rational chain idn(x) and therefore Theorem 4.2
follows.

Proof. (1): Lemma 4.13 below.
(2)(⇒): The inequality b w idn(b) holds because idn is a deflation. For the

other inequality, we first calculate b = (
⊔

n idn)(b) =
⊔

n idn(b) using Corol-
lary 3.4. Then by finiteness of b, there is n with b v idn(b).

(2)(⇐): To show that b is finite, let xi be a rational chain with b v
⊔

i xi. Then
b = idn(b) v idn(

⊔
i xi) =

⊔
i idn(xi) by rational continuity of idn. Because idn

has finite image, modulo contextual equivalence, the set {idn(xi) | i ∈ N} is finite
and hence has a maximal element, which is its least upper bound. That is, there is
i ∈ N with b v idn(xi). But idn(xi) v xi and hence b v xi, by transitivity, as
required.

We additionally have the following proposition.

Definition 4.9. By a finitary type we mean a type that is obtained from Σ and Bool
by finitely many applications of the product- and function-type constructions.
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Proposition 4.10. SFP structures idσ
n ∈ (σ → σ) can be chosen for each type σ

in such a way that

1. idσ
n is the identity for every finitary type σ,

2. idσ→τ
n (f)(x) = idτ

n(f(idσ
n(x))),

3. idσ×τ
n (x, y) = (idσ

n(x), idτ
n(y)).

Item 1 gives an expected conclusion:

Corollary 4.11. Every element of any finitary type is finite.

The other two give the following consequence, whose proof uses the fact that
for any SFP structure idn on a type σ, if idn(x) = x then idk(x) = x for any
k ≥ n. (The inequality x = idn(x) v idk(x) holds because idi is an increasing
chain, and the inequality idk(x) v x holds because idk is a deflation.)

Corollary 4.12.

1. If f ∈ (σ → τ) and x ∈ σ are finite then so is f(x) ∈ τ .

2. If x ∈ σ and y ∈ τ are finite then so is (x, y) ∈ (σ × τ).

Proof. (1): If f and x are finite, then there are m and n with f = idm(f) and
x = idn(x). Let k = max(m,n). By Proposition 4.10, f(x) = idk(f)(idk(x)) =
idk(f(x)), which shows that f(x) is finite. (2): Similar.

To prove Theorem 4.8(1) and Proposition 4.10, we construct, by induction
on σ, programs

dσ : ω → (σ → σ).

For the base case, we define

dBool(x)(p) = p,

dΣ(x)(p) = p,

dNat(x)(k) = if x > 0 then if k == 0 then 0 else 1 + dNat(x− 1)(k − 1),
dω(x)(y) = if x > 0 ∧ y > 0 then 1 + dω(x− 1)(y − 1).

Notice that “x > 0” and “x > 0 ∧ y > 0” are terms of Sierpinski type and hence
the “if” symbols that precede them don’t have corresponding “else” clauses. For
the induction step, we define

dσ→τ (x)(f)(y) = dτ (x)(f(dσ(x)(y))),
dσ×τ (x)(y, z) = (dσ(x)(y),dτ (x)(z)).
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Lemma 4.13. The chain idσ
n

def= dσ(n) is an SFP structure on σ for every type σ.

Proof. By induction on σ. For the base case, only σ = ω is non-trivial. By
induction on n, we have that dω(n)(y) = min(n, y) for every n ∈ N. Hence
dω(n) is idempotent and below the identity, and has image {0, 1, . . . , n}. Now
dω(∞)(k) =

⊔
n dω(n)(k) =

⊔
n min(n, k) = k for k ∈ N. Hence dω(∞)(∞) =⊔

k dω(∞)(k) =
⊔

k k = ∞. By extensionality, dω(∞) is the identity. The induc-
tion step is straightforward.

This proves Theorem 4.8(1). Proposition 4.10(1) is easily established by in-
duction on finitary types, and conditions (2) and (3) are immediate.

4.2 Topological characterization of finiteness

We first need some preliminary material.

Definition 4.14. We say that an open set in σ has finite characteristic if its charac-
teristic function is a finite element of the function type (σ → Σ).

It is clear that every open set is the union of a rational chain of open sets of
finite characteristic. The following spells this out in more detail.

Lemma 4.15. For any open set U in σ and any n ∈ N, let

U (n) = id−1
n (U) = {x ∈ σ | idn(x) ∈ U}.

1. The open set U (n) ⊆ U has finite characteristic.

2. The set {U (n) | U is open in σ} has finite cardinality.

3. U has finite characteristic iff U = U (n) for some n.

4. The chain U (n) is rational and U =
⋃

n U (n).

Proof. (1) and (3): idn(χU )(x) = idn(χU (idn(x))) = χU (idn(x)), and hence
idn(χU ) is the characteristic function of U (n).

(2): Any two equivalent characteristic functions classify the same open set and
idσ→Σ

n has finite image modulo contextual equivalence.
(4): idn(χU ) is a rational chain with least upper bound χU , i.e. χU (x) = > iff

idn(χU )(x) = > for some n.p

Theorem 4.16. An element b ∈ σ is finite if and only if the set

↑ b
def= {x ∈ σ | b v x}

is open.
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From the point of view of classical domain theory, this is a tautology: b is finite,
by definition, if every directed set with supremum above b already has an element
above b, which, again by definition, means that the set ↑ b is Scott open. But the
situation here is entirely different. Although one direction of the proof of the above
theorem amounts to this observation, the other has to be non-trivial: we know that
openness implies rational Scott openness, but there is no reason to suspect that the
converse holds in general — this is corroborated by Proposition 4.20 below.

Proof. (⇒): By Proposition 3.9, for any x ∈ σ, we have that

↑x =
⋂
{U | U is open and x ∈ U}.

Because b is finite, there is n such that idn(b) = b. Hence if b belongs to an open
set U then b ∈ U (n) ⊆ U by Lemma 4.15(1). This shows that

↑ b =
⋂
{U (n) | U is open and b ∈ U}.

But this is the intersection of a set of finite cardinality by Lemma 4.15(2) and hence
open by Proposition 3.6.

(⇐): If b v
⊔

n xn holds for a rational chain xn, then
⊔

n xn ∈ ↑ b and hence
xn ∈ ↑ b for some xn by Proposition 3.10(2), i.e. b v xn.

Hence the open sets ↑ b with b finite form a base of the (rational) topology:

Corollary 4.17. Every open set is a union of open sets of the form ↑ b with b finite.

Proof. If x belongs to an open set U then x ∈ ↑ b ⊆ U for some finite b by
Corollary 4.6 and Proposition 3.10(1).
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Remark 4.18.

1. Notice that the proof of Theorem 4.16(⇒) is not constructive, in a strong
sense. The reason is that we implicitly use the fact that a subset of a finite
set is finite. In general, however, it is not possible to finitely enumerate the
members of a subset of a finite set unless the defining property of the subset
is decidable, and here it is only semidecidable. So, although the theorem
shows that the required program χ↑ b exists, it doesn’t explicitly exhibits it.

2. Moreover, this non-constructivity in the theorem is unavoidable. In fact,
if we had a constructive procedure for finding χ↑ b for every finite b, then
we would be able to semidecide contextual equivalence for finite elements,
because b = c iff χ↑ b(c) = > = χ↑ c(b). As all elements of finitary PCF are
finite, and contextual equivalence is co-semidecidable for finitary PCF, this
would give a decision procedure for equivalence, contradicting [19].

Proposition 4.19. If an open set U has finite characteristic then

U = ↑F
def=

⋃
{↑ b | b ∈ F}

for some set F of finite cardinality consisting of finite elements.

Proof. By Lemma 4.15, if U has finite characteristic then there is n with U =
id−1

n (U). By construction of idn, the set F = idn(U) has finite cardinality and
consists of finite elements. Now, if x ∈ U , then x ∈ ↑F because x is above
idn(x). Conversely, if x ∈ ↑F , then idn(u) v x for some u ∈ U ; but idn(u) ∈ U
because U = id−1

n (U), and hence x ∈ U because open sets are upper.

The converse fails in a sequential setting:

Proposition 4.20. The following are equivalent.

1. For every set F of finite cardinality consisting of finite elements of the same
type, the set ↑F is open.

2. There is (∨) : Σ× Σ → Σ such that

p ∨ q = > ⇐⇒ p = > or q = >.

Proof. (⇑): Use Proposition 3.7(⇑).
(⇓): In the proof of Proposition 3.7(⇓), notice that U = ↑(>,⊥) and V =

↑(⊥,>) and observe that for F = {(>,⊥), (⊥,>)} we have ↑F = U ∪ V .
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4.3 Density of the total elements

We now develop an operational version of the Kleene–Kreisel density theorem [9].

Definition 4.21. (Hereditary) totality is defined by induction on types as follows:

1. An element of ground type is total iff it is maximal in the contextual order.

2. An element f ∈ (σ → τ) is total iff f(x) ∈ τ is total whenever x ∈ σ is
total.

3. An element of type (σ × τ) is total iff its projections onto σ and τ are total,
or, equivalently, it is contextually equivalent to an element (x, y) with x ∈ σ
and y ∈ τ total.

It is easy to see that any type has a total element. In order to cope with the fact
that the only total element of ω, namely ∞, is defined by fixed-point recursion, we
need:

Lemma 4.22. If x is an element of any type defined from total elements y1, . . . , yn

in such a way that the only occurrences of the fixed-point combinator in x are those
of y1, . . . , yn, if any, then x is total.

Proof. Define a term with free variables to be total if every instantiation of its free
variables by total elements produces a total element, and then proceed by induction
on the formation of x from y1, . . . , yn.

Theorem 4.23. Every finite element is below some total element. Hence any in-
habited open set has a total element.

Proof. For each type τ and each n ∈ N, define programs

F τ : ω → ((τ → τ) → τ), Gτ
n : (τ → τ) → τ

by
F (x)(f) = if x > 0 then f(F (x− 1)(f)), Gn(f) = fn(t)

for some chosen t ∈ τ total. Then F (∞) = fix, F (n) v Gn and Gn is total. Now,
given a finite element b of any type, choose a fresh syntactic variable x of type ω,
and define a term b̃ from b by replacing all occurrences of fixτ by the term F τ (x).
Then b = (λx.b̃)(∞). Because b is finite, there is some n ∈ N such that already
b = (λx.b̃)(n). To conclude, construct a term b̂ from b by replacing all occurrences
of fixτ by Gτ

n. Then b̂ is total by Lemma 4.22, and (λx.b̃)(n) v b̂ and hence b v b̂
by transitivity.
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4.4 ε–δ formulation of continuity

We now formulate continuity in the ε−δ style of real analysis. The following, used
in the proof of Lemma 6.2 below, says that in order to know f(x) with a given finite
precision ε, it is enough to know x with some sufficiently sharp finite precision δ.

Lemma 4.24. For any f ∈ (σ → τ), any x ∈ σ and any ε ∈ N, there exists δ ∈ N
such that idε(f(x)) = idε(f(idδ(x)).

Proof. Since idε(f(x)) =
⊔

δ idε ◦f ◦ idδ(x), it follows from the finiteness of
idε(f(x)) that there exists δ ∈ N such that idε(f(x)) = idε(f(idδ(x))).

Although this is reminiscent of the ε–δ notion of continuity in analysis, and
rather useful in practice, it is not quite the same, as the definition in analysis in-
volves the notion of closeness of two points, articulated by a notion of distance.
Given a distance function d and points x and y, one says that x and y are ε-close,
where ε is a positive real number, if d(x, y) < ε. Then continuity of a function f at
a point x means that for every precision ε > 0 with which we wish to know f(x),
there is a sufficiently sharp precision δ > 0 such that for every y that is δ-close
to x, we have that f(y) is ε-close to f(x). Hence f(y) is a sufficiently precise
approximation of f(x), so that it is not necessary to know x exactly in order to get
an ε-precise approximation of f(x).

Our next goal is to develop an analogue of this situation. We replace the close-
ness relation d(x, y) < ε, where x and y are points and ε > 0 is a real number, by
the relation x =ε y, where x and y are elements of a type of our language and ε is
a natural number:

x =ε y ⇐⇒ idε(x) = idε(y).

But notice an important difference: in analysis, the smaller the real number ε > 0
is, the closer x and y are when d(x, y) < ε. Here, on the other hand, the bigger the
natural number ε is, the closer the two elements are when x =ε y. If one thinks of
idε(x) as the truncation of the possibly infinite object x to finite precision ε, then
x =ε y means that a precision higher than ε is needed to distinguish x and y.

Just as in classical topology and functional analysis, in our setting it is not the
case that our continuous functions are continuous in the ε-δ sense for all types. So
we consider special types of interest. We refer to the function type (Nat → Nat)
as the Baire type and denote it by Baire:

Baire = (Nat→ Nat).

We think of this as the type of possibly partial sequences of natural numbers. Then
the set of total elements of Baire is an operational manifestation of the Baire space
of classical topology. The following technical lemma is easily proved:
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Lemma 4.25. Define idε : Baire→ Baire by

idε(s) = λi. if i < ε then s(i) else ⊥.

Then idε(s) is finite and above idε(s), and if s, t ∈ Baire are total then for all
ε ∈ N,

idε(s) v t =⇒ s =ε t.

Theorem 4.26. For any total f ∈ (σ → Baire) and any total x ∈ σ,

∀ε ∈ N ∃δ ∈ N ∀ total y ∈ σ, x =δ y ⇒ f(x) =ε f(y).

Proof. Because idε(f(x)) is finite and below f(x), there is δ such that already
idε(f(x)) v f(idδ(x)) by Proposition 4.5. If x =δ y then f(idδ(x)) = f(idδ(y))
and hence idε(f(x)) v f(idδ(y)) v f(y). By Lemma 4.25, f(x) =ε f(y), as
required.

Similarly, we have:

Theorem 4.27. For any total f ∈ (σ → γ) and any total x ∈ σ, where γ ∈
{Nat, Bool},

∃δ ∈ N ∀ total y ∈ σ, x =δ y =⇒ f(x) = f(y).

5 Compact sets

The intuition behind the classical topological notion of compactness is that a com-
pact set behaves, in many important respects, as if it were a set of finite cardinality
— see e.g. [14]. The official definition, which is more obscure, says that a sub-
set Q of a topological space is compact iff it satisfies the Heine–Borel property:
any collection of open sets that covers Q has a finite subcollection that already
covers Q.

5.1 Operational formulation of the notion of compactness

In order to arrive at an operational notion of compactness, we reformulate the above
definition in two stages.

1. Any collection of open sets of a topological space can be made directed by
adding the unions of finite subcollections. Hence a set Q is compact iff every
directed cover of Q by open sets includes an open set that already covers Q.
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2. Considering the Scott topology on the lattice of open sets of the topological
space, this amounts to saying that the collection of open sets U with Q ⊆ U
is Scott open in this lattice.

Thus, this last reformulation considers open sets of open sets. We take this as our
definition, with “Scott open” replaced by “open” in the sense of Definition 3.5:

Definition 5.1. We say that a collection U of open sets of a type σ is open if the
collection

{χU | U ∈ U}

is open in the function type (σ → Σ).

Lemma 5.2. For any set Q of elements of a type σ, the following two conditions
are equivalent:

1. The collection {U open | Q ⊆ U} is open.

2. There is (∀Q) ∈ ((σ → Σ) → Σ) such that

∀Q(p) = > ⇐⇒ p(x) = > for all x ∈ Q.

Proof. ∀Q = χU for U = {χU | Q ⊆ U}, because if p = χU then Q ⊆ U ⇐⇒
p(x) = > for all x ∈ Q.

Definition 5.3. We say that a set Q of elements of a type σ is compact if it satisfies
the above equivalent conditions. In this case, for the sake of clarity, we write
“∀x ∈ Q. . . . ” instead of “∀Q(λx. . . . )”.

Lemma 5.2(2) gives a sense in which a compact set behaves as a set of finite
cardinality: it is possible to universally quantify over it in a mechanical fashion.
Hence every finite set is compact. Examples of infinite compact sets will be given
shortly.

5.2 Basic classical properties

By Lemma 5.2(1), compact sets satisfy the “rational Heine–Borel property”, be-
cause open sets are rationally Scott open:

Proposition 5.4. If Q is compact and Un is a rational chain of open sets with
Q ⊆

⋃
n Un, then there is n ∈ N such that already Q ⊆ Un.

Further properties of compact sets that are familiar from classical topology
hold for our operational notion [10]:
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Proposition 5.5.

1. For any f ∈ (σ → τ) and any compact set Q in σ, the set

f(Q) = {f(x) | x ∈ Q}

is compact in τ .

2. If Q is compact in σ and R is compact in τ , then Q×R is compact in σ× τ .

3. If Q is compact in σ and V is open in τ , then

N(Q,V ) def= {f ∈ (σ → τ) | f(Q) ⊆ V }

is open in (σ → τ).

Proof. (1): ∀y ∈ f(Q).p(y) = ∀x ∈ Q.p(f(x)).
(2): ∀z ∈ Q×R.p(z) = ∀x ∈ Q.∀y ∈ R.p(x, y).
(3): χN(Q,V )(f) = ∀x ∈ Q.χV (f(x)) .

5.3 First examples and counter-examples

The set of all elements of any type σ is compact, but for trivial reasons: p(x) = >
holds for all x ∈ σ iff it holds for x = ⊥, by monotonicity, and hence the definition
∀σ(p) = p(⊥) gives a universal quantification program.

Proposition 5.6. The total elements of Nat and Baire don’t form compact sets.

Proof. It is easy to construct g ∈ (ω× Nat→ Σ) such that g(x, n) = > iff x > n
for all x ∈ ω and n ∈ N. If the total elements N of Nat did form a compact
set, then we would have u ∈ (ω → Σ) defined by u(x) = ∀n ∈ N.g(x, n) that
would satisfy u(k) = ⊥ for all k ∈ N and u(∞) = > and hence would violate
rational continuity. Therefore N is not compact in Nat. If the total elements of
Baire formed a compact set, then, considering f ∈ (Baire → Nat) defined
by f(s) = s(0), Proposition 5.5(1) would entail that N is compact in Nat, again
producing a contradiction.

The above proof relies on a continuity principle rather than on recursion theory.
Thus, compactness of N in Nat fails even if the language includes an oracle for
the Halting Problem. The second part of the following says that the types of our
language are “rationally spectral” spaces:

Theorem 5.7. An open set is compact iff it has finite characteristic. Hence every
open set is a rational union of compact open sets.
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Proof. By Proposition 5.2(1), an open set V is compact if and only if the collection
{U open | V ⊆ U} is open, if and only if {χU | U open and V ⊆ U} is open,
if and only if the set ↑χV is open. It then follows from Theorem 4.16 that this is
equivalent to χV being finite, i.e. V having finite characteristic. The last part of the
proposition then follows from Lemma 4.15

The simplest non-trivial example of a compact set, which is a manifestation of
the “one-point compactification of the discrete space of natural numbers”, is given
in the following proposition.

We regard function types of the form (Nat→ σ) as sequence types and define
“head”, “tail” and “cons” constructs for sequences as follows:

hd(s) = s(0),
tl(s) = λi.s(i + 1),
n :: s = λi. if i == 0 then n else s(i− 1).

We also use familiar notations such as

0n1ω

as shorthands for evident terms such as

λi. if i < n then 0 else 1.

Theorem 5.8. The set N∞ of sequences of the forms 0n1ω and 0ω is compact in
the type Baire.

Proof. Define, omitting the subscript N∞ for ∀,

∀(p) = p(if p(1ω) ∧ ∀s.p(0 :: s) then t),

where t is some element of N∞. More formally, ∀ = fix(F ) where

F (A)(p) = p(if p(1ω) ∧A(λs.p(0 :: s)) then t).

We must show that, for any given p, ∀(p) = > iff p(s) = > for all s ∈ N∞.
(⇐): The hypothesis gives p(0ω) = >. By Proposition 4.5, there is n such

that already p(idn(0ω)) = >. But idn(0ω)(i) = 0 if i < n and idn(0ω)(i) = ⊥
otherwise. Using this and monotonicity, a routine proof by induction on k shows
that if p(idk(0ω)) = > then F k(⊥)(p) = >. The result hence follows from the
fact that F k(⊥) v ∀.

(⇒): By rational continuity, the hypothesis implies that Fn(⊥)(p) = > for
some n. A routine, but slightly laborious, proof by induction on k shows that, for
all q, if F k(⊥)(q) = > then q(s) = > for all s ∈ N∞.

In order to construct more sophisticated examples of compact sets, we need the
techniques of Section 6 below.
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5.4 Uniform continuity

We now show that certain programs are uniformly continuous on certain sets (cf.
Theorems 4.26 and 4.27). Recall from Section 4.4 that we defined, for elements x
and y of the same type, and any natural number ε,

x =ε y ⇐⇒ idε(x) = idε(y).

For technical purposes, we now also define

x ≡ε y ⇐⇒ idε(x) = idε(y).

where idε : Baire→ Baire is defined as in Lemma 4.25:

idε(s) = λi. if i < ε then s(i) else ⊥.

Lemma 5.9. For f ∈ (σ → Baire) total and Q a compact set of total elements
of σ,

∀ε ∈ N ∃δ ∈ N ∀x ∈ Q, f(x) ≡ε f(idδ(x)).

Proof. For any given ε ∈ N, it is easy to construct a program

e ∈ (Baire× Baire→ Σ)

such that

(i) if s, t ∈ Baire are total then s ≡ε t ⇒ e(s, t) = >,

(ii) for all s, t ∈ Baire, e(s, t) = > ⇒ s ≡ε t.

If we define p(x) = e(f(x), f(x)), then, by the hypothesis and (i), ∀Q(p) = >.
By Proposition 4.5, ∀Q(idδ(p)) = > for some δ ∈ N, and, by Proposition 4.10,
idδ(p)(x) = p(idδ(x)). It follows that e(f(idδ(x)), f(idδ(x))) = > for all x ∈ Q.
By monotonicity, e(f(x), f(idδ(x))) = >, and, by (ii), f(x) ≡ε f(idδ(x)), as
required.

Theorem 5.10. For f ∈ (σ → Baire) total and Q a compact set of total elements
of σ,

∀ε ∈ N ∃δ ∈ N ∀x, y ∈ Q, x =δ y ⇒ f(x) =ε f(y).

Proof. Given ε ∈ N, first construct δ ∈ N as in Lemma 5.9. For x, y ∈ Q, if x =δ y
then idε(f(x)) = idε(f(idδ(x))) = idε(f(idδ(y))) v f(y). By Lemma 4.25,
f(x) =ε f(y), as required.

Similarly, we have:
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Theorem 5.11. For γ ∈ {Nat, Bool}, f ∈ (σ → γ) total and Q a compact set of
total elements of σ,

1. ∃δ ∈ N ∀x ∈ Q, f(x) = f(idδ(x)),

2. ∃δ ∈ N ∀x, y ∈ Q, x =δ y =⇒ f(x) = f(y).

The following is used in Section 7 below:

Definition 5.12. For f and Q as in Theorem 5.11, we refer to the least δ ∈ N such
that (1) (respectively (2)) holds as the big (respectively small) modulus of uniform
continuity of f at Q. (In the literature, e.g.[33], these are sometimes referred to as
the intensional and extensional moduli of continuity respectively.)

5.5 Compact saturated sets

The remainder of the paper doesn’t depend on the material of this subsection. In
classical domain theory and topology, among all compact sets, the saturated ones
play a distinguished role. Here we analyse the extent to which classical results
about compact saturated sets generalize to our operational setting. The main result
is that, as is the case for algebraic (and more generally, continuous) domains in
classical domain theory, every compact saturated set of elements of any type is an
intersection of upper sets of finite sets of finite elements.

Definition 5.13. The saturation of a subset S of a type σ is defined to be the
intersection of its open neighbourhoods and is denoted by sat(S), i.e.,

sat(S) =
⋂
{U open |S ⊆ U}.

A set S is said to be saturated if S = sat(S).

In classical domain theory, a set is saturated in this sense if and only if it is
an upper set. As we shall see shortly, in our sequential operational setting, every
saturated set is an upper set, but the converse fails in general.

Proposition 5.14. Let S be a subset of a type.

1. S ⊆ U for U open if and only if sat(S) ⊆ U .

2. ↑S ⊆ sat(S).

3. sat(S) is saturated.

4. sat(S) is the largest set with the same neighbourhoods as S.
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Proof. Clearly S ⊆ sat(S). Hence sat(S) ⊆ U implies S ⊆ U . Conversely, if
S ⊆ U , then by definition, sat(S) ⊆ U . So (1) holds. If t ∈ ↑S, then s v t
for some s ∈ S. Hence t belongs to every neighbourhood of S, and so to sat(S).
Therefore ↑S ⊆ sat(S), i.e. (2) holds. By (2), S ⊆ sat(S) for all S. Thus
sat(S) ⊆ sat(sat(S)). Suppose x ∈ sat(sat(S)). Then for each open U with
S ⊆ U , it holds that sat(S) ⊆ U . Thus x ∈ sat(S) by definition. Hence sat(S) =
sat(sat(S)), i.e., (3) holds. That (4) holds is clear.

The following is a generalization of Theorem 4.16.

Theorem 5.15. If F is a finite set of finite elements, then sat(F ) is an open set of
finite characteristic.

Proof. For each x ∈ F , there is an integer n with idn(x) = x. Let m be the
maximum of such integers. Then idm(x) = x for all x ∈ F . Hence if F ⊆ U
for some open U , then F ⊆ id−1

m (U) ⊆ U . So sat(F ) =
⋂
{id−1

m (U) | F ⊆ U}.
Because this is the intersection of a finite set of open sets, it is open. By the idem-
potence of idm, it follows that (sat(F ))(m) = (

⋂
{U (m) | F ⊆ U , U open})(m) =⋂

{(U (m))(m) | F ⊆ U , U open} =
⋂
{U (m) | F ⊆ U , U open} = sat(F ).

As discussed above, in classical domain theory and topology, a set is saturated
if and only if it is an upper set. But, in our setting, this relies on parallel features:

Proposition 5.16. If every upper set is saturated, then there is

(∨) : Σ× Σ → Σ

such that p ∨ q = > ⇐⇒ p = > or q = >.

Proof. This follows directly from Theorem 5.15 and Proposition 4.20.

In our context, a main reason for considering compact saturated sets is that
definable quantifiers don’t distinguish between a set and its saturation:

Proposition 5.17.

(1) Q is compact iff sat(Q) is compact, and in this case, ∀Q = ∀sat(Q).

(2) For any compact sets Q and R of the same type, it holds that ∀Q v ∀R iff
R ⊆ sat(Q).

Proof. (1) This follows of Lemma 5.14(1). (2) ∀Q v ∀R iff ∀U ∈ U .∀Q(χU ) =
> ⇒ ∀R(χU ) = > iff ∀U ∈ U .Q ⊆ U ⇒ R ⊆ U iff R ⊆

⋂
{U ∈ U | Q ⊆ U}

iff R ⊆ sat(Q).
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The following is used in order to prove the main result of this subsection:

Lemma 5.18. If Q is compact, then idn(Q) is compact and

idn(∀Q) = ∀idn(Q).

Furthermore, if U is open with Q ⊆ U , then there is n such that idn(Q) ⊆ U .

Proof. Compactness of idn(Q) follows directly from Proposition 5.5(1). For each
p ∈ (σ → Σ), we have that idn(∀Q)(p) = ∀Q(p ◦ idn). But ∀Q(p ◦ idn) = >
iff for all x ∈ Q, p ◦ idn(x) = >, and so idn(∀Q) = ∀idn(Q). Now if U is open
with Q ⊆ U , then ∀Q(χU ) = >. Hence by rational continuity there is n such
that already idn(∀Q)(χU ) = >, i.e., ∀idn(Q)(χU ) = >, and so there is n such that
idn(Q) ⊆ U .

Theorem 5.19. If Q is compact then sat(Q) =
⋂

n sat(idn(Q)). Hence every
compact saturated set is an intersection of upper sets of finite sets of finite elements.

Proof. Since for any n it holds that idn(Q) ⊆ U implies Q ⊆ U , it follows that
Q ⊆ sat(idn(Q)). Thus sat(Q) ⊆

⋂
n sat(idn(Q)). For the reverse inclusion,

take any U open with Q ⊆ U . Then there is n such that idn(Q) ⊆ U and hence
sat(idn(Q)) ⊆ U . Hence sat(Q) =

⋂
n sat(idn(Q)). By Proposition 5.15, the set

sat(idn(Q) is an open set of finite characteristic, and hence, by Proposition 4.19,
it is the upper set of a finite set of finite elements.

A family of compact sets Qi is said to be rationally filtered if the chain of
quantifiers ∀Qi is rational in (σ → Σ) → Σ. In classical domain theory, algebraic
domains have the property that filtered intersections of compact saturated sets are
compact. This is open in our setting, even in the rational case.

Proposition 5.20. The following are equivalent for any rationally filtered family Qi

of compact saturated subsets of a type σ:

1.
⋂

i Qi is compact and ∀T
i Qi

v
⊔

i ∀Qi .

2.
⊔

i ∀Qi universally quantifies over
⋂

i Qi.

3.
⋂

i Qi ⊆ U =⇒ ∃i.Qi ⊆ U whenever U is open.

Proof. First observe that the reverse inequality in (1) holds by Proposition 5.17,
and the reverse implication in (3) clearly holds.

(1 ⇐⇒ 2): Immediate from this observation.
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(1 =⇒ 3): The inequality (1) is equivalent to the implication

∀T
i Qi

(χU ) = > =⇒
⊔
i

∀Qi(χU ) = >,

which is clearly equivalent to
⋂

i Qi ⊆ U =⇒ ∃i.Qi ⊆ U, which, in turn, is
equivalent to (3).

(3 =⇒ 2): We have to show that
⊔

i ∀Qi(χU ) = > ⇐⇒
⋂

i Qi ⊆ U. But the
lhs is equivalent to ∃i.Qi ⊆ U , and hence the equivalence amounts to (3) by the
above observation.

Even when the compact saturated sets Qi are upper sets of points, say ↑xi,
we don’t know whether their intersection is compact. The following proposition
shows that this would be the case if xi were a rational chain. However, it is not
clear to us whether the rationality of Qi implies that of xi.

Proposition 5.21. For every rational chain xi, the intersection of the rationally fil-
tered chain ↑xi of compact saturated sets is ↑

⊔
i xi and hence is compact. More-

over,
⊔

i ∀↑xi
= ∀↑F

i xi
.

Proof. Notice that for each i, ∀↑xi
(p) = p(xi) and ↑xi = sat{xi}, and hence

(↑xi)i is a rationally filtered family of compact saturated sets. Note also that⋂
i ↑xi = ↑

⊔
i xi because u ∈

⋂
i ↑xi ⇐⇒ ∀i.xi v u ⇐⇒

⊔
i xi v u ⇐⇒

u ∈ ↑
⊔

i xi. So
⋂

i ↑xi is compact. Moreover, for every p ∈ (σ → Σ), it holds
that (

⊔
i ∀↑xi

)(p) = > iff ∀ip(xi) = > iff p(
⊔

i xi) = > iff p(u) = > for all u ∈
↑

⊔
i xi. So

⊔
i ∀↑xi

= ∀↑F
i xi

.

6 A data language

In an operational setting, one usually adopts the same language to construct pro-
grams of a type and to express data of the same type. But consider programs that
can accept externally produced streams as inputs. Because such streams are not
necessarily definable in the language, it makes sense to consider program equiva-
lence defined by quantification over more liberal “data contexts” and ask whether
the same notion of program equivalence is obtained.

Definition 6.1. Let P be the programming language introduced in Section 2, per-
haps extended with parallel features, but not with oracles, and let D be P extended
with oracles. We think of D as a data language for the programming language P .
The idea is that the closed terms ofP are programs and those ofD are (higher-type)
data. Accordingly, in this context, the notation x ∈ σ means that x is a closed term
of type σ in the data language. Of course, this includes the possibility that x is a
program.
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6.1 Program equivalence with respect to data contexts

The following is folklore and goes back to Milner [22]. We offer a proof based on
the development of the previous sections:

Theorem 6.2. For terms in P , equivalence with respect to ground P-contexts and
equivalence with respect to ground D-contexts coincide.

Proof. In view of Proposition 4.4, it suffices to show that for any data element x of
any type, idn(x) is equivalent to some program with respect to ground D-contexts.
Given x ∈ σ in D, it is clear that there exist a program g ∈ Bairem → σ and
oracles Ω1, . . . ,Ωm such that x = g(Ω1, . . . ,Ωm). It follows from m applications
of Lemma 4.24 that there exist k1, . . . , km such that

idn(x) = idn(g(idk1(Ω1), . . . , idkm(Ωm))).

But the right-hand term is equivalent to a program, because clearly for any oracle Ω
and n, the data term idn(Ω) is equivalent to some program.

6.2 Program totality with respect to the data language

On the other hand, the notion of totality changes:

Theorem 6.3. There are programs that are total with respect to P but not with
respect to D.

This kind of phenomenon is again folklore. There are programs of type e.g.
Cantor→ Bool, where

Cantor
def= (Nat→ Bool),

that, when seen from the point of view of the data language, map programmable
total elements to total elements, but diverge at some non-programmable total in-
puts. The construction uses Kleene trees [6], and can be found in [10, Chapter
3.11]. This is analogous to the fact that totality with respect to P also disagrees
with totality with respect to denotational models. A proof for the Scott model can
be found in [30]. For the intriguing relationship between totality in the Scott model
with sequential computation, see [24].

6.3 Higher-type oracles

Berardi, Bezem and Coquand [7] work with a seemingly more expressive language.
They have the following term-formation rule: if ti : σ is any sequence of terms,
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then λi.ti : Nat → σ is a term. When σ = Nat, this amounts to the construction
of a first-order oracle, and hence we refer to the new terms as higher-type oracles.
However, it turns out that the existence of such oracles follows automatically from
the existence of first-order oracles:

Theorem 6.4. In the presence of first-order oracles, for any type σ and any se-
quence xi ∈ σ there is s ∈ (Nat→ σ) such that s(i) = xi for every i.

Proof. Any x ∈ σ can be coded as a program g : Bairen → σ together with
finitely many oracles Ω1, . . . ,Ωn such that x = g(Ω1, . . . ,Ωn). Using a pair-
ing function 〈·, ·〉, all the oracles can be packed into a single one, say Ω, and we
can consider a program h : Baire → σ that first unpacks the oracles and then
behaves as g, so that x = h(Ω). Now, for every type τ there is an “enumer-
ator” Eτ : Nat → τ such that Eτ (ptq) = t for any program t : τ with Gödel
number ptq. See Plotkin and Longley [20] for a purely operational proof that
works with and without parallel features in the language. Hence if we define
evσ(n, f) = EBaire→σ(n)(f) then we get an “evaluator” evσ : Nat× Baire→ σ
such that evσ(phq,Ω) = x for any element x coded as h(Ω) as above. To conclude,
from the codings hi,Ωi of the given elements xi, we form two first-order oracles
G(i) = phiq and A〈i, n〉 = Ωi(n), and then define s(i) = ev(G(i), λn.A〈i, n〉).
By construction, s(i) = xi, as required.

This theorem is applied in the proof of Lemma 7.11 below.

7 Sample applications

We use the data language D to formulate specifications of programs in the pro-
gramming language P . As in Section 6, the notation x ∈ σ means that x is a
closed term of type σ inD. This is compatible with the notation of Sections 3–5 by
taking D as the underlying language for them. Again maintaining compatibility,
we take the notions of totality, open set and compact set with respect to D. To in-
dicate that openness or compactness of a set is witnessed by a program rather than
just an element of the data language, we say programmably open or compact.

7.1 Compactness of the Cantor space

As for the Baire type, we think of the elements of the Cantor type as sequences, and,
following topological tradition, in this context we identify the booleans true and
false with the numbers 0 and 1 (it doesn’t matter in which order). The following is
our main tool in this section:
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Theorem 7.1. The total elements of the Cantor type form a programmably compact
set.

Proof. This is proved and discussed in detail in [10, Chapter 3.11], and also fol-
lows from the more general Theorem 7.8 below, and hence we only provide the
construction of the universal quantification program, with one minor improvement.
We recursively define ∀ : (Cantor→ Σ) → Σ by

∀(p) = p(if ∀s.p(0 :: s) ∧ ∀s.p(1 :: s) then t),

where t is some programmable total element of Cantor, e.g. 0ω. The correctness
proof for this program is similar to that of Theorem 5.8, but involves an invocation
of König’s Lemma.

Remark 7.2. If the data language is taken to be P itself, Theorem 7.1 fails for the
same reason that leads to Theorem 6.3 [10, Chapter 3.11]. Of course, the above
program ∀ : (Cantor → Σ) → Σ can still be written down. But it no longer
satisfies the required specification given in Lemma 5.2(2). In summary, it is easier
to universally quantify over all total elements of the Cantor type than just over the
programmable ones, to the extent that the former can be achieved by a program but
the latter cannot.

Interestingly, the programmability conclusion of Theorem 7.1 is not invoked
for the purposes of this section, because we only apply compactness to get uniform
continuity.

7.2 The Gandy–Berger functional

The following theorem is due to Berger [8], with domain-theoretic denotational
specification and proof, and it was known to Gandy, according to M. Hyland. As
discussed in the introduction, the purpose of this section is to illustrate that such
specifications and proofs can be directly understood in our operational setting, and,
moreover, apply to sequential programming languages.

Theorem 7.3. There is a total program

ε : (Cantor→ Bool) → Cantor

such that for any total p ∈ (Cantor → Bool), if p(s) = true for some total
s ∈ Cantor, then ε(p) is such an s.
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Proof. Define

ε(p) = if p(0 :: ε(λs.p(0 :: s))) then 0 :: ε(λs.p(0 :: s)) else 1 :: ε(λs.p(1 :: s)).

The required property is established by induction on the big modulus of uniform
continuity of a total element p ∈ (Cantor → Bool) at the set of total elements,
using the fact that if p has modulus δ + 1 then λs.p(0 :: s) and λs.p(1 :: s)
have modulus δ, and that when p has modulus zero, p(⊥) is total and hence p is
constant.

This gives rise to universal quantification for boolean-valued rather than Sierpinski-
valued predicates:

Corollary 7.4. There is a total program

∀ : (Cantor→ Bool) → Bool

such that for every total p ∈ (Cantor→ Bool),

∀(p) = true ⇐⇒ p(s) = true for all total s ∈ Cantor.

Proof. First define ∃ : (Cantor → Bool) → Bool by ∃(p) = p(ε(p)) and then
define ∀(p) = ¬∃s.¬p(s).

Corollary 7.5. The function type (Cantor→ Nat) has decidable equality for total
elements.

Proof. Define a program

(==): (Cantor→ Nat)× (Cantor→ Nat) → Bool

by (f == g) = ∀ total s ∈ Cantor.f(s) == g(s).

7.3 Simpson’s functional

Simpson [33] applied Corollary 7.4 to develop surprising sequential programs for
computing integration and supremum functionals ([0, 1] → R) → R, with real
numbers represented as infinite sequences of digits. The theory developed here
copes with that, again allowing a direct operational translation of the original deno-
tational development. In order to avoid the necessary background on real number-
computation, we illustrate the main idea by reformulating the development of the
supremum functional, with the closed unit interval and the real line replaced by
the Cantor and Baire types, and with the natural order of the reals replaced by the
lexicographic order on sequences.

The lexicographic order on the total elements of the Baire type is defined by
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s ≤ t iff whenever s 6= t, there is n ∈ N with s(n) < t(n) and
s(i) = t(i) for all i < n.

Lemma 7.6. There is a total program

max: Baire× Baire→ Baire

such that

1. max(s, t) is the maximum of s and t in the lexicographic order for all total
s, t ∈ Baire, and

2. (s, t) ≡ε (s′, t′) ⇒ max(s, t) ≡ε max(s′, t′) for all s, t, s′, t′ ∈ Baire
(total or not) and all ε ∈ N.

Proof. It is easy to verify that the program

max(s, t) = if hd(s) == hd(t)
then hd(s) :: max(tl(s), tl(t))
else if hd(s) > hd(t) then s else t

fulfills the requirements.

Theorem 7.7. There is a total program

sup: (Cantor→ Baire) → Baire

such that for every total f ∈ (Cantor→ Baire),

sup(f) = sup{f(s) | s ∈ Cantor is total},

where the supremum is taken in the lexicographic order.

Proof. Let t ∈ Cantor be a programmable total element and define

sup(f) = let h = hd(f(t)) in
if ∀ total s ∈ Cantor.hd(f(s)) == h

then h :: sup(λs. tl(f(s)))
else max(sup(λs.f(0 :: s)), sup(λs.f(1 :: s))),

where “let x = . . . inM” stands for “(λx.M)(. . . )”.
One shows by induction on n ∈ N that, for every total f ∈ (Cantor →

Baire),
sup(f) ≡n sup{f(s) | s ∈ Cantor is total}.
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The base case is trivial. For the induction step, one proceeds by a further induc-
tion on the small modulus of uniform continuity of hd ◦f : Cantor → Nat at the
total elements of Cantor, crucially appealing to the non-expansiveness condition
given by Lemma 7.6(2). One uses the facts that if hd ◦f has modulus δ + 1 then
hd ◦λs.f(0 :: s) and hd ◦λs.f(1 :: s) have modulus δ, and that if hd ◦f has mod-
ulus 0 then hd(f(s)) = hd(f(t)) for all total s and t.

Theorems 7.3 and 7.7 rely on the compactness of the total elements of the
Cantor type. Arguments similar to that of Proposition 5.6 show that these two
theorems fail if the Cantor type is replaced by the Baire space.

7.4 Countable-Tychonoff functional

The Tychonoff theorem in classical topology states that a product of arbitrarily
many compact spaces is compact. A proof that this holds in a computational setting
for countably many spaces is developed in [10, Theorem 13.1]. Given a sequence
of universal quantifiers ∀Qi for a sequence of compact sets Qi, we wish to obtain
the quantifier for the product of the compact sets.

We face two difficulties. The first is that, because our language doesn’t include
dependent types, we cannot assume that each compact set Qi is contained in a
different type σi. Hence we make the simplifying assumption that all the compact
sets are contained in the same type σ. The second difficulty is that we are not
able to produce a sequential algorithm without additionally being given a sequence
ui ∈ Qi of points. Hence we just assume that such a sequence is also given. The
logically minded reader may be tempted to conjecture that the reason for this is
that the Tychonoff theorem relies on the axiom of choice, and that we are avoiding
the axiom by explicitly supplying a choice as input. However, using (rather weak)
parallel features, an algorithm that doesn’t require the choice as input is possible
— see the paragraph preceding [10, Theorem 13.1]. We leave as an open problem
to develop a sequential algorithm that doesn’t require the choice as input.

Here is the sequential algorithm developed in [10]:

A : (Nat→ σ)× (Nat→ ((σ → Σ) → Σ)) → (((Nat→ σ) → Σ)) → Σ)
A(u, α) = hd(α)(λx.p(if A(tl(u), tl(α))(λs.p(x :: s)) then u)).

The following was proved in [10, Section 13.1]:

Theorem 7.8. If Qi ⊆ σ is a sequence of compact sets, ui ∈ Qi is a sequence of
points and α is a sequence such that αi = ∀Qi , then

∏
i Qi is compact and

A(u, α) = ∀Q
i Qi

.
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Notice that Theorem 7.1 is a special case of this, with Qi = {0, 1}, ui = 0 and
α(p) = p(0) ∧ p(1).

However, the proof of this theorem given in [10] is for the specification of the
algorithm interpreted in the Scott model. As shown in [10], in the Scott model, a
quantification functional ∀S is continuous if and only if the set S is topologically
compact. Hence, in the above theorem, all the sets Qi are topologically compact
in the classical sense, and, thus, by the topological Tychonoff theorem, so is the
product

∏
i Qi. Now, compactness of the product was used in order to prove termi-

nation of the above algorithm. But, in the current setting, although the operational
notion of compactness is motivated by the classical topological one, it is not the lit-
erally the same in the absence of parallel features, and hence it is not immediately
clear whether the product is compact. Alex Simpson communicated to us a proof
of termination of the above algorithm without assuming topological compactness
of the product, establishing the operational version of Theorem 7.8 (Lemma 7.11
below). The proof that if the algorithm terminates, then it produces the correct
result is essentially the same as that given in [10] (Lemma 7.10 below).

For each natural number k, define, for any u and α,

A(k)(u, α)(p) = A(u(k), α(k))(λs.p(s(k)))

where, for any given sequence t, we write t
(k)
i = ti+k. For the remainder of this

section, let Qi, ui and αi be as in the premise of Theorem 7.8. We show that
A(k)(u, α) : ((Nat→ σ) → Σ) → Σ is the universal quantifier of

∏
i Qi+k. Then

the theorem amounts to the special case k = 0.

Lemma 7.9. For u and α as above, and any k,

A(k)(u, α)(p) = αk(λx.p(if A(k+1)(u, α)(λs.p(x :: s)) then u(k)))
= p(if αk(λx.A(k+1)(u, α)(λs.p(x :: s)) then u(k))).

Proof. The first equation is established by induction on k and the second by case
analysis on whether A(k+1)(u, α)(λs.p(x :: s)) holds for all x ∈ Qk.

Hence the program B(p, k) = A(k)(u, α)(p) satisfies the equation

B(p, k) = p(if αk(λx.B(λs.p(x :: s), k + 1)) then u(k)). (1)

Lemma 7.10. If B(p, k) = >, then p(s) = > for all s ∈
∏

i Qi+k.

Proof. If we define

B0(p, k) = ⊥
Bn+1(p, k) = p(if αk(λx.Bn(λs.p(x :: s), k + 1)) then u(k)),
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then B =
⊔

n Bn by rational completeness. Hence if B(p, k) = > then there is
an n such that Bn(p, k) = >. But, by induction on n using monotonicity of p,
it is clear that, for any n, the condition Bn(p, k) = > implies p(s) = > for all
s ∈

∏
i Qi+k.

As discussed above, the following proof of the converse of the previous lemma
is due to Alex Simpson:

Lemma 7.11. If p(s) = > for all s ∈
∏

i Qi+k, then B(p, k) = >.

Proof. For the sake of contradiction, assume that the premise holds but the conclu-
sion fails, i.e. B(p, k) = ⊥. We show by induction on j that for every j there is an
element yk+j ∈ Qk+j such that

p(yk, yk+1, . . . , yk+j , ~⊥) = ⊥,

B(λs.p(yk :: yk+1 :: · · · :: yk+j :: s), k + j + 1) = ⊥.

For j = 0, this amounts to p(yk, ~⊥) = ⊥ and B(λs.p(yk :: s), k + 1) = ⊥. But,
by Eq. (1) and the assumptions B(p, k) = ⊥ and p(u(k)) = >, we must have
that p(⊥) = ⊥ and hence that ∀x ∈ Qk.B(λs.p(x :: s), k + 1) = ⊥, which
means that such a yk must exist. The proof of the induction step is identical, but
replaces the assumption B(p, k) = ⊥ by the induction hypothesis given by the
above two equations. By Theorem 6.4, there exists s : Nat → σ in D such that
s(j) = yk+j . Hence the sequences yk, yk+1, . . . , yk+j , ~⊥ form a j-indexed rational
chain with supremum s, and, by continuity, p(s) = ⊥. However, p(s) = > because
s ∈

∏
j≥k Qj by construction.

We observe that this proof can be seen as a special case of that of the topologi-
cal Tychonoff theorem for a well-ordered set of indices given in [38].

8 End

8.1 Remarks on parallel convergence

A function (∨) ∈ (Σ× Σ → Σ) such that

p ∨ q = > ⇐⇒ p = > or q = >

is known as parallel convergence or weak parallel-or. Abramsky showed that
parallel-or on the booleans is not definable from this [1], Stoughton showed that
parallel-or is equivalent to the parallel conditional at ground types [36], and Plotkin
showed that the parallel conditional is not PCF-definable but that the Scott model
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is fully abstract for PCF extended with the parallel conditional [29]. On the other
hand, it is easy to see that parallel convergence is definable from parallel-or. The
Scott model of PCF fails to capture contextual equivalence, but, combining [36]
and [29], it becomes fully abstract for PCF extended with parallel-or.

As we have seen, a variety of results of domain theory as applied to program-
ming language semantics turn out to be valid in a sequential setting, despite the
above mismatch of the Scott model with PCF. However, we have found that three
results do depend on parallel features. But, because parallel-or is needed to ob-
tain full abstraction, it is interesting that two of these results depend on a form of
parallelism that is weaker than parallel-or:

Theorem 8.1. The following are equivalent.

1. There is a parallel convergence function.

2. Open sets are closed under the formation of finite unions.

3. The upper set of any finite set of finite elements is open.

4. For every pair of elements x v y of type σ, there is a “path” p ∈ (Σ → σ)
with p(⊥) = x and p(>) = y.

Proof. The equivalence of (1)–(3) is proved in Propositions 3.7 and 4.20.
(4) =⇒ (1): For f, g : Σ → Σ defined by f(x) = x and g(x) = >, we have

f v g, and hence a path p : Σ → (Σ → Σ) from f to g. But then its transpose
Σ× Σ → Σ is parallel convergence.

(1) =⇒ (4): This direction of the proof was communicated to us by Alex
Simpson. By induction on types, define cσ : Σ× σ × σ → σ by

cγ(t, x, y) = if t ∨ x == y then y,

cσ×σ′(t, 〈x, x′〉, 〈y, y′〉) = 〈cσ(t, x, y), cσ′(t, x′, y′)〉,
cσ→τ (t, f, g) = λx.cτ (t, f(x), g(x)),

where γ is ground. Then, by induction on σ, it is easy to see that cσ(⊥, x, y) is the
meet of x and y in the contextual order and that cσ(>, x, y) = y. In particular, if
x v y then cσ(⊥, x, y) = x. Hence we can define p(t) = cσ(t, x, y).

Condition (4) hasn’t shown up in our work, but it appears occasionally in syn-
thetic and axiomatic domain theory. As far as we know, it hasn’t been previously
observed that this is equivalent to (1). The third aforementioned result is that if ev-
ery upper set is saturated, then parallel convergence is definable (Proposition 5.16);
but we don’t know whether the converse holds.
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From our perspective, what is interesting regarding the above theorem is that,
despite the fact that the fundamental axiom of classical topology given by Theo-
rem 8.1(2) fails in the absence of parallel features, a wealth of classical topological
theorems on domain theory prove to be valid in a sequential setting.

8.2 Open problems and further developments

A compelling aspect of the operational development of the domain theory and
topology of program types is that many of the traditional definitions arise as theo-
rems, showing that they are inevitable. In particular, in domain-theoretic denota-
tional semantics, one defines domains and continuous functions and then chooses
to interpret types as domains and programs as continuous functions, motivated by
intuition. Here, independently of any denotational model, it just happens that types
are rationally complete orders and programs are continuous functions at an unin-
terpreted, operational level. Of course, what is relevant is the fact of experience
that completeness and continuity lead to interesting applications. This is the case
for both the denotational and the operational development of the theory. What is
new is that, by working operationally, a wealth of domain-theoretic and topologi-
cal machinery is available for sequential programming languages, with respect to
contextual equivalence. But we have taken care of developing the theory in such a
way that it also applies to languages with parallel features.

A main reason to consider new models, such as Milner’s and games models,
has been the fact that Scott models of sequential programming languages fail to be
fully abstract. Here we have given compelling evidence, in the form of theorems
and applications, that domain theory and topology are compatible with contextual
equivalence of sequential programming languages, despite the failure of full ab-
straction of Scott models. The trick is to extract domain theory and topology from
a programming language rather than to impose it via a denotational model. But the
avoidance of syntactic manipulations suggests that our theory could be developed
in a general axiomatic framework rather than just term models. This would make
our results available to models that are not constructed from domain-theoretic or
topological data, in particular games models. It is also plausible that the present
development could be formalized in an operationally interpreted logic in the sense
of Longley and Plotkin [20].

The main unresolved open-ended question is what class of programming lan-
guages the present theory can be developed for. Our use of sequence types of the
form (Nat → σ) can be easily replaced by lazy lists by applying the bisimulation
techniques of [12] to prove the correctness of evident programs that implement the
SFP property for lazy lists. There is no difficulty in developing our results in a call-
by-value setting. An operational domain theory of recursive types, which is built
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upon ideas developed here, has been developed in [15, 16] by the second-named
author, where well known denotational algebraic-compactness results are estab-
lished with respect to contextual equivalence. But computational features such as
state, control and concurrency, and non-determinism and probability seem to pose
genuine challenges. In particular, the proof of the key Lemma 4.13 doesn’t go
through in the presence of state or control, because extensionality fails. In the
presence of probability or of abstract data types for real numbers, types won’t be
algebraic in general and hence a binary notion of finiteness, analogous to the way-
below relation in classical domain theory, needs to be developed. And there are
similar questions for other traditional computational effects.
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