
Infinite sets that admit fast exhaustive search
Martı́n Escardó

School of Computer Science, University of Birmingham, UK (revised March 27, 2007)

Abstract. Perhaps surprisingly, there are infinite sets that
admit mechanical exhaustive search in finite time. We in-
vestigate three related questions: What kinds of infinite sets
admit mechanical exhaustive search in finite time? How do
we systematically build such sets? How fast can exhaustive
search over infinite sets be performed?
Keywords. Higher-type computability and complexity,
Kleene–Kreisel functionals, PCF, Haskell, topology.

1. Introduction

A wealth of problems of interest have the following form:
given a set K and a property p, check whether or
not all elements of K satisfy p.

We say that K is exhaustible if this problem can be algorith-
mically solved in finite time, for any decidable property p,
uniformly in p. Thus, the input of the algorithm is p and the
output is the truth value of the statement that all elements
of K satisfy p. In the realm of higher-type computability
theory, the algorithm has type (C → B) → B, where C
is a type, K ⊆ C, and B is the type of booleans, so that
(C → B) is the type of decidable predicates on C.

Clearly, finite sets of computable elements are ex-
haustible. What may be rather unclear is whether there are
infinite examples. Intuitively, there can be none: how could
one possibly check infinitely many cases in finite time? This
intuition is correct when K is a set of natural numbers: it is
a theorem that, in this case, K is exhaustible if and only if
it is finite. But a proof is non-trivial, usually by reduction
to the halting problem, goes beyond cardinality considera-
tions, and relies on particular properties of the set of natural
numbers that don’t necessarily hold for other infinite sets.

Thus, the question remains, which kinds of infinite sets,
if any, are exhaustible? It turns out that there is a rich sup-
ply. A first example, the Cantor set of infinite sequences of
binary digits, goes back to the 1950’s, as discussed in the
related-work paragraph below.

Our primary contribution is a comprehensive investiga-
tion of such sets from the point of view of higher-type com-
putability theory [18]. We develop tools for systematically
building them and a characterization: they are closed un-
der intersections with decidable sets, under the formation
of computable images and of finite and countably infinite
products, and in the non-empty case they are precisely the
computable images of the Cantor set.

If a problem of the above form has a negative solution,
one would like to be able to algorithmically find a counter-
example. If this is possible, we say that the set K is search-
able. It turns out that exhaustibility coincides with searcha-
bility, which supports the intuitive understanding of exhaus-
tive search, but involves an elaborate construction.

The specifications of all of our algorithms can be un-
derstood without much background, but an understanding
of the working of some of the algorithms requires a fair
amount of topology, in addition to computability theory.
The closure properties and characterization of exhaustibil-
ity resemble those of compactness in topology. This is no
accident: exhaustible sets are to compact sets as computable
functions are to continuous maps. This plays a crucial role
in the correctness proofs of some of the algorithms, and,
indeed, in their very construction.

Our secondary contribution is a preliminary investigation
of efficiency and complexity. We have promising experi-
mental results, implemented in the language Haskell [11],
and tentative theoretical explanations. Here is our running
example, with a gap to be filled, where we assume a pre-
viously defined type N of unbounded size natural numbers
and a type Bit of binary digits:

type Cantor = N -> Bit
foreveryC :: (Cantor -> Bool) -> Bool
foreveryC p = ...
equalC :: (Cantor -> N) -> (Cantor -> N) -> Bool
equalC f g = foreveryC(\a -> f a == g a)

Now consider the following three functions:
f,g,h :: Cantor -> N
f a = a(10*a(3ˆ80)+100*a(4ˆ80)+1000*a(5ˆ80))
g a = a(10*a(3ˆ80)+100*a(4ˆ80)+1000*a(6ˆ80))
h a = if a(4ˆ80) == 0 then a j else a(100+j)

where i = if a(5ˆ80) == 0 then 0 else 1000
j = if a(3ˆ80) == 1 then 10+i else i

The queries “equalC f g” and “equalC f h” answer
False and True respectively, in less than 3s together in a
1.7GHz machine under the Glasgow Haskell compiler. This
is in stark contrast with the algorithms we have been able to
find in the literature [4], which take at least 2680

computa-
tion steps, as they are exponential in the modulus of uniform
continuity.

We emphasize that the above algorithms, and all higher-
type algorithms developed in this paper, use their functional
inputs as black boxes, with no knowledge of their source
code.

1

Related work. According to personal communication by
Normann, computability of Brouwer’s Fan functional was
known in the late 1950’s. This immediately gives rise to
the exhaustibility of the Cantor space. A number of authors
have considered definability of the Fan functional in vari-
ous formal systems. Normann [18] cites Tait (1958, unpub-
lished), Gandy (around 1982, unpublished) and Berger [4]
(1990). Tait showed that the Fan functional is not defin-
able from Kleene’s schemes S1–S9 interpreted over total
functionals. Berger showed that it is PCF definable, and,
in order to do that, he first explicitly defined a search func-
tional for the Cantor space. Here PCF is an applied simply-
typed lambda-calculus with arithmetic and fixed-point re-
cursion [23, 19]. Berger observed that, for partial func-
tionals, PCF definability coincides with S1–S9 definabil-
ity. Then Hyland informed the community that Gandy
was aware of the S1–S9 definability of the Fan functional
for the partial interpretation of Kleene’s schemes, although
Gandy’s definition seems to be lost.
Totality assumptions. Some of the above results crucially
rely on a notion of totality. For example, to show that ex-
haustible sets are searchable, we need to assume that they
consist of total elements. But there are two contenders
for a notion of totality in higher-type computation, namely
Kleene–Kreisel totality and hereditarily effective totality.
Our results hold for the former but fail for the latter. This
failure is to be expected: it is well known that, for the hered-
itarily effective notion, there is no total Fan functional [3],
and hence the set of total elements of the Cantor type cannot
be exhaustible. Put another way, the above algorithms for
the Fan functional are total in the Kleene–Kreisel sense, but
not in the hereditarily effective sense.
Organization. 2. Higher-type computability (background).
3. Exhaustible and searchable sets (definitions and basic
properties). 4. Building new searchable sets from old (im-
age and product). 5. Topological aspects of exhaustibility
(compactness of exhaustible sets of total elements, used to
derive the algorithms of Section 6). 6. Characterization of
searchability. 7. Experiments and tentative explanations.
8. Concluding remarks.

2. Higher-type computability
As discussed in e.g. [18, 13, 12], there are many equiv-

alent approaches to higher-type computation. Kleene de-
fined the total functionals directly, but it has been found
more convenient to work with the larger collection of partial
functionals and isolate the total ones within them, as done
by Kreisel. The approaches are equivalent, and such to-
tal functionals are often referred to as Kleene–Kreisel func-
tionals. It turns out that, as discussed by Normann [18], this
coincides with another approach known in the computer-
science community: equivalence classes of total functionals
on Scott domains.

Simple types. The simple types are defined by induction as
σ, τ ::= o | ι | σ × τ | σ → τ,

with usual rules for bracketing, where o and ι are ground
types for booleans and natural numbers respectively.
Partial functionals. For each type σ, define a Scott do-
main Dσ of partial functionals of type σ by induction as
follows:

Do = B = B⊥, Dι = N = N⊥,
Dσ×τ = Dσ ×Dτ ,
Dσ→τ = (Dσ → Dτ) = Dτ

Dσ .
Here

B = {ff, tt}
is the set of booleans and the products and exponentials are
calculated in the cartesian closed category of continuous
maps of Scott domains, where a Scott domain is an alge-
braic, bounded complete, and directed complete poset [1].
Total functionals. For each type σ, define, again by induc-
tion, a set Tσ ⊆ Dσ of total functionals and a relation ∼σ

on Dσ as follows, where γ ranges over ground types:
To = B, Tι = N,
x ∼γ y ⇐⇒ x, y ∈ Tγ and x = y.
Tσ×τ = Tσ × Tτ ,
(x, x′) ∼σ×τ (y, y′) ⇐⇒ x ∼σ y ∧ x′ ∼τ y′,
Tσ→τ = {f ∈ Dσ→τ | f(Tσ) ⊆ Tτ},
f ∼σ→τ g ⇐⇒ ∀x ∼σ y.f(x) ∼τ g(y).

Then the set Tσ can be recovered from the relation ∼σ as
x ∈ Tσ ⇐⇒ x ∼σ x, and the relation can be recovered
from the set as x ∼σ y ⇐⇒ x u y ∈ Tσ ⇐⇒ x, y ∈
Tσ and x and y are bounded above (see e.g. [5] and [21]).
In particular, ∼σ is an equivalence relation on Tσ .
Computability. A partial functional is computable iff it
is PCF-definable from parallel-or and parallel-exists [19].
This is a theorem, but we take it as our definition. All com-
putable functionals we construct are defined in PCF without
parallel extensions. This definition includes, in particular,
total functionals. An interesting fact, which we don’t use,
is that every total functional definable in PCF with paral-
lel extensions is equivalent to one definable in PCF with-
out parallel extensions [16]. Although the notion of totality
plays a crucial role in the present work, most functionals
we consider are not total by nature. But they produce to-
tal outputs for certain total inputs. For example, given a
sequence of search operators, the countable-product func-
tional developed in Section 4 produces a search operator for
the product, but if the total input functionals are not search
operators, then the result is not total in general.
Kleene–Kreisel functionals. The remainder of this section,
which discusses material needed to construct the algorithms
of Section 6, can be postponed until Section 5.

For each type σ, define a set Cσ of Kleene–Kreisel func-
tionals of type σ and a surjection ρσ : Tσ → Cσ as follows,
so that

Cσ
∼= Tσ/ ∼σ .

2

For ground types and product types, define
Co = To, Cι = Tι, ργ(x) = x.

Cσ×τ = Cσ × Cτ , ρσ×τ = ρσ × ρτ .

For function types, consider the diagram

(†)

Dσ
� ⊃ Tσ

ρσ

-- Cσ

(1) (2)

Dτ

f
?

� ⊃ Tτ

? ρτ-- Cτ .

φ
?

The square (1) commutes for some map Tσ → Tτ if and
only if f ∈ Tσ→τ , and in this case the map is uniquely de-
termined as the (co)restriction of f . Moreover, in this case,
there is a unique map φ making the square (2) commute,
because ρσ is a surjection. We define

Cσ→τ = {φ : Cσ → Cτ | ∃f ∈ Tσ→τ .(2) commutes},
ρσ→τ (f) = the unique φ such that (2) commutes.

Then for any σ and all x, y ∈ Dσ , we have that x ∼σ y iff
x, y ∈ Tσ and ρσ(x) = ρσ(y)

If (†) commutes, we say that f is a realizer of φ. A
Kleene–Kreisel functional is computable iff it has a com-
putable realizer.

Lemma 2.1. Every Cσ is a computable retract of Cτ→ι for
some τ .

Topological aspects of the Kleene–Kreisel functionals. A
proof of the following inductive topological characteriza-
tion, attributed to Hyland, can be found in [15].

Lemma 2.2. Endow Tσ with the relative Scott topology and
Cσ with the quotient topology of the surjection ρσ .

1. Cγ has the discrete topology for γ ground,
2. Cσ×τ = Cσ × Cτ and
3. Cσ→τ = Cτ

Cσ ,
where the product and exponential are calculated in the
cartesian closed category of Hausdorff k-spaces.

For a brief treatment of k-spaces, also known as com-
pactly generated spaces, see e.g. [14], and, for a more de-
tailed one, see e.g. [9] or the references contained therein.
A set is called clopen if it is both closed and open.

Lemma 2.3. For every clopen U ⊆ Cσ there is a total
predicate p ∈ (Dσ → B) such that ρ−1

σ (U) ⊆ p−1(tt) and
ρ−1

σ (Cσ \ U) ⊆ p−1(ff).

Proof. Because U is clopen, its characteristic function
χU : C → B is continuous, and hence so is the compos-
ite i ◦ χU ◦ ρσ : Tσ → B, where i : B → B in the inclusion.
Because T is dense in D (see e.g. [5]) and because Scott do-
mains, and hence B, are densely injective (see e.g. [10]), by
definition of injectivity this extends to a continuous func-
tion p : Dσ → B. Then p is total by construction, and the
extension property amounts to the above set inclusions.

A space is zero-dimensional iff it has a base of clopen
sets. It is an open problem whether the spaces Cσ are zero-
dimensional [2, 17]. If they are, the following lemma be-
comes superfluous. The zero-dimensional reflection ZC of
a space C is obtained by taking the same set of points and
the clopen sets as a base.

Lemma 2.4. ZCσ and Cσ have the same compact subsets.

Proof. We first show that KZCσ = Cσ for any type σ,
where K is the coreflector into the category of k-spaces.
The property KZC = C is easily seen to be inherited by
retracts, and hence, by Lemma 2.1, it is enough to consider
σ = τ → ι, and hence C = NY for some k-space Y .
Exponentials in k-spaces are given by the k-coreflection of
the compact-open topology on the set of continuous maps.
When the target is N, the compact-open topology is clearly
zero-dimensional and Hausdorff. Now, it is easy to see that
KZC = C iff there is some zero-dimensional topology
whose k-reflection is C, and hence we are done. The re-
sult then follows from the well-known fact that a Hausdorff
space has the same compact sets as its k-coreflection.

3. Exhaustible and searchable sets

We now formulate the central notions investigated in this
work. Through this paper, D = Dσ and D′ = Dσ′ for
arbitrary simple types σ and σ′.

Definition 3.1. If K is a subset of D, we say that a predicate
p ∈ (D → B) is defined on K if p(x) 6= ⊥ for every x ∈ K.

Definition 3.2. We say that a set K ⊆ D is exhaustible if
there is a computable functional ∀K : (D → B) → B such
that for any p ∈ (D → B) defined on K,

∀K(p) =

{
tt if p(x) = tt for all x ∈ K,
ff if p(x) = ff for some x ∈ K.

Such a functional is not uniquely determined, because its
behaviour is not specified for predicates p that are not de-
fined on K. For the sake of clarity, we shall often write
“∀K(λx. . . .)” as “∀x ∈ K. . . . ”.

Clearly, it is equivalent to instead require the existence
of a computable functional ∃K : (D → B) → B such that
for any p ∈ (D → B) defined on K,

∃K(p) =

{
tt if p(x) = tt for some x ∈ K,
ff if p(x) = ff for all x ∈ K,

because such functionals are inter-definable as ∃K(p) =
¬∀K(λx.¬p(x)) and ∀K(p) = ¬∃K(λx.¬p(x)), and hence
we’ll freely switch between them.

3

Definition 3.3. We say that a set K ⊆ D is searchable if
there is a computable functional εK : (D → B) → D such
that, for every predicate p ∈ (D → B) defined on K,

1. εK(p) ∈ K, and
2. p(εK(p)) = tt if p(x) = tt for some x ∈ K.

Again, notice that εK is not uniquely determined by K.

Thus, εK(p) is an example of an element of K for
which p holds, if such an element exists. But notice that
we require that εK(p) ∈ K even if there is no such exam-
ple. With 1 = {?}, an equivalent definition, which will not
be used, is that

1. K has a computable element eK , and
2. there is ε′K : (D → B) → 1 + D computable such

that ε′K(p) = ? if there is no example, and otherwise
ε′K(p) ∈ K and p(ε′K(p)) = tt.

In fact, given εK one can define eK = εK(λx. tt) and
ε′K(p) = if p(εK(p)) then εK(p) else ?.

Conversely, given ε′K and eK as specified, one can define
εK(p) = if ε′K(p) = ? then eK else ε′K(p).

Lemma 3.4. Searchable sets are exhaustible.

Proof. Define ∃K(p) = p(εK(p)).

The empty set is exhaustible with realizer ∀∅(p) = tt, but
it is not searchable because the condition ε∅(p) ∈ ∅ cannot
hold. But we shall see in Section 6 that, for non-empty
entire sets, defined below, the two notions turn out to agree,
although with a non-trivial construction and proof.

Definition 3.5. We say that a set K is entire if it consists of
total elements and is closed under total equivalence.

Notice that if p is total then it is defined on every entire
set. Even if p is not total and K is not entire, p(x) = p(x′)
for all x ∼ x′ in K, because if x ∼ x′ then x and x′ are
bounded above and hence so are p(x) and p(x′), which then
must be equal as they are non-bottom by definition. But if
x ∈ K and x′ ∼ x for x′ outside K, it doesn’t follow that
p(x′) 6= ⊥ (consider e.g. K = {λi. tt} for σ = ι → o and
p(α) = α(⊥)).

Let Dω = (N → D) and, for any sequence Ki of sub-
sets of D, let

∏
i Ki be the set of functions α ∈ Dω with

αi = α(i) ∈ Ki for all i ∈ N ⊆ N . The following closure
properties of entire sets are easily verified:

Lemma 3.6.
1. If p ∈ (D → B) is defined on K ⊆ D and K is entire,

then so is the set K ∩p−1(tt) = {x ∈ K | p(s) = tt}.
2. If K ⊆ D and K ′ ⊆ D′ are entire, so is K × K ′ ⊆

D ×D′

3. If Ki is a sequence of entire subsets of D, then
∏

i Ki

is an entire subset of Dω.

Definition 3.7. The image of an entire set by a total func-
tion doesn’t need to be entire, but it consists of total ele-
ments, and hence its closure under total equivalence is en-
tire. We refer to this as its entire image. (Thus, entire im-
ages are defined for total functions and entire sets only.)

We implement part of the above in the language Haskell
as follows, where the letter d is a type variable correspond-
ing to the domain D, and the definition of forsome corre-
sponds to the proof of Lemma 3.4.

type Searcher d = (d -> Bool) -> d
type Quantifier d = (d -> Bool) -> Bool

forsome, forevery :: Searcher d -> Quantifier d
forsome k p = p(k p)
forevery k p = not(forsome k(\x -> not(p x)))

4. Building new searchable sets from old
We develop algorithms that show that exhaustible and

searchable sets are closed under various constructions.
Starting from the finite sets, this allows one to build plenty
of infinite searchable sets, and in particular to fill the gap in
the introduction (to be revisited in Section 7).

Proposition 4.1. For any p ∈ (D → B) defined on K ⊆ D,
if K is exhaustible then so is the set

Kp = K ∩ p−1(tt) = {x ∈ K | p(x) = tt}.
Moreover, if K is searchable and Kp is non-empty, then Kp

is searchable.

Proof. Define
∃Kp(q) = ∃K(p ∧ q),
εKp(q) = if ∃K(p ∧ q) then εK(p ∧ q) else εK(p),

where u ∧ v = if u then v else ff , and p ∧ q is defined
pointwise.

Proposition 4.2. Exhaustible and searchable sets are
closed under the formation of computable images, and also
under the formation of computable entire images.

Proof. Given f : D → D′ and K ⊆ D exhaustible, define
∀f(K)(q) = ∀x ∈ K.q(f(x)).

This proves closure of exhaustible sets under images. Re-
garding entire images of entire exhaustible sets, if f is to-
tal and K is entire with entire image L, then we can take
∀L = ∀f(K). To verify this, let q be defined on L. Then
q is defined on f(K) ⊆ L, and hence if q(l) = tt for all
l ∈ L, then ∀L(q) = tt. If, on the other hand, q(l) = ff
for some l ∈ L, then l ∼ f(x) for some x ∈ K. But
then q(f(x)) = ff , and so ∀T (q) = ff , which concludes the
verification.

For K ⊆ D searchable, define
εf(K)(q) = f(εK(λx.q(f(x))).

That is, first find x such that q(f(x)) holds, using εK , and
then apply f to it. This proves closure under images, and the
argument for entire images is similar to the previous.

4

Proposition 4.3. Exhaustible and searchable sets are
closed under the formation of finite products.

Proof. For K ⊆ D and K ′ ⊆ D′ exhaustible, define
∀K×K′(p) = ∀x ∈ K.∀x′ ∈ K ′.p(x, x′).

For K ⊆ D and K ′ ⊆ D′ searchable, to compute
εK×K′(p) we first find x ∈ K such that there is x′ ∈ K ′

with p(x, x′), and then find x′ ∈ K ′ such that p(x, x′), i.e.
x = εK(λx.∃x′ ∈ K ′.p(x, x′)),
x′ = εK′(λx′.p(x, x′)),

using the fact that searchable sets are exhaustible, and let
εK×K′(p) = (x, x′).

We now consider countable products of searchable sets,
assuming that the components Ki of the product

∏
i Ki are

all subsets of the same type D. Given search functionals
εKi ∈ ((D → B) → D),

we wish to find a search functional
εQ

i Ki
∈ ((Dω → B) → Dω).

We begin with an informal derivation and explanation of our
algorithm (Definition 4.4), which iterates the idea of proof
of Proposition 4.3. We let

εQ
i Ki

(p) = x0x1x2 . . . xn . . . ,
where

x0 ∈ K0 is such that ∃α ∈
∏

i Ki+1.p(x0α),
x1 ∈ K1 is such that ∃α ∈

∏
i Ki+2.p(x0x1α),

. . .
xn ∈ Kn is such that ∃α ∈

∏
i Ki+n+1.p(x0x1 . . . xnα),

. . .
The component xn will be found using εKn

, and existential
quantifications will be recursively reduced to search. To
make this precise, we change notation. Given

ε ∈ ((D → B) → D)ω,
such that εi searches over Ki, we wish to find

Π(ε) ∈ (Dω → B) → Dω

that searches over
∏

i Ki. That is, we want a functional
Π: ((D → B) → D)ω → ((Dω → B) → Dω)

that transforms a sequence of search operators over D into
a search operator over Dω:

Π(ε)(p)(0) = x0 s.t. ∃α ∈
∏

i Ki+1.p(x0α),
Π(ε)(p)(1) = x1 s.t. ∃α ∈

∏
i Ki+2.p(x0x1α),

. . .
Π(ε)(p)(n) = xn s.t. ∃α ∈

∏
i Ki+n+1.p(x0x1 . . . xnα),

. . .
To complete the derivation of the functional Π, we reduce
the existential quantification to a suitable recursive call to Π.
If the functional Π is to meet its specification, Π(λi.εi+n+1)
should search over

∏
i Ki+n+1. But a searchable set is ex-

haustible by Lemma 3.4. To implement the proof of this
lemma in our situation, for any given p, n, xn, define

pn,xn(α) = p(x0x1 . . . xn−1xnα)
Then

∃α ∈
∏

i Ki+n+1.p(x0x1 . . . xnα)

is equivalent to
pn,xn

(Π(λi.εn+i+1)(pn,xn
)).

To find xn such that this holds, we use εn:
Π(ε)(p)(n) = εn(λxn.pn,xn

(Π(λi.εn+i+1))(pn,xn
)).

Because we don’t want a different variable xn for each n,
we rename the variable to simply x:

Definition 4.4. The product functional Π, with type as
specified above, is recursively defined by

Π(ε)(p)(n) = εn(λx.pn,x(Π(λi.εn+i+1))(pn,x))
where

pn,x(α) = p

λi.

Π(ε)(p)(i) if i < n,
x if i = n,
αi−n−1 if i > n.

Theorem 4.5. If each εi searches over a set Ki ⊆ D then
Π(ε) searches over

∏
i Ki.

Proof. By construction, it is clear that p(Π(ε)(p)) = tt iff
there is α ∈

∏
i Ki such that p(α) = tt, provided the recur-

sion converges in the sense that Π(ε)(p) ∈
∏

i Ki.
To establish this, we first show that p(Π(ε)(p)) 6= ⊥ for

any p defined on
∏

i Ki. For ε and p fixed, and for each
finite sequence β over D, define

W (β) = Π(ε)(λα.p(βα)),
where βα denotes the concatenation of β and α. It is easy
to see that W (β) satisfies the equation

W (β) = xW (βx) where x = ε|β|(λy.p(βyW (βy))).
Here βx denotes the sequence β extended by the element x,
and xW (βx) is the sequence with first element x followed
by the sequence W (βx), and |β| denotes the length of β.

Claim: For any β ∈
∏

i<|β|Ki, if p(βW (β)) = ⊥ then
then there is x ∈ K|β| such that p(βxW (βx)) = ⊥, and
hence such that also p(βx⊥) = ⊥.

We establish the contrapositive, i.e. if λy.p(βyW (βy))
is defined on K|β| then p(βW (β)) 6= ⊥. By specification
of ε|β|, we have that x := ε|β|(λy.p(βyW (βy)) ∈ K|β|.
By the above equation for W (β) and by the assumption,
we have that p(βW (β)) = p(βxW (βx)) 6= ⊥, which con-
cludes the proof of the claim.

For the sake of contradiction, assume p(Π(ε)(p)) = ⊥.
Then p(βW (β)) = ⊥ for β empty. Hence, repeatedly
applying the above claim starting with β empty, we get
α ∈

∏
i Ki such that p(α0α1 · · ·αn⊥) = ⊥ for every n,

and hence p(α) = ⊥ by continuity of p, which contradicts
the hypothesis that p is defined on

∏
i Ki and concludes the

proof that p(Π(ε)(p)) 6= ⊥ for all ε such that εi searches
over Ki and all p defined on

∏
i Ki.

Finally using this, an easy argument by course-of-
values induction on n shows that, for all ε such that εi

searches over Ki and all p defined on
∏

i Ki, we have that
Π(ε)(p)(n) ∈ Kn. Therefore Π(ε)(p) ∈

∏
i Ki.

5

We don’t have a corresponding result for exhaustible sets
(but see Theorem 6.1 and [6, 8]). The following conse-
quence gives a uniform continuity principle, where α =n β
means that αi = βi for all i < n, and α|n is defined by
α|n(i) = αi for i < n and α|n(i) = ⊥ for i ≥ n.

Corollary 4.6. If p ∈ (Dω → B) is defined on a product∏
i Ki of searchable sets, then there is a number n such that

for all α, β ∈
∏

i Ki,
α =n β =⇒ p(α) = p(β).

Proof. Let (==) ∈ (B × B → B) denote the unique to-
tal function such that (x == y) = tt iff x ∼ y. Then
∀Q

i Ki
(λα.p(α) == p(α)) = tt. If we define p|n(α) =

p(α|n), then p =
⊔

n p|n and hence (λα.p(α) == p(α)) =⊔
n(λα.p|n(α) == p(α)). So, by continuity of ∀Q

i Ki
,

there is n such that ∀Q
i Ki

(λα.p|n(α) == p(α)) = tt. (We
cannot conclude that p|n(α) == p(α) for all α ∈

∏
i Ki

because there is no reason why λα.p|n(α) == p(α) should
be defined on

∏
i Ki.) Choose γ ∈

∏
i Ki+n, and de-

fine qn(α) = q(α0α1 . . . αn−1γ). Then p|n(α) v qn(α),
and ∀Q

i Ki
(λα.qn(α) == p(α)) = tt by monotonicity.

Now λα.qn(α) == p(α) is defined on
∏

i Ki and hence
qn(α) = p(α) for all α ∈

∏
i Ki. But if α =n β then

qn(α) = qn(β), and so p(α) = p(β) if β ∈
∏

i Ki.

The proof of Theorem 4.5 doesn’t give information about
the number of steps needed to compute the existential quan-
tification p(Π(ε)(p)). Denote by fan(p) the smallest n sat-
isfying the condition of Corollary 4.6. For example, if
p(x) = (f(x) = g(x)) for f and g as defined in the in-
troduction, then fan(p) = 680. A related notion is used in
Section 7 to formulate a conjecture regarding the time com-
plexity of such existential quantifications.

The above functionals can be coded in the language
Haskell as follows, where r plays the role of the sub-
scripted p. Notice that, oddly, the notation (d,d’) indi-
cates the product, rather than pairing, of the types d and d’,
but (x,y) indicates the pairing of the elements x and y.
Similarly, λx. . . . is written \x->. . . . Quotes indicate that
a binary curried function is used as an infix operator. Apart
from these idiosyncrasies, the notation is the same as that of
PCF, with usual metalinguistic modes of expression incor-
porated in the language, such as where clauses.
image :: (d -> e) -> Searcher d -> Searcher e
image f k = \q -> f(k(\x -> q(f x)))

times :: Searcher d -> Searcher d’ -> Searcher(d,d’)
(k ‘times‘ k’) p = (x,x’)

where x = k (\x -> forsome k’(\x’ -> p(x,x’)))
x’= k’(\x’-> p(x,x’))

prod :: (N -> Searcher d) -> Searcher(N -> d)
prod e p n=e n(\x->r n x(prod(\i->e(i+n+1))(r n x)))

where r n x a = p(\i -> if i < n then prod e p i
else if i == n then x

else a(i-n-1))

We now apply this to fill the gap in the introduction, by
defining the search operator for the Cantor set (total ele-
ments of the type of binary sequences) as the product of
countably many copies of the search operator for bits. We
name search operators after the sets they search over.

bit :: Searcher Bit
bit = \q -> if q 1 then 1 else 0
cantor :: Searcher Cantor
cantor = prod(\i -> bit)
foreveryC = forevery cantor

The above product functional is not as fast as required for
the experiment reported in the introduction. But it seems
to have good information-theoretic complexity and a small
modification will be enough to make it fast in our running
example and others (Section 7).

The Fan functional can be defined as follows, where
eq n realizes the decidable relation (=n) on Cantor, mu is
the minimization operator, and ==> is boolean implication:

fan :: (Cantor -> Bool) -> Bool
fan p = mu(\n->foreveryC(\a->foreveryC(\b->

eq n a b ==> (p a == p b))))

Thus, once an algorithm for quantification over the Cantor
set has been obtained, this algorithmic definition is the same
as the mathematical definition of the Fan functional.

As another example, for any computable f : N → N, the
set of sequences α with αi ≤ f(i) is searchable: a search
operator is Π(λi.z(f(i) + 1)), where z is a functional such
that z(n) implements search over the set {0, 1, . . . , n− 1}.

5. Topological aspects of exhaustible sets

The results of this section, which are interesting in their
own right, are applied in Section 6 in order to derive algo-
rithms that lead to a characterization of searchable sets.

In [6], a notion analogous to exhaustibility, with the Sier-
pinski domain S = {⊥,>} playing the role of the boolean
domain B, is considered. A crucial lemma in [6] is that the
(now unique) exhaustion functional ∀K : (D → S) → S
is continuous iff the set K is compact in the Scott topology
of D. Hence, because computable functionals are contin-
uous, Sierpinski-exhaustible sets are compact, and so Sier-
pinski exhaustibility is seen as articulating an algorithmic
version of the topological notion of compactness. The com-
putational idea is that, given any semi-decidable property
of D, one can semi-decide whether it holds for all elements
of K. Closure properties analogous to the above are estab-
lished for Sierpinski exhaustibility in [6] (and redeveloped
from a purely operational point of view in [8]).

The present investigation can be seen as a natural follow-
up of that work that arises by asking what changes if one
moves from semi-decision problems to decision problems.

6

One significant change is that continuity of a boolean ex-
haustion operator ∀K : (D → B) → B doesn’t entail the
compactness of K any longer (Examples 5.2 below). How-
ever, a similar, but not quite the same, conclusion holds for
sets of total elements (with variation also justified in Exam-
ples 5.2). We invoke the material on Kleene–Kreisel func-
tionals of Section 2 to formulate and prove this. As in the
previous sections, D = Dσ for some unspecified σ, and,
additionally T = Tσ , C = Cσ and ρ = ρσ : Tσ → Cσ . By
the shadow of a set K ⊆ T we mean its ρ-image in C.

Lemma 5.1. The shadow of any exhaustible set of total el-
ements is compact in the Kleene–Kreisel topology.

Proof. Let K ⊆ T be exhaustible. By Lemma 2.4 and the
fact that clopen sets are closed under finite unions, to es-
tablish compactness of ρ(K), it is enough to consider a di-
rected clopen cover U . By Lemma 2.3, for every U ∈ U
there is a total pU ∈ (D → B) with

(†) ρ−1(U) ⊆ p−1
U (tt) and ρ−1(C \ U) ⊆ p−1

U (ff).

Define predicates qU , r ∈ (D → B) by q−1
U (tt) = p−1

U (tt),
r−1(tt) =

⋃
U∈U p−1

U (tt) and q−1
U (ff) = r−1(ff) = ∅.

Then qU v pU , the set {qU | U ∈ U} is directed, and
r =

⊔
U∈U qU . Because ρ(K) ⊆

⋃
U , we have that

K ⊆ r−1(tt) and hence ∀K(r) = tt. So, by continu-
ity of ∀K , there is U ∈ U with ∀K(qU) = tt, and hence
with ∀K(pU) = tt by monotonicity. Let x ∈ K. Then
pU (x) = tt by specification of ∀K and the fact that pU

is total and hence defined on K. But then ρ(x) ∈ U , for
otherwise (†) would entail pU (x) = ff . This shows that
ρ(K) ⊆ U , and so ρ(K) is compact.

This gives a topological view of the computational fact
stated in the introduction that exhaustible sets of natural
numbers must be finite: all compact sets are finite in a dis-
crete space. We now justify the strengthened and weakened
forms of the hypothesis and conclusion of Lemma 5.1 with
respect to the cited lemma on compactness of Sierpinski-
exhaustible sets [6].

Examples 5.2. (1) There are non-compact, exhaustible
sets. (So one needs to assume something such as total-
ity.) By [22, 20], any second-countable space, e.g. the real
line R, can be embedded into the domain D = Bω. But
R is a connected space, which is equivalent to saying that
every continuous boolean-valued map defined on it is con-
stant. Hence p ∈ (D → B) is defined on R iff it is constant
on R. Therefore R is trivially exhaustible: ∀R(p) = p(0).
But it is not compact.

(2) Although the shadow of an exhaustible set of total el-
ements is compact, the set itself doesn’t need to be compact.
In fact, there is a trivial and pervasive counter-example. Let
D = ((N → N) → N) and f ∈ D be total. Then the
total equivalence class K of f , as is well known and easy to

verify, doesn’t have a minimal element, and hence cannot
be compact. But K is exhaustible with ∀K(p) = p(f).

(However, there is a natural sense in which all ex-
haustible sets are compact. Part of the argument of
Lemma 5.1 shows that any exhaustible set K is compact
in the weak topology, namely the coarsest topology on D
such that all predicates p ∈ (D ∈ B) defined on K are con-
tinuous. This is generated by directed unions of basic open
sets of the form p−1(tt) with p as above, because such sets
are closed under finite unions and intersections.)

For a partial converse of Lemma 5.1, say that K ⊆ D is
continuously exhaustible if there is a continuous, not neces-
sarily computable, map ∀K ∈ ((D → B) → B) satisfying
the conditions of Definition 3.2.

Proposition 5.3. Any non-empty entire set with compact
shadow is an entire continuous image of the Cantor set and
hence is continuously exhaustible.

Proof. By e.g. [9], any compact subset of C is countably
based (even though C is not). But any non-empty compact
Hausdorff countably based space is a continuous image of
the Cantor space. Hence there is a continuous map BN → C
with image ρ(K) for any entire set K ⊆ D. Then any
realizer Bω → D has entire image K.

6. Characterization of searchability
By the Cantor set we mean the set of total elements of Bω.

Theorem 6.1. The following are equivalent for any non-
empty entire set K ⊆ D:

1. K is exhaustible.
2. K is searchable.
3. K is a computable entire image of the Cantor set.

Proof. The bottom-up implications are Lemma 3.4 and
Proposition 4.2 applied to the Cantor set. The other direc-
tions are proved below.

We prove a uniform version of the implication (1) ⇒ (2):

Lemma 6.2. There is a computable functional
Φ : ((D → B) → B) → ((D → B) → D)

such that Φ(∃K) is a search realizer for K for any ex-
haustible non-empty entire set K with realizer ∃K .

We reduce this to the following:

Lemma 6.3. There is a computable functional
Γ: ((D → B) → B) → D

such that Γ(∃K) ∈ K for any realizer ∃K of the exhaustibil-
ity of a non-empty entire set K.

The reduction works as follows. By Proposition 4.1, for
any p ∈ (D → B) decidable on K, the set Kp = K ∩
p−1(tt) is exhaustible. Hence the algorithm

7

εK(p) = if ∃K(p) then Γ(∃Kp) else Γ(∃K)
realizes the searchability of K. That is, if Kp is non-empty,
find and element in Kp, otherwise find an element in K. We
can take ∃Kp(q) = ∃x ∈ K.p(x) ∧ q(x) = ∃K(p ∧ q) by
the proof of Proposition 4.1, and hence we can define

Φ(φ)(p) = if φ(p) then Γ(λq.φ(p ∧ q)) else Γ(φ),
which completes the reduction of Lemma 6.2 to Lemma 6.3.

By Lemma 2.1, it is enough to establish Lemma 6.3 for
D = (E → N) with E = Dτ arbitrary, because the
types D that satisfy the condition of Lemma 6.3 are closed
under retracts, as a short routine argument shows.

Let K ⊆ D be a non-empty, entire exhaustible set.
Our task is to find, uniformly in the realizer ∃K of the ex-
haustibility of K, some g ∈ K. Recall that we are also
allowed to use ∀K .

By the Kleene–Kreisel density theorem (see e.g. [5]),
there is an effective enumeration en of a set of total ele-
ments of E = Dτ such that en = ρ(en) is dense in Cτ . To
construct g, first define a total function γ : N → N by

γ(i) = µn.∃f ∈ K.f(ei) = n∧∀j < i.f(ej) = γ(j).
Our function g will be such that g(ei) = γ(i). The set

Ki = K ∩ {f ∈ D | ∀j < i.f(ej) = γ(j)}
is clearly non-empty for every i and Ki ⊇ Ki+1. Because
this is the intersection of K with a decidable set, it is ex-
haustible by Proposition 4.1, and hence its shadow Ki is
compact by Lemma 5.1. Because Cτ→ι is Hausdorff,

K∞ =
⋂

i Ki

is non-empty. But f ∈ K∞ iff f(ei) = γ(i) for all i, and
so if f ,f ′ ∈ K∞ then f(ei) = f ′(ei) for all i and hence
f = f ′ by density. Thus, K∞ is a singleton, say {g}.
This use of γ was proposed by Matthias Schröder, but the
algorithm for computing g, developed below, is ours.

Lemma 6.4. For every total x ∈ E there is n such that
f(x) = f ′(x) for all f, f ′ ∈ Kn.

Proof. Let Bx = {f ∈ Cτ→ι | f(x) = g(x)} where
x = ρ(x). Then

⋂
i Ki ⊆ Bx as this amounts to g ∈ Bx,

and, because each Ki is compact and Cτ→ι is Hausdorff,
there is n such that already Kn ⊆ Bx as Bx is clearly
open. So for all f ∈ Kn one has f(x) = g(x), and hence
f(x) = f ′(x) for all f ,f ′ ∈ Kn.

Now Ki is exhaustible uniformly in ∃K and i with
∃Ki(p) = ∃h ∈ K.p(h) ∧ ∀j < i.h(ej) = γ(j).

Hence, to define g(x), we can first compute
µn.∀f, f ′ ∈ Kn.f(x) = f ′(x),

and then let
g(x) = µm.∃f ∈ Kn.f(x) = m.

Then g realizes g by construction, and hence g ∈ K
because K is entire. The dependency of g from ∃K is
clearly uniform, and defines the required functional Γ.
This concludes the proof of Lemma 6.3 and hence that of
Lemma 6.2.

We also have a uniform version of (1) ⇒ (3):

Lemma 6.5. There is a computable functional
Ψ : ((D → B) → B) → (Bω → D)

such that K is the entire image of Ψ(∃K) for any ex-
haustible non-empty entire set K with realizer ∃K .

The proof is similar to that of Lemma 6.2 with a modi-
fication of Lemma 6.3. By e.g. [9], any compact subset of
a Kleene–Kreisel space is countably based. We adapt the
standard topological proof of the fact that any non-empty
countably based compact Hausdorff space is a continuous
image of the Cantor space. Rather than constructing a sin-
gle function g as above, we construct a binarily branching
infinite tree of approximations to functions like g. A point α
of the Cantor space gives a path in this tree, and we use a
modification of the above algorithm to follow that path and
evaluate gα(x) in such a way that gα ∈ K and any g ∈ K
is equivalent to some gα.

7. Experiments and tentative explanations
Experiments. We shall argue below that if we used the
Haskell implementation of the product functional given in
Section 4 to derive an implementation of the functional
foreveryC, we would need at least 2212

recursion unfold-
ings for the experiments reported in the introduction, which
cannot possibly be performed in the claimed 3s. Recall that

f,g :: Cantor -> N
f a = a(10*a(3ˆ80)+100*a(4ˆ80)+1000*a(5ˆ80))
g a = a(10*a(3ˆ80)+100*a(4ˆ80)+1000*a(6ˆ80))

The number 12 in the above calculation is informally
obtained as follows. The computation of f a == g a,
for any given a, “uses” 12 arguments of a, namely, 380,
480, 580, 680, plus the 8 arguments that arise by summing
subsets of {10, 100, 1000}. The comparison algorithm de-
rived from the product functional is so good that it gener-
ates queries a for the black box \a -> f a == g a so
that only these 12 arguments will get evaluated, but, at the
same time, so bad that, disappointingly, it generates 2212

queries, with an exponential amount of repetition, rather
than only 212, as should be enough.

In order to reduce the time from 2212
steps to 3s in the

given experiment, we re-implement the product functional
as follows:

prod’ :: (N -> Searcher d) -> Sercher(N -> d)
prod’ e p = b
where b = id’(\n->e n(\x->r x n(prod’(\i->e(i+n+1))

(r x n))))
r x n a = p(\i -> if i < n then b i

else if i == n then x
else a(i-n-1))

data T d = B d (T d) (T d)

code :: (N -> d) -> T d
code f = B (f 0) (code(\n -> f(2*n+1)))

(code(\n -> f(2*n+2)))

8

decode :: T d -> (N -> d)
decode (B x l r) 0 = x
decode (B x l r) n = if odd n

then decode l ((n-1) ‘div‘ 2)
else decode r ((n-2) ‘div‘ 2)

id’ :: (N -> d) -> (N -> d)
id’ = decode.code

Here id’ is the identity function (on non-strict argu-
ments). Hence this definition of prod is semantically
equivalent to the previous. But it is expected to be expo-
nentially faster. If the type d is interpreted as the domain D,
the type T d is that of infinite, binarily branching trees with
nodes labelled by elements of the domain D. The idea is to
store a function N -> d in a tree in a breadth-first manner,
and then retrieve it back. This certainly imposes some over-
head in the computation, but it is logarithmic. The point is
that Haskell is call-by-need. Once a node of such a tree is
evaluated, the result is stored, and if it is queried again, it
will be immediately available. Therefore, the entries of the
sequence returned by prod e p are never recalculated,
avoiding the doubly exponential behaviour of the original
definition.

Now consider the following implementation of the prod-
uct functional:
(x # a)(i) = if i == 0 then x else a(i-1)
tl a = \i -> a(i+1)
prod’’ e p =

let x = e 0(\x->p(x#(prod’’(tl e)(\a->p(x#a)))))
in x#(prod’’(tl e)(\a->p(x#a)))

It is easy to see by induction on indices that this agrees with
the previous. This doesn’t need an explicit memoization as
the previous, as duplicate evaluation is avoided by the let
clause. However, because the result is generated from left
to right, this introduces a linear-time overhead. Notice that
this implementation can be easily modified to work with
lazy lists.

Consider also an implementation of Berger’s search op-
erator [4]:

berger :: (Cantor -> Bool) -> Cantor
berger p = if p(0 # berger(\a -> p(0 # a)))

then 0 # berger(\a -> p(0 # a))
else 1 # berger(\a -> p(1 # a))

This also generates the result from left to right, but it has
the disadvantage that evaluation of any entry forces eval-
uation of the previous entries, which is not the case for
prod’’. We mention in passing that Simpson [24] applied
Berger’s search operator to show that there is a sequential
algorithm for Riemann integration when real numbers are
implemented as infinite sequences of digits.

Now, only the implementation prod’ can cope with
the experiment reported in the introduction — see Conjec-
ture 7.1 below.

Here is another experiment. Given a finite set S, define
a predicate pS : Bω → B by pS(α) =

∧
i∈S αi. Then two

finite sets S and T are equal iff pS = pT . Using the same
idea to check whether two finite lists have the same set of
elements, the query
> eqset
[2ˆ700,789ˆ34,6ˆ600,345ˆ55,45,5,1000,4,10ˆ100,5000,23ˆ45]
[5,789ˆ34,45,1000,23ˆ45,5000,345ˆ55,4,10ˆ100,6ˆ600,2ˆ700]

answers True in 0.89s using the Glasgow Haskell inter-
preter this time. A file with the programs discussed in this
paper is available at [7].
Tentative explanations. For simplicity, we confine our at-
tention to predicates p defined on the Cantor set, as in the
above examples. There are two notions of modulus of uni-
form continuity on the Cantor set that arise often. The first,
as in Corollary 4.6, says that there is a smallest number
n = fan(p) such that for all total α, β ∈ Bω, if α =n β
then p(α) = p(β). The second says that there is a smallest
number m = m(p) such that p(α) = p(α|m) for all total
α ∈ Bω. Then fan(p) ≤ m(p) holds.

We consider refined versions of these two notions. Given
a set I ⊆ ω, define α =I β iff αi = βi for all i ∈ I , and
define α|I(i) = αi if i ∈ I and α|I(i) = ⊥ otherwise.
Then there is a smallest set I = FAN(p) such that α =I β
implies p(α) = p(β) for all total α, β ∈ Bω, and there is
a smallest set I = M(p) such that p(α) = p(α|I) for all
total α ∈ Bω. These sets exist and are finite by uniform
continuity, and FAN(p) ⊆ M(p) ⊆ {i | i < m(p)}. The
set FAN(p) is uniformly decidable in p, but the set M(p) is
not. However, it is the set M(p) that arises in our consider-
ations. We may formalize the above partial explanations by
saying that p uses its argument at i iff i ∈ M(p).

Conjecture 7.1. Let p ∈ (Bω → B) be total and assume
unit cost to evaluate p(α) at any total argument α. We
conjecture that, under call-by-need, the evaluation of ∃(p)
takes time proportional to:

22cardinality of M(p)
using prod

2
P

n∈M(p) 1+log(n+1) using prod’
2

P
M(p) using prod’’

2m(p) using berger.
This is confirmed for relatively small examples, where in-
creasing M(p) by a few elements increases the time as
predicted by the above formulas. Thus, on information-
theoretic grounds, it seems that prod’ is asymptotically
optimal. Notice that ∃(p) = p(ε(p)) and hence the com-
putation of ε(p) is, to some extent, driven by p itself. The
extent to which this is so depends on the particular algo-
rithm ε. For Berger’s algorithm, the computation of ε(p)(n)
forces the evaluation of ε(p)(i) for all i < n. On the other
hand, using prod, only ε(p)(i) with i ∈ M(p) are ever
evaluated, but unfortunately more often than necessary. The
algorithms prod’ and prod’’ fix this in different ways.
Is there an elegant way of achieving the same performance
as prod’ but without using the infinite-tree trick, in the
style of prod’’?

9

8. Concluding remarks
The algorithms developed in this work have purely com-

putational specifications, which allow them to be used,
for example by typical functional programmers, without
knowledge of specialized mathematical techniques in the
theory of computation. However, the correctness proofs
of the deeper algorithms crucially rely on topological tech-
niques. In this sense, this work is a genuine application of
topology to computation: theorems formulated in the lan-
guage of computation, proofs developed in the language of
topology.

But there is another sense in which topology proves to
play a crucial role. Compact sets in topology are advertised
as sets that behave, in many important respects, as if they
were finite. Then exhaustively searchable sets ought to be
compact. And compact sets are known to be closed under
continuous images and under finite and infinite products.
Moreover, for countably based Hausdorff spaces, they are
the continuous images of the Cantor space. Hence search-
able sets ought to have corresponding closure properties and
characterization, which is what this work establishes, mo-
tivated by these considerations. Thus, in a more abstract
level, topology is applied as a paradigm for discovering un-
foreseen notions, algorithms and theorems in computability
theory.

In this enterprise, the technically challenging aspects of
this investigation include Lemma 5.1, not only in finding a
proof, but fundamentally in discovering a formulation that
matches computational reality (see Counter-examples 5.2).

Notice that the correctness proofs of Section 4 can be
directly interpreted in the operational setting [6, 8]. But a
development of operational counter-parts for those of Sec-
tion 6 is left as an open problem. This requires an opera-
tional reworking of Section 5, which seems challenging.

Finally, in this work, topology also plays a role in higher-
type complexity: we have applied the notion of uniform
continuity to measure the size of functional inputs in the
formulation of run times for higher-type algorithms.
Acknowledgments. I have benefited from discussions with
Andrej Bauer, Ulrich Berger, Dan Ghica, Achim Jung, John
Longley, Matthias Schröder, and Alex Simpson. I also
thank Dag Normann for having answered questions regard-
ing the history and technical ramifications of the subject,
and for sending me a copy of Tait’s unpublished manuscript
— but the reader should consult his paper [18] for a more
accurate and detailed account.

References

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume 3 of Oxford science publications, pages 1–
168. 1994.

[2] A. Bauer, M.H. Escardó, and A.K. Simpson. Comparing functional
paradigms for exact real-number computation. volume 2380 of Lect.
Not. Comp. Sci., pages 488–500, 2002.

[3] M.J. Beeson. Foundations of Constructive Mathematics. Springer,
1985.

[4] U. Berger. Totale Objekte und Mengen in der Bereichstheorie. PhD
thesis, Mathematisches Institut der Universität München, 1990.

[5] U. Berger. Total sets and objects in domain theory. Ann. Pure Appl.
Logic, 60(2):91–117, 1993.

[6] M.H. Escardó. Synthetic topology of data types and classical spaces.
Electron. Notes Theor. Comput. Sci., 87:21–156, 2004.

[7] M.H. Escardó. Haskell program for exhaustive search over in-
finite sets. http://www.cs.bham.ac.uk/∼mhe/papers/
exhaustive.hs, School of Computer Science, University of
Birmingham, Summer 2006.

[8] M.H. Escardó and W.K. Ho. Operational domain theory and topology
of a sequential programming language. In Proceedings of the 20th
Annual IEEE Symposium on Logic In Computer Science, pages 427–
436, 2005.

[9] M.H. Escardó, J. Lawson, and A. Simpson. Comparing Cartesian
closed categories of (core) compactly generated spaces. Topology
Appl., 143(1-3):105–145, 2004.

[10] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and
D.S. Scott. Continuous Lattices and Domains. CUP, 2003.

[11] G. Hutton. Programming in Haskell. CUP, 2007.

[12] J.R. Longley. On the ubiquity of certain type structures. Mathemati-
cal Structures in Computer Science. To appear.

[13] J.R. Longley. Notions of computability at higher types. I. In Logic
Colloquium 2000, volume 19 of Lect. Notes Log., pages 32–142. As-
soc. Symbol. Logic, Urbana, IL, 2005.

[14] S. Mac Lane. Categories for the Working Mathematician. Springer,
1971.

[15] D. Normann. Recursion on the countable functionals, volume 811 of
Lec. Not. Math. Springer, 1980.

[16] D. Normann. Computability over the partial continuous functionals.
J. Symbolic Logic, 65(3):1133–1142, 2000.

[17] D. Normann. Comparing hierarchies of total functionals. Logical
Methods in Computer Science, 1(2):1–28, 2005.

[18] D. Normann. Computing with functionals—computability theory or
computer science? Bull. Symbolic Logic, 12(1):43–59, 2006.

[19] G.D. Plotkin. LCF considered as a programming language. Theoret.
Comput. Sci., 5(1):223–255, 1977.

[20] G.D. Plotkin. Tω as a universal domain. J. Comput. System Sci.,
17:209–236, 1978.

[21] G.D. Plotkin. Full abstraction, totality and PCF. Math. Structures
Comput. Sci., 9(1):1–20, 1999.

[22] D.S. Scott. Data types as lattices. SIAM J. Comput., 5:522–587,
1976.

[23] D.S. Scott. A type-theoretical alternative to CUCH, ISWIM and
OWHY. Theoret. Comput. Sci., 121:411–440, 1993. Reprint of a
1969 manuscript.

[24] A. Simpson. Lazy functional algorithms for exact real functionals.
Lec. Not. Comput. Sci., 1450:323–342, 1998.

[25] M.B. Smyth. Topology. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, vol-
ume 1 of Oxford science publications, pages 641–761. 1992.

10

http://www.cs.bham.ac.uk/~mhe/papers/exhaustive.hs
http://www.cs.bham.ac.uk/~mhe/papers/exhaustive.hs

	. Introduction
	. Higher-type computability
	. Exhaustible and searchable sets
	. Building new searchable sets from old
	. Topological aspects of exhaustible sets
	. Characterization of searchability
	. Experiments and tentative explanations
	. Concluding remarks

