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Introduction

The intuition behind pointfree topology is very natural. One simply prefers
thinking of a space as constituted by \places", \spots" of nontrivial extent.
The points are abstractions of limits of diminishing places and one typically
forgets about them, if possible (and sometimes they in fact do not exist). If
you view, say,

√
2 as \1.414-and-I-don't-know-what-comes-next", or take the

result of a measurement, say, \5.3" as \5.3 ± error in some tolerance" you
think in a point-free way.

Being not a specialist in history of mathematics I can only brie
y out-
line the development in the �eld, hoping that my omitting, by ignorance,
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important milestones will be pardoned.
Modern topology originates, in principle, from Hausdor�'s \Mengenlehre"

[15] in 1914 (one year earlier there was a paper by Caratheodory [10] con-
taining the idea of a point as an entity localized by a special system of
diminishing sets; this is also of relevance for the modern point-free think-
ing). In the twenties and thirties the importance of (the lattice of) open sets
became gradually more and more apparent (see e.g. Alexandro� [1] or Sier-
pinski [41]). In [43] and [44] (1934, 1936), M.H. Stone presented his famous
duality theorem from which it followed that compact zero-dimensional spaces
and continuous maps are well represented by the Boolean algebras of closed
open sets and lattice homomorphisms. Although zero-dimensional spaces are
rather special, and not very geometric, this was certainly an encouragement
for those who endeavoured to treat topology other than as a structure on a
given system of points (Wallman 1938 [48], Menger 1940 [34], McKinsey and
Tarski 1944 [33]). In the Ehresmann seminar in the late �fties ([13], [8]),
we encounter frame theory already in the form we know today (it should be
noted that almost at the same time, independently, there appeared two im-
portant papers { Bruns [9], Thron [45] { on homeomorphism of spaces with
isomorphic lattices of open sets, under weak separation axioms). After that,
many authors got interested (C.H. Dowker, D. Papert (Strauss), J. Isbell, B.
Banaschewski, etc.) and the �eld started to develop rapidly. The pioneering
paper by J. Isbell [17], which opened several topics, merits particular men-
tioning. In 1983, P.T. Johnstone published his monograph [22] which is still
a primary source of reference (also, I can warmly recommend his excellent
surweys in [23] and [24]). Since the mid eighties, intensive research has been
done in enriched point-free structures such as uniform and nearness frames,
or metric frames. It should be noted that this also has its origins in [22]).

Pointfree spaces (frames, locales) are obtained as an abstraction of the
properties of lattices of open sets of classical spaces. This way we have , in
essence, more spaces than we had before (not quite: some badly behaved
classical spaces cannot be treated this way, but this is not very important at
the moment). An extension and generalization of a time-tested concept calls
for a justi�cation. We cannot ignore the questions that naturally arise:

(Q1) Is the broader range of \spaces" desirable at all?

(Q2) When abandoning points, do we not lose too much information?

(Q3) Is the theory in this context, in whatever sense, more satisfactory?
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(Q4) Is it not so that the new techniques obscure the geometric contents?

The following text, besides trying to present some of the basic facts, is in-
tended as an apologetics of the �eld. That is, I would like to answer (hopefully
to satisfaction) the questions above.

In Section 2 the basic concepts are de�ned and a reconstruction of points
is described and discussed in some detail. Thus the question Q2 is answered.

Section 3 is devoted to separation axioms (regularity, etc.) I try to illus-
trate the parallels of classical and point-free thinking. The reader will get
some idea of the basic techniques, too; perhaps it will be apparent that al-
though the intuition is somewhat di�erent, the reasoning is transparent and
sometimes very simple. Thus we will have something in the direction of Q4.
The detailed proofs, also elsewhere, illustrate the simplicity of the point-free
reasoning (albeit, admittedly, sometimes traded for loss of intuition).

Generalized subspaces, discussed in Section 4, represent a part of point-
free reasoning with features somewhat di�erent from the classical theory. It
turns out that even a classical space can have subspaces that are not classical
(for instance, rationals and irrationals in the locale of reals still meet in a
dense subspace). The reader may or may not see it as an indication that the
exra spaces are of interest. If not, never mind, more arguments will come
later.

The next section concerns compactness. On the one hand we see that
the concept is particularly easy to be treated without points, and there are
facts parallel to the classical ones. On the other hand we present a variant
of Stone-�Cech compacti�cation (from [5]). Here, �rst, the reader will appre-
ciate that the construction is much simpler. Second, surprisingly, unlike in
classical spaces, this compacti�cation is fully constructive. This is a point
in the direction of Q3 (it should be noted that point-free reasoning is often
constructive where the classical is not).

In Section 6 we discuss local compactness, show its relation with con-
tinuous lattices, and present the Hofmann-Lawson duality ([16]). This last
(heavily dependent on choice principles) show that there is a very important
part of topology where we have the points granted.

In the last section we present several examples of results that do not hold
classically, and are more satisfactory than their classical counterparts. This
should answer Q1.
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1. Preliminaries

1.1. As usual, for a subset M or an element x of a partially ordered set
(X,≤) we write

↓M = {x | x ≤ m ∈ M}, ↓x =↓{x}, ↑M = {x | x ≥ m ∈ M}, ↑x =↑{x}.

1.2. Recall that monotone maps f : (X,≤)→ (Y ≤), g : (Y,≤)→ (X ≤)
are (Galois) adjoint (f on the left and g on the right) if

f(x) ≤ y i� x ≤ g(y)

and that this is equivalent to fg(y) ≤ y and x ≤ gf(x).
Also recall the well-known fact that the left (resp. right) adjoints preserve

suprema (resp. in�ma) and if the posets in question are complete lattices,
each map preserving all suprema is a left adjoint and similarly the maps
preserving in�ma are right adjoints.

1.3. If (X,≤), (Y,≤) are lattices then lattice homomorphisms f : X → Y
preserve suprema and in�ma of couples of elements. Complete lattice homo-
morphisms between complete lattices preserve all suprema and all in�ma.

1.4. A Heyting algebra is a lattice with an extra operation→ satisfying

a ∧ b ≤ c i� a ≤ b→c

(hence each map − ∧ b is a Galois adjoint).
A pseudocomplement of an element a in a lattice L is an a∗ ∈ L such

that
x ∧ a = 0 i� x ≤ a∗.

Thus, in a Heyting algebra every element has a pseudocomplement, namely
a∗ = a→0.

1.5. Only basics from category theory are assumed.
The reader should know that an adjoint situation

εAB : B(L(A), B) ∼= A(A, R(B))

can be equivalently described by transformations λ : LR → Id, ρ : Id→ RL
such that all the λL(A) ·L(ρA) and R(λB) · ρR(B) are identities.To understand
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a remark in Section 5 it is helpful to realize that the fact that a re
ective
category inherits all the limits (in particular, products) holds without any
non-constructive principles.

1.6. The reader wishing for more information on posets can consult [11],
for category theory one can use any standard monograph, for instance [30];
more information about frames can be found in [22], [23], [24], [47], [38] or
[37].

2. Frames, locales, and how to reconstruct

points if we are so minded. Spectrum

2.1. A frame is a complete lattice L satisfying the distributivity law

(
∨

A) ∧ b =
∨
{a ∧ b | a ∈ A} (∗)

for each subset A ⊆ L and b ∈ L.
A frame homomorphism h : L → M is a mapping preserving all suprema

and all �nite in�ma. The category of frames and frame homomorphisms will
be denoted by

Frm.

Note that the distributivity law (∗) is precisely the same as stating
that each of the maps −∧ b = (x 7→ x∧ b) preserves all suprema.
Thus (recall 1.2 and 1.4), each − ∧ b is a left adjoint and the
respective right adjoints constitute a Heyting structure

a ∧ b ≤ c i� a ≤ b→c

on L. Hence, in a way, frames and complete Heyting algebras are
the same. But this concerns the intrinsic structure only; frame
homomorphisms and complete Heyting homomorphisms di�er. It
may be of interest that the latter also has a topological interpre-
tation, modelling the open continuous maps ([26]).

2.2. Consider a topological space X with the topology given by the
system of open sets which we will denote by 
(X). This 
(X) is obviously a
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frame, and if f : X → Y is a continuous map we have a frame homomorphism

(f) = (U 7→ f−1(U)) : 
(Y )→ 
(X).

Note. The joins in 
(X) coincide with the unions, and �nite
meets coincide with (�nite) intersections. This results in the re-
quired distributivity and in 
(f) being really frame homomor-
phisms. Note that due to the di�erent nature of the in�nite meets,
the distributivity dual to (∗) typically does not hold, and the 
(f)
typically does not preserve them.

Thus we have a contravariant functor


 : Top→ Frm.

We will see soon that for a substantial class of topological spaces this 

constitutes an isomorphism with a full subcategory of the opposite (dual) of
Frm. This dual category can then be viewed as an extension, that is, a class
of generalized spaces. It is called the category of locales and usually denoted
as Loc, and we have a (covariant) functor


 : Top→ Loc.

We deal with frames resp. locales mostly as follows: when computing or
proving facts we will adopt the frame (algebraic) point of view) while in
interpreting the facts { for instance when dealing with \subspaces" { we
often think as in Loc.

A frame L isomorphic to an 
(X) is said to be spatial .

Note. A complete Boolean algebras is spatial only if it is atomic
(in other words, spatial locales and Boolean algebras intersect
precisely in discrete spaces). Thus, a simple example of a non-
spatial frame is any non-atomic Boolean algebra.

2.3. Given a spatial frame L ∼= 
(X) the eminent question to be an-
swered is whether one can reconstruct th space X, and given a frame ho-
momorphism h : 
(Y ) → 
(X) we want to know whether it determines a
continuous f : X → Y such that h = 
(f). Obviously a restriction of the
class of spaces is necessary: for instance the two element (indicrete) topology
{∅, X} certainly does not determine the underlying set X; thus, we see that,
at least, we have to assume that the spaces satisfy the separation axiom T0.

The T0 alone does not su�ce, but we do not need much more. We will
present a very natural approach involving sobriety.
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In every space, the open sets of the form X r {x} behave with respect to
the \multiplication" ∩ as primes. That is, they are distinct from the unit,
and if X r {x} = U ∩ V then either U = X r {x} or V = X r {x}; instead
of prime one usualy speaks of meet irreducible elements. A space is sober if
it is T0 and if there are no other meet irreducibles than the X r {x}.

It is an easy exercise to show that for instance each Hausdor� space is
sober. But a sober space does not have to be even T1: for instance every
�nite T0 space is sober (on the other hand, T1 does not imply sobriety either).

2.3.1. Proposition. Let Y be a sober space and X a general one.
Then for each frame homomorphism h : 
(Y ) → 
(X) there is exactly one
continuous map f : X → Y such that h = 
(f).

Proof. The uniqueness immediately follows from Y being T0. Now let
h : 
(Y )→ 
(X) be a frame homomorphism. For x ∈ X set

Fx = {U ∈ 
(Y ) | x /∈ h(U)} and Fx =
⋃
Fx.

Since joins are preserved we have x /∈ h(Fx) and hence, for U ∈ 
(Y ),

x /∈ h(U) i� U ⊆ Fx. (∗)

Fx is meet ireducible: Indeed, since x /∈ h(Fx), Fx 6= X; if Fx = U ∩ V we
have x /∈ h(U) ∩ h(V ) and hence, say x /∈ h(U) and U ⊆ Fx. Thus, by
sobriety, Fx = Y r {y} for a unique y ∈ Y and if we chose such y for f(x)
we can rewrite (∗) to

x /∈ h(U) i� U ⊆ Y r {y} (i� f(x) /∈ U, since U is open)

and hence
x ∈ h(U) i� f(x) ∈ U, that is, x ∈ f−1[U ].

Thus, f−1[U ] = h(U) ∈ 
(X) and hence f is continuous and h = 
(f). �

Now we can reconstruct a sober space X as follows:
Denote by P the one point space {·}. The x ∈ X are in the
natural one-one correspondence with the (continuous) maps fx =
(· 7→ x) : P → X, and hence with the frame homomorphisms

h : 
(X)→ 
(P ) ∼= 2,

(2 is the two-element Boolean algebra {0, 1}). An element x be-
longs to an open set U i� h(U) = f−1x [U ] 6= ∅. Thus, X is home-
omorphic with
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({h | h : 
(X) → 2}, {Ũ = {h | h(U) = 1} | U ∈ 
(X)}).
Furthermore, we see that the restriction of 
 to the subcategory
of sober spaces is a full embedding, and locales can be viewed as
an extension of sober spaces.

2.4. Spectrum. The reconstruction above leads to the following de�ni-
tions:

A point of a frame L is a frame homomorphism h : L → 2. Denote by
�L the set of all points of L. For a ∈ L set �a = {h : L → 2 | h(a) = 1}.

Observation �a∧b = �a ∩ �b, �0 = ∅, �1 = �L and �∨ai
=

⋃
�ai

.

Consequently {�a | a ∈ L} is a topology on �L. From now on, �L will be
always considered as thus obtained space, and called the spectrum of L.

For a frame homomorphism h : L → M consider the mapping

�h : �M → �L

de�ned by (�h)(α) = αh.

Lemma. For each a ∈ L,

(�h)−1(�a) = �[h(a)]. (2.4.1)

Proof. Indeed, (�h)(α) ∈ �a i� (�h)(α))(a) = α(h(a)) = 1. �

Corollary. �h : �M → �L is a continuous mapping and we have
obtained a (contravariant) functor

� : Frm→ Top.

2.4.1. Proposition. Each �L is a sober space.
Proof. Use the standard representation of �L. We have

α ∈ {β} i� α ≤ β

(indeed, the �rst formula says that if α ∈ �a, that is, α(a) = 1 then β ∈ �a,
that is, β(a) = 1).

Let �a be a meet irreducible open set in �L. Set b =
∨
{c | �c ⊆ �a};

hence in particular �b = �a. If x∧y ≤ b then �x∩�y ⊆ �b = �a and hence,

8



say, �x ⊆ �b so that x ≤ b. Thus, b is meet irreducible and the α de�ned by
α(x) = 0 i� x ≤ b is easily seen to be a frame homomorphism. We have

β /∈ {α} i� (∃c, β(c) = 1 and α(c) = 0) i�

(∃c, β(c) = 1 and c ≤ b) i� β(b) = 1 i� β ∈ �b = �a.

Thus, �a = �L r {α}. �

2.5. Spectrum is adjoint to 
.

Theorem. � : Loc→ Top is a right adjoint to 
 : Top→ Loc.
Proof. The covariant (\localic") formulation enables us to say which

of the functors is to be viewed as the right adjoint and which one as the
left adjoint. The proof will be done, however, using the algebraic (frame)
reasoning.

For a topological space X de�ne

ηX : X → �
X

by setting ηX(x)(U) = 1 i� x ∈ U (checking that each ηX(x) is a frame
homomorphism is straightforward, and we have

η−1X (�U) = {x | ηX(x) ∈ �U} = U ) (2.5.1)

so that each ηX is continuous.
For a frame L de�ne

εL : L → 
�L (
�L → L in Loc)

by setting εL(a) = �a (by the Observation in 2.4 it is a frame homomor-
phism).

If f : X → Y is a continuous map (h : L → M a frame homomorphism),
we have (�
f(ηX(x)))(U) = ηX(x)(
f(U)) = ηX(x)(f−1(U)) = 1 i� x ∈
f−1[U ] i� f(x) ∈ U i� ηY (f(x))(U) = 1 (
�h(εL(a) = (�h)−1[�a] = �h(a) =
εM(h(a)), by (2.4.1)) so that we have natural transformations η : Id → �

and ε : Id→ 
�. These transformations are adjunction units: We have

(�εL(η�L(α)))(U) = η�L(α)(εL(U))) = 1 i� α ∈ �U i� α(U) = 1,

hence �εL · η�L = id, and, by (2.5.1)


(ηX)(ε
X(U)) = η−1X (�U) = U. � (2.5.2)
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2.5. The units as spatiality and sobriety criteria.

Proposition. L is spatial i� εL is an isomorphism.
Proof. The implication ⇐ is trivial.
⇒: Let h : L → 
(X) be an isomorphism. Then εL = (
�h)−1 · ε
X · h,

and ε
X is one-one since 
ηX · ε
X = id. �

Thus,
if εL is not an isomorphism, L is isomorphic to no 
(X) whatso-
ever.

Proposition. X is sober i� ηX is a homeomorphism.
Proof. ⇒ by 2.3.1, ηX is invertible and by (2.5.1) ηX [U ] = ηX [η

−1
X (�U)] =

�U and this map is also open. ⇐ follows from 2.4.1. �

3. Separation axioms. Some parallels with the

classical case

In classical topology one typically does not need quite general spaces. One
of the ways to reduce the generality is provided by the separation axioms.
Since their standard formulations use points (with the exception of normality
which, on the other hand is not very satisfactory anyway) one can think, on
the �rst sight, that in the point-free context we will not have much in this
department.

But this is not the case. We have regularity, complete regularity and nor-
mality precisely corresponding to the classical homonymous properties. T0 is
irrelevant, and instead of T1 we can harness the weaker, but very satisfactory
sib�tness. Only the Hausdor� property is really hard to �t into the picture
(see 3.7 below).

3.1. Regularity. In classical spaces, regularity can be formulated by
stating that

∀ open U, U =
⋃
{V open | V ⊆ U}.

The relation V ⊆ U can be extended to the general pointfree case by de�ning

x ≺ y if x∗ ∨ y = 1
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(x∗ is the pseudocomplement, recall 1.4) or, which is the same,

x ≺ y if ∃y, x ∧ y = 0, y ∨ y = 1

(note that the pseudocomplement of V in 
(X) is, obviously, V ∗ = X r V ).

The following easy observation will be useful later

3.1.1. Lemma. If ai ≺ bi for i = 1, 2 then a1∨ a2 ≺ b1∨ b2 and
a1 ∧ a2 ≺ b1 ∧ b2.
(Indeed, we have (a1 ∨ a2)∗ ∨ (b1 ∨ b2) = (a∗1 ∧ a∗2) ∨ (b1 ∨ b2) ≥
(a∗1∨b1)∧(a∗2∨b2) and (a1∧a2)∗∨(b1∧b2) ≥ (a∗1∨a∗2)∨(b1∧b2) ≥
(a∗1 ∨ b1) ∧ (a∗2 ∨ b2).)

A frame L is said to be regular if

for each a ∈ L, a =
∨
{b | b ≺ a}.

and we have that

a space X is regular in the standard sense i� the frame 
(X) is regular.

As an illustration of working with the concept let us prove an analogon
of the classical fact that if two continuous maps between Hausdor� spaces
coincide on a dense subset they are equal (we will use the stronger regularity
instead of the Hausdor� property).

A frame homomorphism h is said to be dense if h(x) = 0 implies x = 0
(this corresponds to the classical notion: for a continuous map f , h−1[U ] = ∅
only for U = ∅). We have

3.2.1. Proposition. Let L be a regular frame, let f, g : L → M be
homomorphisms, and let h : M → N be dense. If hf = hg then f = g.

Proof. Let x ≺ a in L. Thus there is a y such that x ∧ y = 0 and
y ∨ a = 1. We have h(g(x) ∧ f(y)) = h(f(x) ∧ f(y)) = h(f(x ∧ y)) = 0 and
hence g(x)∧f(y) = 0. Since f(y)∨f(a) = 1 we have now g(x)∧f(x) = g(x)
and g(x) ≤ f(a). Thus,

g(a) = g(
∨
{x | x ≺ a}) ≤ g(a),

and by symmetry also f(a) ≤ g(a). �

Thus
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in the category of regular frames the dense homomorphisms are
monomorphic.

3.3. Complete regularity. Write

x ≺≺ y

if there are xr ∈ L for r dyadic rationals in the interval [[0, 1]] such that

x0 = x, x1 = y and xr ≺ xs for r < s.

(Call a relation R interpolative if

aRb ⇒ ∃c, aRcRb.

Obviously, ≺≺ is the largest interpolative R ⊆≺.)

A frame L is said to be completely regular if

for each a ∈ L, a =
∨
{b | b ≺≺ a}. (1)

We have, again, that
a space X is completely regular i� the frame 
(X) is completely regular.

(The proof is not quite so straightforward as in 8.2.1. For the implication⇐
one has to construct suitable real functions; this can be done by a procedure
imitating the standard proof of the well-known Urysohn lemma of classical
topology.)

3.4. Normality. This is perhaps the most immediate translation of a
classical separation notion: we say that a frame L is normal if

whenever a∨b = 1 for a, b ∈ L, there exist u, v ∈ L such that u∧v = 0,
u ∨ b = 1 and a ∨ v = 1.

Trivially,

space X is normal i� the frame 
(X) is normal.

3.5. Sub�tness. A frame L is said to be sub�t ([17], conjunctive in [42])
if

a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c. (S�t)
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Note. In classical setting, sub�tness is a separation axiom weaker
than T1. It combines to T1 together with another separation axiom
between T0 and T1, the TD ([2],[9])

∀x ∃U open, x ∈ U such that U r {x} is open.

Note that

every regular frame is sub�t.
(indeed, if a � b then there is an x ≺ a, x � b. Set c = x∗; then a ∨ c = 1
and b ∨ c 6= 1.)

An interesting feature of sub�tness is that re
ecting unit makes a homo-
morphism one-one.

Proposition. Let L be sub�t and let h : L → M be a homomorphism
such that h(a) = 1 implies a = 1. Then h is one-one.
(compare with 3.2.1)

Proof. Suppose f(a) = f(b) and a∨ c = 1. Then f(b∨ c) = f(a∨ c) = 1,
hence b ∨ c = 1, and hence necessarily b ≤ a. �

3.6. The relation of regularity, complete regularity and normal-

ity.

Lemma. The relation ≺ in a normal frame is interpolative.
Proof. Let a ≺ b in a normal frame L. Then there are u, v such that

u ≤ v∗, u∨ b = 1 and a∗ ∨ v = 1. Thus, a ≺ v and v∗ ∨ b ≥ u∨ b = 1 so that
also v ≺ b. �

3.6.1. Proposition. Let L be normal and sub�t. Then it is completely
regular.

Proof. By Lemma, ≺=≺≺. Thus, it su�ces to show that L is regular.
For a ∈ L set b =

∨
{x | x ≺ a} =

∨
{x | x∗ ∨ a = 1}. Let a ∨ c = 1. By

normality we have a u such that u ∨ c = 1 and a ∨ u∗ = 1. Thus, u ≤ b and
b ∨ c = 1. Hence a ∨ c = 1 ⇒ b ∨ c = 1 and by sub�tness a ≤ b(≤ a). �

3.6.2. Like in classical spaces, regular and Lindel�of implies normal (a
cover of L is a subset A ⊆ L such that

∨
A = 1, and a frame is and Lindel�of

if each cover contains an at most countable subcover).

Proposition. Each regular Lindel�of frame is normal; consequently, it
is completely regular.
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Proof. Let a ∨ b = 1 in L. By regularity, a =
∨
{x | x ≺ a} and

b =
∨
{y | y ≺ b}. Thus,

∨
{x | x ≺ a} ∨ b = 1 = a ∨

∨
{y | y ≺ b} and

by the Lindel�of property there are x1, x2, · · · ≺ a, y1, y2, · · · ≺ b such that∨∞
i=1 xi ∨ b = 1 = a ∨

∨∞
i=1 yi. By 3.1.1 we can assume that

x1 ≤ x2 ≤ · · · and y1 ≤ y2 ≤ · · ·
Set ui = xi ∧ y∗i and vi = yi ∧ x∗i . Then we have a ∨ vi = a ∨ (x∗i ∧ yi) =
(a ∨ x∗i ) ∧ (a ∨ yi) = a ∨ yi and similarly ui ∨ b = xi ∨ b. Consequently, if we
set u =

∨
ui and v =

∨
vi we have

a ∨ v =
∨

(a ∨ yi) = a ∨
∨

yi = 1 and u ∨ b = 1.

Finally, ui ∧ vj = xi ∧ y∗i ∧ x∗j ∧ yj = 0 for any two i, j since if i ≤ j then
xi ∧ x∗j = 0 and if i ≥ j then yj ∧ y∗i = 0. Thus, u ∧ v =

∨
i,j ui ∧ vj = 0. �

3.7. Hausdor� type properties. Unlike in the separation principles
above, in the Hausdor� case we have to do with substitutes. The �rst such
requirement was suggested by Dowker and Strauss in [12]:

if a ∨ b = 1 6= a, b then there are u, v

such that u � a, v � b and u ∧ b = 0.

To make it hereditary at least for \open subspaces" it can be modi�ed to

if a ∨ b = c 6= a, b then there are u, v ≤ c

such that u � a, v � b and u ∧ b = 0.

Another requirement of this type, introduced by Isbell in [17] imitates the
fact that in the classical case we can characterize Hausdor� spaces as those X
for which the diagonal is closed in X ×X: a frame L is said to be Hausdor�
if the codiagonal ∇ : L⊕ L → L is closed (we have to skip the de�nition of
the coproduct L⊕ L).

None of the two de�nitions corresponds exactly to the classical property
in the case of spatial frames (in the latter case because the coproducts 
(X)⊕

(X) in frames do not always correspond to the products { that is, they are
not necessarily isomorphic to 
(X ×X), which seems to be unpleasant, but
in fact has elsewhere nice consequences).

One has the implications

regular ⇒ Isbell-Hausdor� ⇒ Dowker-Strauss-Hausdor�.

Anyway, the subtitutes turned out to be fairly useful and it is not hard to
reconcile ourselves with the lack of an exact equivalent.
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4. The wonders of generalized subspaces

4.1. What is a natural de�nition of a sublocale, a \generalized subspace"
of a \generalized space"? Think of some structure, say that of graph, or of
spaces. A one-one structure preserving mapping does not represent well a
subobject. Compare, say

an embedding of a subgraph vs. an embedding of an induced subgraph,
or

a one-one continuous map f : X → Y vs. an f : X → Y that restricts to
a homeomorphism f ′ : X → f [X].

In categories, the one-one maps are (very roughly speaking) modelled by
monomorphisms, that is, morphisms m such that mf = mg implies f = g.
There are various extra conditions making a monomorphism something like
an embedding of a subobject. A very natural one is in the concept of an
extremal monomorphism, a monomorphism m that cannot be decomposed
as m = m′e with e an epimorphism unless e is an isomorphism (\one cannot
�t into the one-one map a non-trivial adjustment of the structure, the e").

Now since we have in mind such subspace embeddings in the category
Loc = Frmop, we have to think of the extremal epimorphisms instead,
namely of the epimorphisms e such that in each decomposition e = me′

with m monomorphic, m is an isomorphism). Now although general epi-
morphisms in Frm have a rather non-trivial structure, the extremal epimor-
phisms, luckily enough, are transparent: they are precisely the onto frame
homomorphisms.

This leads to the following de�nition: a sublocale (more precisely, sublocale
map) of L is an onto frame homomorphism h : L → M .

Let Y be a subspace of X. Then we have the sublocale U 7→
U |Y ) : 
(X) → 
(Y ) of 
(X). Note that, of course, U 7→ U |Y )
is nothing else but the 
(j) of the embedding map j : Y ⊆ X.

4.2. The sublocale map approach is, from the point of view of the moti-
vation, a lucid representation of a subspace. It is not always easy to compute
with, though. Therefore one uses, according to the needs of the moment,
several others.

I. Congruences. The onto maps h : L → M can be, up to isomorphism,
represented by the congruences

Eh = {(x, y) | h(x) = h(y)}
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(having in mind the natural projection pE = (x 7→ xE) : L → L/E). In
a sense, it is a better representation (albeit not quite so intuitive): if there
is an isomorphism i such that ih = h′, the sublocale maps h : L → M and
h′ : L → M represent the same subspace although they are not identical; the
congruences Eh and Eh′ are.

Furthermore, one immediately sees that the sublocales thus represented
constitute a complete lattice; let us denote the congruence lattice of L by

CL.

One only has to keep in mind that the natural order of the sublocales is
opposite to that of CL: a bigger congruence represents a smaller subspace.

Note, The complete lattice CL is a frame. The proof of the dis-
tributive law is not hard, it just needs some Heying computation.

II. Nuclei. This is a representation one often �nds in the literature. A
nucleus on a frame L is a mapping ν : L → L such that

(N1) a ≤ ν(a),

(N2) νν(a) = ν(a), and

(N3) ν(a ∧ b) = ν(a) ∧ ν(b).

The translation of congruences to nuclei and back is given by the formula

E 7→ νE, νE(x) =
∨

xE,

ν 7→ Eν , xEνy i� ν(x) = ν(y)

(the reader can check the properties as an exercise).
III. Sublocale sets. A subset S of a frame L is said to be a sublocale

set if

(S1) for each A ⊆ S,
∧

A ∈ S (in particular, 1 =
∧
∅ ∈ S), and

(S2) for each a ∈ L and b ∈ S, a→b ∈ S.

Nuclei can be translated to sublocale sets and back by the formulas

ν 7→ ν[L]; S 7→ νS, νS(a) =
∧
{s | s ∈ S, a ≤ s}.
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This is a very handy representation; we will see some of its advantages in 4.4
and 4.5 below.

4.3. Open and closed sublocales. These are represented as follows.
Let a be an element of L. We have the sublocale maps

â = (x 7→ a ∧ x) : L →↓a, the open sublocales, and
�a = (x 7→ a ∨ x) : L →↑a, the closed sublocales.

the respective open and closed congruences are

�a = {(x, y) | x ∧ a = y ∧ a}, and

∇a = {(x, y) | x ∨ a = y ∨ a}.

In the sublocale set representation we obtain the open resp. closed sublo-
cale sets

o(a) = {a→x | x ∈ L} = {x | x = a→x} resp. c(a) =↑a.

We have

4.3.1. Proposition. 1. ∇0 is the minimal congruence and ∇1 the
maximal one; ∇a ∩∇b = ∇a∧b and

∨
i∈J ∇ai

= ∇∨ai
. Thus, ∇ = (a 7→ ∇a) :

L → CL is a frame homomorphism.
2. ∇a and �a (�a and â, c(a) and o(a)) are complements in CL.
Proof. 1. Set a =

∨
ai. Obviously ∇ai

⊆ ∇a for all i; if ∇ai
⊆ E for all i,

we have aiE0 for all i and hence a = (
∨

ai)E0, and hence if x∨ a = y ∨ a we
have xE(x∨a) = (y∨a)Ey so that ∇a ⊆ E. If x∨a = y∨a and x∨b = y∨b
then x ∨ (a ∧ b) = (x ∨ a) ∧ (x ∨ b) = (y ∨ a) ∧ (y ∨ b) = y ∨ (a ∧ b), and
x ∨ (a ∧ b) = y ∨ (a ∧ b) obviously implies x ∨ a = y ∨ a and x ∨ b = y ∨ b.

2. If (x, y) ∈ �a ∩ ∇a then x ∧ a = y ∧ a and x ∨ a = y ∨ a. Hence
x = x ∨ (x ∧ a) = x ∨ (y ∧ a) = (x ∨ y) ∧ (x ∨ a) = (x ∨ y) ∧ (y ∨ a) =
(x ∧ (y ∨ a)) ∨ y = x ∧ y and by symmetry also y = x ∧ y, so that x = y.

Now let E ⊇ �a,∇a. Then, since 1�aa and 0∇aa, 1EaE0, and 1E0
makes E = L× L. �

Each sublocale can be constructed from open and closed ones as follows.

4.3.2. Proposition. For every C ∈ CL we have

C =
∨
{∇a ∩�b | aCb}.
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Proof. If aCb and (x, y) ∈ ∇a ∩�b we have

x = x∧(x ∨ a) = x ∧ (y ∨ a) = (x ∧ y) ∨ (x ∧ a)C(x ∧ y) ∨ (x ∧ b) =

= (x ∧ y) ∨ (y ∧ b) = (x ∨ b) ∧ yC(x ∨ a) ∧ y = (y ∨ a) ∧ y = y

so that ∇a ∩�b ⊆ C. On the other hand, let E ⊇ ∇a ∩�b for all (a, b) ∈ C.
Let (a, b) ∈ C. We have (b, a ∨ b) ∈ ∇a ∩�b ⊆ E and since also (b, a) ∈ C,
we have (a, a ∨ b) ∈ E as well. Thus, aE(a ∨ b)Eb, and C ⊆ E. �

Note. By 3.1, ∇L = (a 7→ ∇a is a one-one homomorphism
L → CL. From 3.2 we obtain

Corollary. The embedding ∇L : L → CL is an epimorphism.
(Indeed, if f, g : CL → M coincide in the ∇a's, they coincide,
by complement, also in the �a's, and hence by the Proposition
above in every C ∈ CL.)

This shows how weird the structure of epimorphisms in Frm is:
these embeddings can be combined to

L
∇L

−−−→ CL
∇CL

−−−→ C2L −−−→ . . . −−−→ CnL,

and also the trans�nite step is easy. Thus, one has epimorphisms
∇α : L → CαL for all ordinals α. For some frames L the CαL
never stop growing (in fact, in all the known cases it is either
this, or the growth stops before the fourth step; whether it can
be otherwise is an open problem). Thus, for such a �xed frame L
one has epimorphisms ε : L → M with arbitrarily large M .

4.4. Closure. The closure of h (the smallest closed sublocale �a such that
contains h) is easily seen to be obtained as the �c with c =

∨
{x | h(x) = 0}.

A particularly handy representation of the closure is, however, obtained
using sublocale sets. Obviously, S =↑

∧
S is the least closed sublocale set

containing S.
We have

Proposition. We have {1} = {1}, S = S and S ∨ T = S ∨ T .
Proof. The �rst two facts are trivial, and the third one very easy: Set

a =
∧

S, b =
∧

T . Then S∨T =↑a∨ ↑b = {x∧y | x ≥ a, y ≥ b} =↑(a∧b) =↑∧
(S ∨ T ) = S ∨ T . �
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4.5. Isbell's density theorem. A sublocale (more generally, a frame
homomorphism) is said to be dense if a 6= 0 ⇒ h(a) 6= 0 (this agrees with
the homonymous notion concerning spaces: Y ⊆ X is dense i� Y ∩U 6= ∅ for
each non-void open U in X). In the language of sublocale sets this translates
to the condition that

S is dense i� 0 ∈ S

(indeed, the congruence class of 0 should be {0}, and hence ν(0) = 0 for the
corresponding nucleus). Thus

S is dense i� S = L.

Now consider a dense sublocale set S ⊆ L. As 0 ∈ S, we have, by (S2)
x∗ = x→ 0 in X for any x ∈ L. On the other hand, BL = {x∗ | x ∈ L} is
easily seen to be a sublocale set. Thus we have a somewhat surprising

Theorem. Each frame has a smallest dense sublocale, namely BL.

(By the way, BL is the well known Booleanization of the Heyting algebra L.)

Note. One of the facts one sees from this last theorem is that
a sublocale of a space is not necessarily a subspace. In fact, it is
seldom the case that all the sublocales of a space are subspaces.
By a result of Nie�eld and Rosenthal ([36]) this is the case only
in the so called scattered spaces.
Another phenomenon that can be observed is that typically not
every sublocale has a complement. For more about the comple-
mentation in CL see Isbell, [19].

5. Compactness: similarities, and a rather

important di�erence

5.1. As we have already de�ned above, a cover of a frame L is a subset
A ⊆ L such that

∨
A = 1, and a subcover B of A is a subset B ⊆ A which is

still a cover. These notions obviously correspond to those of open covers and
subcovers in classical topology. Hence we also have the following immediate
extensions of the classical notion:

A frame is said to be compact if each cover A of L has a �nite subcover.

5.2. Proposition. 1. Each subframe of a compact frame is compact.
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2. Each closed sublocale ↑c of a compact) frame is compact.
3. Each regular compact frame is normal. Consequently (recall 3.5. and

3.6) it is completely regular.
Proof. 1 is trivial (note that this statement is related to the classical fact

that quotients of compact spaces are compact ).
2 follows from the fact that if A is a cover of ↑a then {a} ∪ A is a cover

of L.
3: this follows from 3.6, but for a compact L it is much easier: If a∨b = 1

we have
∨
{x | x ≺ a} ∨ b = 1 and hence by compactness and 3.1.1 there is

an x ≺ a (and hence x∗ ∨ a = 1) such that x ∨ b = 1. �

5.3. Two counterparts of statements on Hausdor� compact

spaces.

5.3.1. Proposition. Let L be regular and let M be compact. Then
each dense h : L → M is one-one.

Proof. In view of 3.5 it su�ces to show that h is co-dense. Suppose
h(a) = 1. Since a =

∨
{x | x ≺ a}, the set {h(x) | x ≺ a} is a cover

of M and hence there are x1, . . . , xn ≺ a such that
∨

h(xi) = 1. By 3.1.1
x = x1 ∨ · · · ∨ xn ≺ a and we have

h(x) = 1 and x∗ ∨ a = 1.

Since h(x∗) ≤ h(x)∗ = 0, x∗ = 0 and �nally a = 1. �

5.3.2. Proposition. Let L be regular and h : L → M a sublocale with
compact M . Then h is closed.

Proof. Use the closure in the form of the �c : L →↑c of h from 4.4, that is,
c =

∨
{x | h(x) = 0}. The homomorphism g :↑c → M such that g · �c = h is

dense onto. Hence, by 5.3.1, it is an isomorphism. �

5.4. Compacti�cation. First we will present an easy construction that
is not a compacti�cation in the strict sense. It will give us, however, a good
picture of what will happen next.

An ideal in a frame L is a non-void subset J ⊆ L such that

(I1) b ≤ a ∈ J ⇒ b ∈ J , and

(I2) a, b ∈ J ⇒ a ∨ b ∈ J .
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Denote by
JL

the set of all ideals in L ordered by inclusion.

5.4.1. Proposition. JL is a compact frame.
Proof. Obviously, intersection of ideals is an ideal. For the supremum we

have the formula ∨
Ji = {

∨
X | X �nite, X ⊆

⋃
Ji}

(obviously the set is an ideal, and each ideal J containing all Ji has to contain
all the

∨
X). If Ji, K are ideals and x = x1 ∨ · · · ∨ xn ∈ (

∨
Ji)∩K, xj ∈ Jij ,

then by (I1) xj ∈ Jij ∩K and x ∈
∨
(Ji ∩K). The inclusion

∨
(Ji ∩K) ⊆

(
∨

Ji)∩K is trivial and hence JL is a frame. Now let {Ji | i ∈ I} be a cover.
Thus, 1 ∈ L =

∨
Ji and there are xj ∈ Jij such that 1 = x1 ∨ · · · ∨ xn. Then

we have 1 ∈
∨n

j=1 Jij and by (I1) L =
∨n

j=1 Jij . �

5.4.2. The homomorphisms vL. De�ne a mapping vL : JL → L by
setting vL(J) =

∨
J .

Lemma. vL is a dense sublocale homomorphism.
Proof. De�ne a mapping α : L → JL by setting α(a) =↓a. Obviously,

vLα(a) = a and αv(J) =↓
∨

J ⊇ J. Thus, �rst, v is onto and, second, v is
a left Galois adjoint and hence it preserves all suprema. We have v(L) = 1
and, by (I1),

v(J1) ∧ v(J2) =
∨
{x ∧ y | x ∈ J1, y ∈ J2} ≤

≤
∨
{z | z ∈ J1 ∩ J2} = v(J1 ∩ J2)(≤ v(J1) ∧ v(J2))

so that v preserves �nite meets.
Finally, if v(J) =

∨
J = 0 then necessarily J = {0}, the bottom of JL

(ideals are non-void). �

5.4.3. For a frame homorphism h : L → M de�ne Jh : JL → JM by
setting

Jh(J) =↓h[J ].

By a trivial immediate checking we obtain

Proposition. J is a functor Frm → Frm and v = (vL)L is a natural
transformation J → Id.
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5.4.4. The real thing: Stone-�Cech compacti�cation. Now, fol-
lowing Banaschewski and Mulvey, [5], we will obtain an extension of the
Stone-�Cech compacti�cation for general completely regular locales by an easy
modi�cation of the previous construction.

An ideal J ⊆ L is said to be regular if

(IR) for each a ∈ J there is a b ∈ J such that a ≺≺ b.

The set of all regular ideals in L will be denoted by

RL.

Lemma. RL is a subframe of JL. In particular, it is compact.
Proof. Intersection of regular ideals is obviously regular. Now let Ji be

regular and let a ∈
∨

Ji; then a = x1 ∨ · · · ∨ xn with some xj ∈ Jij . There
are yj ∈ Jij such that xj ≺≺ yj and hence b = y1∨· · ·∨yn ∈

∨
Ji, and a ≺≺ b

by 3.1.1. �

For an element a of a frame L set

σ(a) = {x | x ≺≺ a}.

Using the interpolativity of ≺≺ we immediately obtain

Fact. σ(a) is a regular ideal. �

Proposition. RL is a completely regular compact frame.
Proof. By Lemma and by 5.2.3 it su�ces to show that RL is regular.

Since, further, for a regular ideal J obviously J =
⋃
{σ(a) | a ∈ J} =∨

{σ(a) | a ∈ J} it su�ces to show that

b ≺≺ a in L ⇒ σ(b) ≺ σ(a) in RL.

Interpolate b ≺≺ x ≺≺ y ≺≺ a. Since σ(b∗)∩σ(b) = {0} we have σ(b∗) ⊆ σ(b)∗,
and since obviously if b ≺≺ x then x∗ ≺≺ b∗, x∗ ∈ σ(b∗) ⊆ σ(b)∗. Thus,
1 = x∗ ∨ y ∈ σ(b)∗ ∨ σ(a) and hence σ(b)∗ ∨ σ(a) = L, the top of RL. �

Theorem. (Stone-�Cech compacti�cation) De�ne Rh = Jh for homo-
morphisms h : L → M and vL : RL → L by vL(J) =

∨
J . These formulas

yield a functor R : CRegFrm → CRegFrm and a natural transformation
v : R → Id such that

(1) each RL is (regular and) compact,
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(2) each vL is a dense sublocale homomorphism, and

(3) vL is an isomorphism i� L is compact.

Proof. If L is completely regular we have vLσ(a) = a for each a, and
obviously σ(vL(J)) ⊇ J . Thus (again) vL is a left Galois adjoint and hence
it preserves suprema. Preserving �nite meets is seen by the same procedure
as in 5.4.2. Obviously vL is dense.

If J is a regular ideal in L, Jh(L) =↓h[L] is obvioucly regular as well.
Thus, the only statement left to be proved is that if L is compact then

vL is an isomorphism.
(At this moment, the reader may wonder why we do not simply
use 5.3.1. This would indeed yield the result, but we wish to have
everything very explicitly constructive. Therefore we prefer to
show directly that σ is the inverse of vL.)

We already know that J ⊆ σvL(J). Now let L be compact and let
x ∈ σvL(J). Then x ≺

∨
J , hence x∗ ∨

∨
J = 1 and by compactness there

are a1, . . . an ∈ J such that x∗∨a1∨ · · ·∨an = 1. Then a = a1∨ · · ·∨an ∈ J ,
and x ≺ a and hence x ∈ J ; thus also σvL(J) ⊆ J and σ is the inverse of vL.
�

5.5. Scrutinizing the proof you will �nd no use of choice or excluded
middle. One feature of the pointfree approach is that results that in classical
topology have to use such principles are fully constructive. See also 7.1 and
7.2 below.

6. Local compactness:

meeting an old acquaintance

6.1. Continuous lattices. The relation \well below", usually denoted by

x � y,

is de�ned (typically in a complete lattice, but it makes sense more generally)
by requiring that

∀D directed in L, y ≤
∨

D ⇒ ∃d ∈ D, x ≤ d.
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A lattice L is said to be continuous if

∀a ∈ L, a = {x | x � a}. (∗)

We immediately see that

0� a for each a, and if x ≤ a � b ≤ y then x � y, and that
if a1, a2 � b then a1 ∨ a2 � b.

Consequently, the set {x | x � a} is directed from which we readily infer

Proposition. In a continuous lattice the relation � interpolates.
(Indeed, let a � b. We have the directed unions b =

∨
{x | x � b} =∨

{
∨
{y | y � x} | x � b} =

∨
{y | ∃x, y � x � b}. and hence there is a y

and an x such that a ≤ y � x � b.)

6.2. Scott topology. Let L be a continuous lattice (this de�nition
makes sense for any poset, though). A subset U ⊆ L is Scott-open if ↑U = U
and if U ∩D 6= ∅ whenever D is directed and

∨
D ∈ U . (Roughly speaking,

Scott topology is the topology in which suprema of directed sets appear as
limits.)

Note. In [40], Scott proved that continuous lattices L endowed
with the Scott topology are precisely the injective topological
spaces. The L in this statement are not assumed to satisfy any
distributivity requirement. We will be interested in the special
case of continuous frames. It may be of some interest that

for a continuous lattice to be a frame it su�ces to be distributive.

Indeed, suppose x � (
∨

i∈J ai) ∧ b. Then in particular x �
(
∨

i∈J ai) =
∨
{
∨n

j=1 aij | {i1, . . . , in} ⊆ J} The second join is
directed and hence we have some {i1, . . . , in} ⊆ J such that x ≤∨n

j=1 aij and hence x ≤ (
∨n

j=1 aij)∧ b =
∨n

j=1(aij ∧ b) ≤
∨
(ai∧ b).

Thus, (
∨

ai)∧ b ≤
∨
(ai ∧ b), and (

∨
ai)∧ b ≥

∨
(ai ∧ b) is trivial.

�

6.3. Locally compact spaces. If X is a locally compact space then

(X) is a continuous frames. Indeed, since every neighbourhood contains a
compact neighbourhood we have for any open U ⊆ X and every x ∈ U an
open V and a compact K such that

x ∈ V ⊆ K ⊆ U.
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In this case then V � U (if D is a directed system of open sets and K ⊆
⋃
D

then there is a D ∈ D such that K ⊆ D). Hence U =
⋃
{V | V � U}.

We will see that (up to isomorphism) each continuous frame is such an

(X). Thus, for locally compact spaces, in a sense, the pointfree and classical
topologies coincide.

6.4. Convention It will be of advantage to modify the representation of
points and spectra from Section 2. If h : L → 2 is a (frame) homomorphism,
we have a �lter

Fh = {x | h(x) = 1}.

This �lter is complete, that is,

if
∨
i∈J

ai ∈ Fh then aj ∈ Fj for some j

which is much more than being prime (that is, such that a ∨ b ∈ F implies
a ∈ F or b ∈ F ).

On the other hand, for each complete �lter F we have the homomorphism
hF de�ned by

hF (x) = 1 i� x ∈ F,

and we have the one-one correspondence

h 7→ Fh, F 7→ hf .

Thus, we can represent points in L by the complete �lters and work with the
spectrum as with

�L = ({F | F complete �lter in L}, {�a | a ∈ L}), �a = {F | a ∈ F},
and �h(F ) = h−1[F ] for h : L → M.

6.5. Scott open �lters.

6.5.1. Lemma. A �lter F in a frame is complete i� it is prime and
Scott open.

Proof. The implication ⇒ is trivial, and so is the other as well: Let F
be prime and Scott open and let

∨
i∈J ai ∈ F . Since F is open, there are

ai1 , . . . , ain with ai1 ∨ · · · ∨ ain ∈ F . Since F is prime, some of the aij is in
F . �
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6.5.2. Proposition. Let F be a Scott open �lter in a frame L such
that a ∈ F and b /∈ F . Then there is a complete �lter P ⊇ F such that a ∈ P
and b /∈ P .

Proof. This is just the famous Birkho� theorem with the openness added.
Using the Zorn's lemma in the standard way (taking into account that unions
of open sets are open) we obtain an open �lter P ⊇ F maximal with respect
to the condition that b /∈ P 3 a. We will prove that it is prime (and hence,
by Lemma, complete). Suppose it is not; then there are u, v /∈ P such that
u ∨ v ∈ P . Set

G = {x | x ∨ v ∈ P}.

G is obviously a Scott open �lter and, because of the u, P ( G. Thus, b ∈ G,
b ∨ v ∈ P and we can repeat the procedure with v, b /∈ P , v ∨ b ∈ P and
H = {x | x ∨ b ∈ P} to obtain the contradiction b = b ∨ b ∈ P . �

6.5.3. Corollary. Each Scott open �lter in a frame is an intersection
of complete �lters.

6.6.1. Proposition. Each continuous frame is spatial.
Proof. Recall 2.5.1. Since all the εL are onto it su�ces to show that our

εL is one-one. In the representation in 6.4 this reduces to showing that if
a � b then there is a complete �lter P such that b /∈ P 3 a. By 6.5.2 it
su�ces to �nd a Scott open �lter F such that b /∈ F 3 a. Since a � b and L
is continuous, there is a c such that

c � a and c � b.

Interpolate (recall 6.1) inductively

a � x1 � x2 � · · · � xn � · · · � c (6.6.1.1)

and set
F = {x | x ≥ xk for some k}. (6.6.1.2)

Then F is obviously a Scott open �lter, and b /∈ F 3 a. �

6.6.2. Lemma. Let L be a frame. A subset K ⊆ �L is compact i�⋂
{P | P ∈ K} is Scott open.
Proof. Let

⋂
{P | P ∈ K} be Scott open and let K ⊆

⋃
{�a | a ∈ A}.

Then
∨

A ∈
⋂
{P | P ∈ K} since for each P ∈ K there is an a ∈ A such

that a ∈ P , and hence
∨

A ∈ P . Thus, there are a1, . . . , an ∈ A with
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a1 ∨ · · · ∨ an ∈
⋂
{P | P ∈ K} and hence K ⊆ �a1∨···∨an =

⋃n
i=1�ai

. If K
is compact and

∨
A ∈

⋂
{P | P ∈ K} then K ⊆ �∨A =

⋃
{�a | a ∈ A}

and there are a1, . . . , an ∈ A such that K ⊆ �a1∨···∨an =
⋃n

i=1�ai
and �nally

a1 ∨ · · · ∨ an ∈
⋂
{P | P ∈ K}. �

6.6.3. Theorem. (Hofmann-Lawson duality) The functors 
 and �
(recall section 2) restrict to a dual equivalence of the category of sober locally
compact spaces and the category of continuous frames.

Proof. After 5.6.1 it remains to be proved that if L is a continuous frame
then �L is locally compact.

Let P ∈ �L and P ∈ �a, that is, a ∈ P . Since a =
∨
{x | x � a} there

is a c � a such that c ∈ P . Consider the F constructed as in (6.1.1) and
(6.1.2) and set

K = {Q ∈ �L | F ⊆ Q}.

By 6.5.3, F =
⋂

K and hence, by 6.6.2, K is compact. Now if c ∈ Q we have
F ⊆ Q, and if F ⊆ Q then a ∈ Q. Thus, P ∈ �c ⊆ K ⊆ �a. �

6.7. Note. The results of this section include regular compact frames
since

every regular compact frame is continuous.

Indeed, it su�ces to prove that in a compact frame x ≺ y implies x � y.
This is easy: if y ≤

∨
D, and x ≺ y then x∗ ∨

∨
D = 1, and if D is directed

we can choose a d ∈ D such that {x∗, d} is a cover, and hence x ≤ d.

7. Notes

7.1. Recall 5.5. In fact, by a much more involved reasoning one can prove
([21]) that there is no need of choice (and other non-constructive principles)
even for the proof that a product of a system of any compact locales is com-
pact, contrasting the fact that the Tychono� theorem in classical topology
is equivalent to the axiom of choice. The reader may, for a moment, wonder
how to reconcile this with the fact of Section 6: at least the regular compact
locales are spaces! But of course this is no contradiction: this last fact is
choice dependent. Thus, in Tychono� theorem the choice is not needed for
the compactness, but for having points at all (which for in�nite products is
no surprise at all).
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7.2. In this text we have not spoken about the point-free counterparts of
enriched topology (uniformity, nearness, metric). Let us just mention that
similarly like the compacti�cation, also the completion is in the point-free
context fully constructive ([6],[4]).

7.3. In classical topology and its applications, paracompact spaces are
very naturally de�ned and very useful. But they are badly behaved: even a
product of a paracompact space with a metric one is not necessarily paracom-
pact. Not so in the pointfree context: here the subcategory of paracompact
locales is re
ective in Loc ([17].

7.4. Furthermore, one has a beautiful characteristics of paracompact
locales that has no classical counterpart.

a locale is paracompact if and only if it admits a complete uniformity.

7.5. Unlike in classical spaces, (one form of) realcompactness is equiva-
lent to the Lindel�of property (Madden and Vermeer [32], see also [3],[39]).

7.6. Connected locally connected frames are in a well-de�ned sense path-
wise connected (Moerdijk and Wraith [35]), and the rift between locally con-
nected connectedness; also, plain connectedness is more pronounced, which
corresponds to the geometrical intuition (connected but not locally connected
spaces do not look really connected, do they?) ([27], [28]).

7.7. One can develop the theory of locallic groups (analogues of topo-
logical groups). It may be of interest that subgroups of localic groups are
always closed ([20], [25]); moreover, localic groups are always complete in the
natural uniformity ([7]).
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