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1 Part 1. Origins and ideas of formal topology

My aims in this first part are:

to recall briefly the motivations for an intuitionistic and predicative foundation of mathe-
matics, type theory in particular;

∗This is reading material for my tutorial at the Third Workshop on Formal Topology, Padua, 7-8 May 2007.
Most of it is taken from my paper [24], with some adjustments (mainly in the first and last parts). The two parts
correspond very roughly to the two lectures. In the actual tutorials, I will give a more updated version.
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to discuss the general motivations of formal topology;

to give the definition and first results in formal topology;

to show how the notion of the continuum (real numbers) is expressed in formal topology;

to show how some important fields of research, like the theory of domains and Stone repre-
sentation theory for lattices, can be embedded in formal topology.

The new approach to formal topology, which I call the basic picture, is treated in part 2.

1.1 Some ideas about type theory and the minimalist foundation

Constructive type theory aims at a constructive foundation of mathematics, which is alternative
to the standard classical foundation, that is axiomatic set theory ZFC. However, it is also different
from other constructive foundations, like constructive set theory CZF (see Rathjen’s lectures) and
topos theory. I recall here very briefly some general facts about type theory, in particular those
which make it different from other common foundations of mathematics.

Using an axiomatic theory of sets as a foundation means assuming that it has a model, and
this model is taken as a universe of all sets, in which mathematics is done using only the properties
of sets as specified by the axioms. But such universe is considered as given, and thus there is no
information on how the sets, and hence all other mathematical entitites, are built up. When topos
theory is assumed as a foundation, the universe is assumed to be a topos, and in this sense the
situation is similar.

In type theory, the universe in which mathematics is done is built up in the same time as
mathematics is built up. In practice, this means that whenever we use anything, we have total
information about it, or total knowledge of what it is and by which ingredients it has been built up.
The name “type theory” is due to the fact that any entity goes together with its (logical) type, and
the distinctions between different types are carefully preserved (while in set theory everything is
reduced to only one ingredient, viz. sets, and only one relation, viz. membership, and in category
theory to only two ingredients, viz. objects and arrows).

This methodological request is not at as difficult to fulfill as an education inside the ZF tradition
might lead one to believe. On the contrary, it is very natural when any entity must be constructed:
indeed, it is enough to keep information about it in the same moment it is constructed. In type
theory, the control of information is so strict that any proof of any statement is automatically also
an algorithm, or computer program fulfilling that statement (the proofs-as-programs principle).
This is the main source of strong interest in type theory by the computer science community.

To know that S is a set (or data type, or small type) means that we know by which rules all its
elements are formed; these rules must be in front of us, hence in finite number, and cannot change
with time. If we know that S is a set, clearly to say that a is an element of S means that a is
produced by the rules; we write a ∈ S.

We can be in the position of knowing that S(i) is a set, on the assumption that i is an element
of a set I; this is called a family of sets indexed by I, written S(i) set (i ∈ I). Similarly, we can be
in the position of knowing that f(i) is an element of a set S, on the assumption that i ∈ I; this
is just the type theoretic notion of function from I to S, and is written f(i) ∈ S (i ∈ I). More
generally, if S is not a set but a family of sets depending on an index set i, f(i) ∈ S(i) (i ∈ I)
means that we know f(i) to be an element of S(i) whenever i ∈ S. By abstracting on the variable
i, we obtain the elements of a new set (Πi ∈ I)S(i), called the direct product. If f ∈ (Πi ∈ I)S(i)
and i ∈ I, by applying f to i, we obtain an element of S(i), which we here denote again by f(i).
In the special case in which S does not depend on I, the direct product is denoted by I → S; if
f ∈ I → S and i ∈ I, then f(i) ∈ S.

All other definitions of sets in type theory are given in a similar way. In particular, given a
set I and a family S(i) set (i ∈ I), we can form the disjoint union (Σi ∈ I)S(i), whose canonical
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elements are pairs 〈i, a〉 with i ∈ I and a ∈ S(i). The special case in which S does not depend on
I gives the cartesian product I × S, the set of ordered pairs from I and S.

In type theory one considers also objects which are not elements of a set, but rather belong
to a collection, or logical type (or category in [16]). Two typical and important examples are the
collection of subsets of a given set and the collection of all sets (or propositions).

The standard formulation of type theory by Per Martin-Löf ([16], [19]), includes the interpreta-
tion of propositions as sets. This means that the judgement that P is a proposition obeys formally
the same rules as the judgement that P is a set, reading p ∈ P as p is a verification, or proof of
P . The logical rules of inference are then exactly the same as the rules for sets, the only difference
being their “reading”.

A consequence of the propositions-as-sets interpretation is that the axiom of choice holds, that
is the proposition (∀i ∈ I)(∃a ∈ S)R(i, a)→ (∃f ∈ I → S)(∀i ∈ I)R(i, f i) is provable. This makes
Martin-Löf’s type theory constructively incompatible with topos theory (because axiom of choice
and powerset axiom together allow one to derive the principle of excluded third).

For this reason, ground theory adopted here is a variant of Martin-Löf’s type theory, which
is characterized by the fact that sets and propositions are kept distinct (that is, the principle
propositions-as-sets is not followed). This means that intuitionistic logic must be given indepen-
dently of sets. As a consequence, the axiom of choice does not hold (so that any use of the axiom
of choice is fully under control).

Moreover, to be able to do mathematics, besides the ground type theory, which is intensional,
one has to provide also with a foundational theory in which one can deal with mathematical
concepts, which are extensional (for instance, equality of functions means equality of their graphs).
As first discussed in [14], the present attitude is to have a foundation with two different levels
of abstraction: the extensional level is obtained from the intensional one by abstraction, that
is by forgetting some information, which is not considered in mathematics (typically, the proof
which says that a certain proposition is true). The test for correctness of such abstraction is
that the converse should work, that is, one should always have a metatheorem saying that one
can implement in the ground theory whatever is done in the extensional theory (that is, one can
restore the information which was abstracted).

A precise specification of the extensional theory satisfying these requests is still to be given in
all details. In [26] it was shown that one can include subsets with all their standard (intuitionistic)
properties. Recent work of Milly Maietti shows that one can include also sets with an extensional
notion of equality (quotient sets).

In practice, the result is that one works with standard notions and their notation, except for a
distinction on membership: while for an element a of a set S one writes a ∈ S, for an a element a
of a subset U one writes a ε U . In fact, since a subset U of S is here just a propositional function
with an argument in S, a ε U is just an abbreviation for a ∈ S and U(a) true.

Sets can be thought of as given (leaving the rules to build them implicit). They are meant to
be equipped with an extensional equality. A function or a relations must respect such equality to
be well defined. The power of a set is never a set.

The logic used is higher order intuitionistic logic. To keep predicativity, one must be careful
to apply comprehension only on elementary formulae, that is those in which quantifiers range over
sets and subsets. In practice, one can use quantification on subsets to express a certain property
of some given entities, but one is not allowed to introduce a new entity by a quantification over
subsets.

An important improvement with respect to standard notation is the use of G. Since the quan-
tifier ∃ is primitive, and not definable by means of ∀, it is convenient to introduce a notation for
the notion which is dual to that of inclusion. That is, for any U, V ⊆ S we put

U G V ≡ (∃a ∈ S)(a ε U & a ε V )

and we read “U overlaps V ”. Note that U G V is intuitionistically much stronger than U ∩ V 6= ∅.
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1.2 The point of formal topology

A topological space is classically defined (cf. e.g. [13], [9]) as a pair (X,OX) where X is a set,
whose elements x, y, . . . are called points, and OX is a family of subsets of X, which contains ∅, X
and is closed under finite intersections and arbitrary unions. The family OX is called a topology
on the space X and the subsets in OX are said to be open.

The conditions on OX are written more precisely as:

O1 ∅, X ∈ OX

O2 for any E,F,⊆ X, if E,F ∈ OX then E ∩ F ∈ OX

O3 for any family of subsets F , if F ⊆ OX, then
⋃
F ∈ OX

This formulation of the notion of topological space is unacceptable, as it stands, from a predicative
point of view, since apparently a quantification not only over subsets, but over families of subsets
(hence of the third order) is to be used. Though usually this is given meaning by conceiving the
collection of subsets as a completed totality, we now see that actually no intrinsic impredicativity
is involved, and that one can easily find a definition of topological space which is fully acceptable
also predicatively.

A collection of subsets, and OX is one such, is most simply given in type theory as a set-indexed
family, that is a function, which we call ext , from some set, which we call S, into PX. In this way
a quantification over open subsets - we cannot dispense with it in topology - can be reduced to a
quantification over the set S.

However, one cannot expect ext to give all open subsets as values; the special case in which
OX is the whole of PX - the discrete topology - would require PX to become indexed by the set
S, and this is not welcome in type theory.1 Moreover, the expression of O3 would still require an
impredicative quantification.

These difficulties are solved by asking the family ext (a) ⊆ X (a ∈ S) to be a base for the
topology. Thus subsets ext (a) are called (basic) neighbourhoods, and open subsets are defined as
arbitrary unions of neighbourhoods. That is, a subset D of X is open if and only if D = ext (U)
for some U ⊆ S, where ext (U) ≡

⋃
bεU ext (b). We may assume that the usual conditions on bases

are satisfied in the sense that S is provided with a binary operation · and with a distinguished
element 1 such that

ext (1) = X and ext (a) ∩ ext (b) = ext (a · b)

The resulting structure is called a concrete space (in [21], example 2.1), or a concrete presentation
of a topological space.

From our constructive point of view, this definition is certainly acceptable, but not sufficient to
develop topology. One has to add two further notions, that of formal topology and that of formal
point, and hence also that of formal space, as the collection of all formal points. In fact, in many
interesting examples, the collection X of points of a classical topological space is not given directly
as a set, in the constructive sense. And this may happen also when basic neighbourhoods of X
can be given as a family ext indexed on a set S. The reason for this is that an infinite amount of
information, which means infinitely many basic neighbourhoods, may be necessary to determine
a point. The idea is then to consider elements a, b, c... of S as formal neighbourhoods, and hence
subsets U, V, ... of S as formal substitutes of open subsets. One has to define, however, when two
subsets of S are topologically equivalent, that is when they produce the same open subset. This
leads to the definition of formal topology, which thus is a specific structure on the set of formal
neighbourhoods. Then an infinite amount of information can be given by a subset α of S, and
when α has some properties which make it formally similar to a point, it will be called a formal
point.

1By adapting to type theory the well-known argument due to Diaconescu, it is shown in [15] that this would
bring to classical logic.
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The method to obtain the definition of a formal notion, those of formal topology and formal
point to begin with, is always the same, and it can be described as formed by three steps:

1. Study the notion to be defined in the presentable case, in which both a set of points X and a
set of formal neigbourhoods S are present. This allows to choose some new primitives to be added
to the formal side, in view of step 2.

2. Analyse the structure induced on the formal side, and write down all those properties of the
primitives on S which can be expressed without mentioning the points of X. Of course, the best
choice of primitives is that which allows to describe the original concrete notion in the best possible
way.

3. Abandon points altogether, and retain those properties of formal primitives as an axiomatic
definition.

We apply this method first of all to obtain the definition of formal topology itself. In the
concretely presentable case, two subsets U , V of S correspond to the same open subset of X when
ext V = extU . To express this in pointfree terms, it is enough to express extV ⊆ extU , and this
in turn, by the definition ext V = ∪aεV ext a, reduces to (∀a ε V )( ext a ⊆ extU). So we add an
infinitary relation a � U as primitive, with the idea that it corresponds to ext a ⊆ extU ; using it
one can define V � U ≡ (∀a ε V )(a � U), which then corresponds to ext V ⊆ ext U , and finally
V =� U ≡ V � U &U � V will correspond to ext V = ext U .

The distinguished element 1 and the operation · are also kept, and the idea is that ext 1 = X
and that ext (a · b) = ext a ∩ ext b. Finally, we also add a unary predicate Pos(a) prop (a ∈ S),
whose meaning in the concrete case is that ext a is inhabited; in fact, this is constructively not
reducible to ext a 6= ∅. The result of applying now steps 2 and 3 of the method above is the
definition of formal topology given in next section.

The method by which we reached the definition says that any concrete space gives a formal
topology, which is then called (concretely) presentable. But note that not all formal topologies are
presentable;2 if it were so, their introduction would be much less motivated.

1.3 A formal topology is. . .

The first result of the method described in the previous section is the definition of formal topology
itself. The following is a minor variant (but equivalent from many aspects)3 of the original in [21]:

Definition 1.1 A formal topology S consists of:

a set S,

a distinguished element 1 and a binary operation · on S,

a relation � between elements and subsets of S, called (formal) cover, which for arbitrary
a, b ∈ S, U, V ⊆ S satisfies:

reflexivity
a ε U

a � U

transitivity
a � U U � V

a � V
where U � V ≡ (∀b ε U)b � V

·-Left
a � U

a · b � U

a � U

b · a � U

2An example of non-presentable formal topology is given in [6], but simpler, finite examples can be built up.
3 The aim of this variant is to avoid problems connected with equality; usually (S, ·, 1) is assumed to be a

monoid or a semilattice, which is expressible only using equality of S. Equivalence holds in the sense that putting
a =� b ≡ (a � {b} & b � {a}), one can show that (S, ·, 1, =�) is a semilattice.
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·-Right
a � U a � V

a � U · V
where U · V ≡ {a · b : a ε U, b ε V }

top a � 1

a predicate Pos(a) on S, called positivity predicate, which for arbitrary a ∈ S, U ⊆ S satisfies:

monotonicity
Pos(a) a � U

(∃b ε U)Pos(b)

positivity
Pos(a)→ a � U

a � U

A frequently asked question about formal topology is whether quantification over subsets is
really avoided; the claim is that the very definition of formal topology involves a quantification
over subsets. The crucial point is of course the use of “for arbitrary U”, especially in a formalistic
reading of the definition. The answer is that we use subset variables as arguments of (higher
order) functions, that is we do not use them to build up new propositions (that is, new subsets) of
the form ∀U . . ., but keep always the quantification at the meta-level (formally: subset variables
remain free). So the definition with all details should read:

Definition 1.2 A formal topology S consists of:

a set S, which is determined by specifying its introduction and elimination rules;

a distinguished element 1 and a binary operation · on S, that is a · b ∈ S (a ∈ S, b ∈ S);

a relation � between elements and subsets of S, that is a � U prop (a ∈ S, U ⊆ S) (which
will be defined as usual for any proposition by furnishing introduction and elimination rules,
either directly or indirectly by means of an expression like a logical formula, of which we
already know that it produces propositions), and six functions refl, trans, l1, l2, t and r of
the convenient types which satisfy:

reflexivity refl(a, U) ∈ U(a)→ a � U (a ∈ S, U ⊆ S),

transitivity trans(a, U, V ) ∈ a � U &U � V → a � V (a ∈ S, U, V ⊆ S),

·-Left l1(a, b, U, V ) ∈ a � U → a · b � V (a ∈ S, U ⊆ S)
l2(a, b, U, V ) ∈ a � U → b · a � V (a ∈ S, U ⊆ S),

·-Right r(a, U, V ) ∈ a � U & a � V → a � U · V (a ∈ S, U, V ⊆ S),

top t(a) ∈ a � 1;

a predicate Pos(a) on S, that is Pos(a) prop (a ∈ S), and two functions m and p which
satisfy:

monotonicity m(a, U) ∈ Pos(a) & a � U → (∃b ε U)Pos(b) (a ∈ S, U ⊆ S),

positivity p(a, U) ∈ (Pos(a)→ a � U)→ a � U (a ∈ S, U ⊆ S).

This formalistic definition (with proof-terms spelled out to please a computer language) has
absolutely no quantification over subsets. I never wrote it explicitly before, because I assumed it was
understood.4 The notation with hidden proof-terms is more suitable to human mathematicians.
Keeping explicit track of all the proof-terms, that is of computational content, would impede a

4Definition 1.2 was given for the first time explicitly in my talk at TYPES’98, Kloster Irsee, together with the
comments given in this section.

6



more abstract understanding, or at least would make it much harder.5 In any specific example,
of course, one has to produce, at least in principle, all the required information, so including
the functions in variant 1.3, simply to be sure that one has actually given an example of formal
topology.

The apparent quantification over subsets needed in the definition of formal topology is of the
same kind as the quantification over propositions A, B which is needed to understand a simple
inference rule such as

A
A ∨B

In fact, one understands here that the rule applies to any propositions A and B, but nobody has
ever questioned whether a second-order quantification is here involved, since it is clear that the
quantification involved remains at the metalevel.

However, one must be extremely careful on this topic, since not all quantifications at the met-
alevel are equally innocent. Let me first recall one aspect of the intuitionistic meaning of quantifiers.
The meaning of a statement of the form (∀x ∈ S)A(x) in intuitionistic terms is that we have a
method proving A(a) for every a ∈ S. So the meaning of (∀x ∈ S)(∃y ∈ S)A(x, y) is that we have
a method which applies to any a ∈ S and produces a proof of (∃y ∈ S)A(a, y), that is an element
c, depending on a, such that A(a, c) holds.

It seems to me that there is no other way to give constructive meaning to a universal-existential
statement, also when quantifiers are meant to be kept at the metalevel. So I am able to grasp
that “for every U ⊆ S, there exists b such that A(U, b)” holds only when I have a function F such
that A(U,F (U)) holds for every U ⊆ S. One can debate whether this function should always be
expressible within the language. But assuming that the meaning of “for every U there exists b”
is always predicatively clear (which is implicit when such a combination of quantifiers is used to
define an object, like a subset) amounts to assuming that the function F can be obtained always,
and that it is expressible in the language, which means that a second-order axiom of choice of the
kind ∀U∃bA(U, b)→ ∃F∀UA(U,F (U)) must hold. But then this brings us immediately to classical
logic (see [15] for the precise statement and proof of this fact).

This is an example of a “powerful” principle which actually destroys the quality of information
or equivalently, at least in my own case, which destroys the possibility of an intuitive grasping.
A consequence is that in formal topology one will always find directly the function F , and never
the combination “for every U , there exists b” (or “for every U , there exists W”) to which it gives
meaning (see for instance the case of the definition of U↓V in section 2.1).

Another critique to the definition of formal topology is that. . . there are too many different
definitions. I would just like to recall that even what now looks as the most stable definition
of (usual) topology, namely that of topological space, is actually the result of a long historical
process, which stabilized relatively recently. One advantage of the variant given above is explained
in footnote 3. Two further variants will be introduced in section 2.1 and in section 2.5, together
with some good reasons to do it.

1.4 Development of formal topology

Building on the definition of formal topology, one introduces the notions of formal open, formal
point, formal space, continuous function,. . . . They will be treated in part 2, where a deeper
justification is possible. Here we briefly review some of the first developments and ideas.

1.4.1 Predicative presentation of frames

An infinitary relation � satisfying only the properties of reflexivity and transitivity, as in the
definition of covers, is called an infinitary preorder. It was discovered long ago (see [21]) that

5To be pedantic, this is an example of the forget-restore principle: one should make sure that hiding the proof-
terms of all the propositions does not prevent us from obtaining them back when wished. This is possible because
all proofs will be intuitionistic, and thus preserve proof-terms.
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infinitary preorders on a set S correspond biunivocally to closure operators on S (that is, functions
C : PS → PS such that U ⊆ CU , U ⊆ V → CU ⊆ CV and CCU ⊆ CU). In fact, by setting
AU ≡ {a ∈ S : a � U} one has that a � U is the same as a ε AU , so that reflexivity can be
rewritten as U ⊆ AU and transitivity as V ⊆ AU → AV ⊆ AU ; one can then easily check that
these two conditions on A are equivalent to those in the definition of closure operator. Moreover,
it is well known that closure operators correspond to complete lattices (given a closure operator
A, the collection of saturated subsets Sat(A) ≡ {U ⊆ S : U = AU} is a complete lattice, in which
meet is given by intersection and join by the saturation of union, and conversely, given a complete
lattice, putting a ε AU ≡ a ≤

∨
U gives a closure operator).

Building on these remarks, one can obtain a modular presentation of sup-lattices (that is,
lattices with arbitrary joins - and hence also meets - but in which only joins are preserved by
morphisms), quantales and frames by generators and relations. The sup-lattice freely generated
by a set S of generators is just PS. So the idea is to describe the ordering of any sup-lattice
generated by S by adding conditions, or axioms R(a, U), to be satisfied if a ≤

∨
bεU b. The main

result (which generalizes a similar result in [12]) is that the least infinitary preorder �R containing
R gives exactly the free sup-lattice satisfying the axioms given by R. The same result for quantales
and frames is obtained in a modular way, by adding suitable extra conditions.

This line of research was begun very early, see [4], and several earlier versions of the final paper
[3] circulated privately. In fact, it took a long time to understand properly how it is possible to
generate �R above in a predicative way, and for which R this is possible (see [7]). One must
be very careful here: when one says that formal topologies (without Pos) form a category which
is equivalent to that of frames, one must realize that the proof cannot be predicative, unless one
previously restricts to a predicative definition of frames. The point here is that a predicative notion
of frame. . . is nothing but the notion of formal topology.

1.4.2 Inductive generation of formal topologies and proof-theoretic methods

A formal topology, one could say, is just a way to present a frame (the frame Sat(A)) by generators
(the set S) and relations (the cover �, or equivalently the closure operator A). The choices taken
when defining formal topologies are actually linked with the choice for predicative methods. But
whatever the reason is, the introduction of formal topologies has opened the way to the use of
inductive methods in topology. Actually, all the axioms or conditions are preferably written in
the form of inference rules exactly for the purpose of applying proof-theoretic methods or ideas.
This appears as a conceptual novelty in the field of topology, and gives to formal topology its
distinctive character: formal topology, which happened to begin as a theory of locales developed
over a different foundation (namely, type theory rather than topos theory), has later developed a
specific identity also from a strictly mathematical point of view. One typical result in this sense is
the normal form theorem for covers on real numbers, and the problem it leads to (see section 1.4.3
below). Another one is that the finitary content of a formal cover generated by axioms Σ is just
the cover generated by the finitary part of Σ, that is, by those axioms of Σ in which only finite
subsets are involved.

The importance of the inductive generation of formal topologies is clear, for a predicative
approach, when one observes that, for instance, the product of two formal topologies cannot be
defined predicatively, unless they are inductively generated (see [7]).

Any other information about the inductive generation of formal topologies can be found in
[7]; in particular, the readers will discover there that almost all the examples of formal topologies
which can be found “in nature” do fall under the scope of the theorem on inductive generation.
This gives a solid argument in favour of formal topology, since it automatically means that all
those examples can be formalized into a computer language.

Generation of formal topologies can be extended also to the new definition of formal topology,
which includes a (binary) positivity predicate n, see section 2.10 below. It is to be remarked that
n is generated by coinduction, a fact which considerably widens the fields of applications of formal
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topology.

1.4.3 The continuum as a formal space

In [21] it was suggested that the continuum could be presented via formal topology essentially as in
[12]. This idea was later worked out by my student Daniele Soravia in [31], where also the beginning
of real analysis is developed (all this appeared subsequently in [18]). The main idea is that a real
number is a formal point on a suitable formal topology where basic neighbourhoods are pairs of
rational numbers, (p, q) with p, q ∈ Q. The positivity predicate is defined by Pos((p, q)) ≡ p < q,
and the cover � is defined inductively by the following rules (which are a formulation in our context
of Joyal axioms, cf. [12], pp. 123-124):

q ≤ p

(p, q) � U

(p, q) ∈ U

(p, q) � U

(p′ ≤ p < q ≤ q′) (p′, q′) � U

(p, q) � U

p ≤ r < s ≤ q (p, s) � U (r, q) � U

(p, q) � U

∞ wc((p, q)) � U

(p, q) � U

where in the last axiom we have used the abbreviation wc((p, q)) ≡ {(p′, q′) : p < p′, q′ < q}.
(where wc stands for ‘well-covered’). This presentation of the cover is essentially due to Coquand.
The formal reals are just the formal points of such a formal topology.

We have then the following normal form theorem, by which the ‘infinitary’ rule ∞ is isolated:
Theorem of canonical form. Any derivation of a statement a � U can be brought to a form

where the only application of the rule ∞ is the last one, just above the conclusion.
In this way the finitary part of the cover is distinguished from its infinitary component, and the

logical tool we make use of is limited to a finitary inductive definition. The proof is by induction
on the derivation of a � U , as standard in proof theory. If �ω is the (finitary) compactification of
�, which by the remarks in the previous section coincides with the cover generated by the rules
above except ∞, this amounts to have proved that

(p, q) � U if and only if wc((p, q)) �ω U,

providing thus a definition of (p, q) � U as wc((p, q)) �ω U , that is an elementary definition over a
finitary inductive definition.

I express here the expectation that a similar (proof-theoretic) procedure can be used to separate
the infinitary content of a cover from its finite part for a wider class of topologies (which presumably
should be compact in some sense; cf. for instance [5]). This is still an open problem.

The above notion of well-covered elements can be generalized to an arbitrary formal topology,
by setting

wc(a) ≡ {b : S � b∗ ∪ {a}}

where b∗ ≡ {c : c↓b � ∅} is the subset of neighbourhoods which are apart from b. Then b ε wc(a)
is classically equivalent to saying that ext (b) is well covered by ext (a) if the closure of ext (b) is
contained in ext (a). This brings us to define regular formal topologies as those topologies in which
a � wc(a) for any a. It can be shown that such definition has some of the properties one would
expect. For instance, one can prove that for any two formal points α and β, if α ⊆ β then α = β,
that is, the ordering on formal points is discrete.
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1.4.4 Domain theory as a branch of formal topology

The notion of formal point is defined and justified in section 2.4, and thus I do not repeat it
here. For any formal topology S, the collection of its formal points Pt(S) is said to be a formal
space. This is a genetic characterization of formal spaces. In general, an axiomatic definition is not
available; one can only define as usual the specialization ordering on formal points α, β by setting
α ≤ β ≡ β ⊆ α (α is less than β if it is more informative, i.e. contains more elements of S) and
observe that Pt(S) thus becomes a complete partial order. But if we restrict our attention to the
class of unary formal topologies, which are those in which the cover is unary, or 1-compact,

a � U iff Pos(a)→ (∃b ε U)(a � {b}),

then the associated class of formal spaces admits of an axiomatization, and actually a well-known
one, since it turns out to be exactly the class of Scott domains (the link with Scott domains was
present from the beginning, see [21], section 7, but it was spelled out only later in [27]). In fact, a
unary cover is intuitively one in which no two neighbourhoods do cooperate to produce coverings.
So one can see that in any unary S all subsets of the form ↑ a ≡ {b : a � b}, for any positive a,
are formal points of S, and all formal points are obtained by forming unions of these. In other
words, positive elements of S correspond to compact elements of the Scott domain Pt(S). Then
one can read both Scott’s definition of information systems [28] and the even simpler definition
of information bases in [27] either as an axiomatization of the structure of compact elements of
a domain or as a simplified characterization of unary formal topologies. This is to say that the
category of unary formal topologies, that of information systems, and that of information bases
are mutually equivalent, and Scott domains are obtained by applying the functor Pt bringing
to formal spaces. So the definitions of domain theory become special cases of notions having a
general topological meaning, and in the end this has produced a simplified approach to the theory
of domains, which moreover is fully predicative.

The connection between formal topology and domain theory is clear also in the approach to
formal topology via the basic picture, which is described in part 2 below. A curious fact is that,
while the categories of (arbitrary) formal topologies, in the old and in the new sense, are equivalent,
this is no longer true for unary formal topologies. So unary formal topologies, in the new sense, are
equivalent to algebraic domains, and the extra condition characterizing Pt(S) as a Scott domain is
not independent of the way S is given (see [23]). The next natural step is to extend the connection
with domain theory by finding predicative definitions of the way-below relation and of continuous
domains; a common expectation is that the right idea should be that of bases with the interpolation
property (see [1]).

A nice topic for research is to reveal which of the results for unary formal topologies extend to
the case of finitary (or Stone) formal topologies, that is those in which the cover satisfies

a � U iff there is a finite subset K of U such that a � K.

In particular, it is still unknown to me whether it is possible to find an axiomatization of formal
spaces corresponding to finitary formal topologies.

1.4.5 Classical theorems constructivized

A natural and reasonable question is of course how many of the classical definitions and theorems
of (classical) topology can be obtained in the framework of formal topology. I am firmly convinced
that, as with any form of constructive mathematics, the fact that relatively few results have been
found up to now is not due to intrinsic obstacles, but mainly to the relatively little research energy
which has been put in finding them. This state of facts has been rapidly changing in the last few
years. A bibliography is available at: www.math.unipd.it/∼sambin/?????????.
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1.4.6 Predicative completeness proofs

An important insight about intuitionistic logic, which goes back to the 30s, is that its propositions
(or formulae) can be interpreted mathematically as the open subsets of a topological space. As
shown in [22], also formal topology provides with a complete semantics, by interpreting formulae
as formal open subsets (and by suppressing the predicate Pos). Since the notion of formal topology
is fully predicative, the result is a proof of completeness of topological semantics which is also fully
predicative. As in the original proof by Henkin, the key step is the construction of a generic model
from the syntax itself; in our case, a suitable cover on the set of formulae must be introduced. Two
such covers are studied in detail in [6], where it is shown that formal points over one of them are
exactly the same thing as Henkin sets. This gives a precise form to the idea that points correspond
to models [10]; for some other comments and references, see the introduction of [6].

The completeness proof in [22] is actually given in a modular way for a variety of logics, which
all are extensions of intuitionistic linear logic. To this aim, the notion of cover is generalized to
that of precover, in which the two assumptions on ·, namely ·-Left and ·-Right, are replaced by the
single one:

stability
a � U b � V

a · b � U · V

or its equivalent

localization
a � U

a · b � U · b
where U · b ≡ U · {b}

A pretopology is a commutative monoid equipped with a precover. A cover becomes exactly the
same as a precover satisfying the conditions corresponding to the structural rules of weakening and
contraction, which can be seen to be a · b�a and a�a ·a, respectively (or some other equivalents).
On the other hand, pretopologies in which the double negation law is valid turn out to coincide
literally with phase spaces, that is the semantics of linear logic given by Jean-Yves Girard in [11].

2 Part 2. The basic picture, a future for formal topology?

When I first gave a full course on formal topology, in Padua in 1990, I also first conceived the idea
of writing a book on it. My manuscripts, lecture notes and typescripts have increased in number
and length since then. However, at the end of 1995 it happened that I discovered a clear, very
simple structure underlying topology and consisting of symmetries and logical dualities. I now call
it the basic picture.

Mathematically, the basic picture is a natural generalization of topology, obtained by consid-
ering relations rather than functions as transformations. For the debate on foundations, it should
be interesting that it is well visible only over an intuitionistic and predicative foundation, and this
probably explains why it was not noticed before.

The discovery of the basic picture caused a radical and extensive reformulation of formal topol-
ogy itself, in particular by the introduction of a positivity relation, the presence of coinduction and
the generalization to nondistributive topology (that is why the book [25] is still on its way...).

So my aims in this second part are:

to give an introduction to the ideas and main results of the basic picture;

to show how the basic picture serves as the starting point for a new conception and a new
technical development of constructive topology, formal topology in particular;

to illustrate the advantages with respect to the previous approach;

to give an overview of open problems and expected developments.
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2.1 From concrete spaces to basic pairs

Though successful, the definition of formal topology, as given in [21] or here in section 1.3, still
leaves something to be desired. One desire is a convincing definition of formal closed subsets.
Another is to avoid the operation · of formal intersection, which makes the treatment of some
important examples, like PX and upper subsets in a preorder, a bit artificial. A positive solution
to both requests has come from a deeper analysis of the notion of topological space. This has
actually brought up much more than that. In fact, a whole new ground structure has emerged,
which I have called the basic picture, since it shows how the main definitions of topology are
deeply rooted to very basic ingredients, such as symmetry and logical duality. Topology, either
with or without points, turns out to be obtainable simply by adding a principle of additivity of
approximations (expressed by B1, in section 2.1, and by ↓-Right, in section 2.4), that is adding
a notion of convergence. This in my opinion gives a very satisfactory explanation of the ground
concepts of topology, which is independent of any foundational theory.

Let us resume our analysis of the notion of topological space, in section 1.2, and more precisely
at the moment in which we assumed the base to be closed under intersection. We now see that
this is not necessary, and that actually relaxing that assumption allows one to see a simpler and
deeper structure.

So assume, as before, that X is a set (of points), S is a set of indexes, and ext is a function
from S into subsets of X. We consider all the subsets obtained by union, that is, all subsets of
X of the form ext (U) ≡ ∪aεU ext (a) for some U ⊆ S. Then we want to find out under which
conditions on ext the subsets ext (U), U ⊆ S, form a topology, that is, satisfy O1−O3.

To this end, it is convenient to adopt a notation better suited than ext , as we now explain. Since
a subset of X is nothing but a propositional function over X, a family of subsets ext (a) ⊆ S (a ∈ S)
is nothing but a propositional function with two arguments, one in X and one in S, in other words
a binary relation between X and S. Then it is better to write such a relation as

x  a prop (x ∈ X, a ∈ S)

and to define ext in terms of it, by setting

ext (a) ≡ {x ∈ X : x  a} for any a ∈ S.

In this way the abstraction is kept at a lower level, both intuitively and formally (since ext a is
obtained from x  a by abstraction on x). Elements of S are called formal basic neighbourhoods,
or more briefly observables, and x  a is read as “x lies in a”, or “x satisfies a”, or more neutrally
“x forces a”. The choice of the name ext should then be clear: ext (a) is called the extension of
the observable a. The notation with  is extended to subsets by setting

x  U ≡ (∃b ∈ S)(x  b & b ε U) ≡ x ε ∪bεU ext (b)

which agrees with the reading “x lies in U” since ext (U) ≡ ∪bεU ext (b) ≡ {x : x  U}. It is easy to
check, at any desired level of formal details, that the family of subsets ext (U) ⊆ S (U ⊆ S) is closed
under unions. By this we mean, of course, that for any family of subsets Ui ⊆ S (i ∈ I) indexed by a
set I, it holds that ∪i∈I ext (Ui) = ext (∪i∈IUi). In fact, x ε ∪i∈I ext (Ui) ≡ (∃i ∈ I)(∃b ε Ui)(x  b)
is equivalent to (∃b ε ∪i∈IUi)(x  b) ≡ x ε ext (∪i∈IUi). So O3 is automatically satisfied.

Condition O1 also is easily expressed. In fact, ∅ = ext (∅) because a ε ∅ holds for no a, and
X = ext (U) for some U ⊆ S is equivalent to X = ext (S), that is:

B2 x  S for any x ∈ X.

We thus can concentrate on O2. If we express it without care, writing

(∀U, V ⊆ S)(∃W ⊆ S)( ext U ∩ ext V = ext W ),
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again an impredicative quantification comes up. However, this luckily is not really necessary. The
quantification of the form ∀U, V ∃W is solved if we find a uniform method which associates a subset
W satisfying extU ∩ ext V = extW with any pair of subsets U, V . The simplest such method is
to pick the largest among the open subsets contained in extU ∩ ext V . That is, if extU ∩ extV
is open, which means that it is equal to extW for some W , then it is bound to be equal to
ext Z where Z is formed by all c ∈ S whose extension is contained in ext U ∩ extV , in symbols
Z ≡ {c ∈ S : ext (c) ⊆ ext U ∩ extV }. So O2 is equivalent to ext U ∩ extV = extZ. However, we
can do much better than this. If we apply the same idea to open subsets of the form ext a with
a ∈ S, we obtain

B1 ext a ∩ ext b = ext (a ↓ b)

where a ↓ b ≡ {c ∈ S : ext c ⊆ ext a ∩ ext b} is the largest subset whose extension is contained
in ext a ∩ ext b. It is now easy to see, by the distributivity property of PX, that B1 is the right
condition. In fact for any U, V ⊆ S we have

extU ∩ extV ≡ (∪aεU ext a) ∩ (∪bεV ext b) by definition of ext on subsets,

= ∪aεU ∪bεV ( ext a ∩ ext b) by distributivity of PX,

= ∪aεU ∪bεV ext (a ↓ b) by B1,

= ext (∪aεU ∪bεV a ↓ b) because ext distributes over unions.

So we put
U ↓ V ≡ ∪aεU ∪bεV a ↓ b.

If B1 holds, then also extU ∩ ext V = ext (U ↓ V ) holds, and hence O2 is satisfied. Note that now
U ↓ V is not necessarily the largest subset Z as defined above. But this is irrelevant. In fact, if
ext U∩ ext V = ext (U ↓ V ), then also ext U∩ ext V = ext Z because ext (U ↓ V ) ⊆ extZ ⊆ extU∩
ext V .

The reason for names B1 and B2 is that they are just a compound expression, in our language,
of the standard conditions for bases for a topology (see e.g. [9], p. 38). B2 is clear: it says that
the whole X is open. The inclusion ext (a ↓ b) ⊆ ext a ∩ ext b of B1 always holds, and the other
can be written as

∀x(x  a & x  b→ (∃c)(x  c & ext (c) ⊆ ext (a) ∩ ext (b)),

that is, for any point x lying in the basic neighbourhoods ext (a) and ext (b), there is a neighbour-
hood ext (c) of x which is contained both in ext (a) and in ext (b).

So we have proved that the collection of subsets extU ⊆ X (U ⊆ S), where extU ≡ ∪aεU ext (a),
is a topology on X, that is, it satisfies O1−O3, if and only if ext is a base, that is, it satisfies B1
and B2 above.

We have thus reached a definition of concrete space (see section 1.2) which is free of the
operation · of formal intersection, as we wished. To help the intuition, we express B1 and B2 in
the notation with .

Definition 2.1 A concrete space is a structure X = (X, , S) where

X is a set, whose elements x, y, z, . . . are called concrete points;

S is a set, whose elements a, b, c, . . . are called observables, or formal basic neighbourhoods;

 is a binary relation from X to S, called forcing, which satisfies

B1
x  a x  b

x  a ↓ b
for any a, b ∈ S and x ∈ X;

B2 x  S for any x ∈ X.
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This brings us easily to a new formulation of the notion of formal topology, which is obtained from
definition 1.1 by suppressing · , 1 and their axioms, and by replacing them with the single condition
(which expresses B1 in formal terms)

↓-Right
a � U a � V

a � U ↓ V

where U ↓ V ≡ {d : (∃b ε U)(d � {b}) & (∃c ε V )(d � {c})}. This variant on the definition (see
also [29] for a similar approach) has been adopted in [7] since it allows a smoother approach to the
topic of inductive generation. Note also that now both PS and the collection of upper subsets of
a preordered set (S,≤) fall easily and naturally under the definition of formal topology. Moreover,
it can be proved that for any formal topology S with ↓ there is a formal topology S ′ with · (as
in section 1.3) such that S and S ′ produce the same frame of formal open subsets. The condition
↓-Right is present also in the new definition of formal topology which will be given in section 2.4.

These are useful technical improvements. However, the most important consequence of the
analysis which led to definition 2.1 above is conceptual, rather than technical. At an impredicative
reading, the above definition of concrete space is just a cumbersome formulation, but perfectly
equivalent to the usual definition of topological space. Predicatively, the notion of set is much
stricter, and hence many examples of spaces do not fall under definition 2.1 simply because the
collection of points X is not a set: this is a good reason to develop formal topology. Nevertheless,
although keeping this crucial remark in mind, one can see that the framework provided by definition
2.1 is fully sufficient to define the notions of open and closed subset in a way which is perfectly
acceptable also constructively. In fact, as we will see, the way to dispense with the powerset
axiom and second-order quantifications is to reduce systematically to quantifications over basic
neighbourhoods, that is over the set S. Thus the set S is an essential ingredient of the definition,
and it should not be forgotten, contrary to the common approach which tends to avoid any reference
to bases.

The usual definition can be rephrased by saying that a subset E ⊆ X is open if: whenever
x ε E, then this is true in a continuous way, that is not only x, but also a whole neigbourhood of
x is contained in E. In our notation this becomes

x ε E → (∃a ∈ S)(x  a& ext a ⊆ E).

We put as usual int E ≡ {x ∈ X : (∃a ∈ S)(x  a& ext a ⊆ E)}. Such operator int , for interior,
can be thought of intuitively as a rejector, or thinner, which makes E as thin as possible, that
is, which throws away from E all isolated points, but is unable to throw away from E a whole
neighbourhood ext a. So E is open if E ⊆ intE, which is equivalent to saying that the rejector
operator has no effect on E.

The definition of closed subset can be put in perfectly dual terms. In fact, the usual definition
can be expressed by saying that D ⊆ X is closed if whenever it is continuously satisfiable for x to
be in D, then actually x ε D. I here say that x ε D is continuously satisfiable if any neighbourhood
of x touches D. We now can see that the notion of meet G begins to be useful. In fact, the above
intuitive definition is formally expressed by

(∀a ∈ S)(x  a→ ext a G D) → x ε D.

The subset cl D ≡ {x : (∀a ∈ S)(x  a→ ext a G D)} is the closure of D, and one can intuitively
think of cl as an attractor, or fattener operator: it adds to D all points x which “continuously
touch” D, in the sense that any neighbourhood of x meets D. Note that this is a positive way of
affirming that x cannot be continuously separated from D, which would be ¬∃a(x  a& ext (a) ∩
D = ∅) and which is equivalent to ∀a(x  a → ext (a) G D) only classically. So D is closed if the
attractor operator cl has no effect on D, that is, D is already as big as it is consistent to be.

The notation we adopted, together with explicit expression of the logical formalism involved,
allows one to see immediately the strong logical relation between interior and closure. The defini-
tion of closure is logically dual to that of interior, in the sense that ∃ is replaced by ∀, & is replaced
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by → (which in type theory are special cases of ∃ and ∀, respectively) and ⊆ is replaced by G
(whose definitions are in turn obtained one from the other by interchanging ∀ with ∃). We want
to keep this duality, and actually build on it and make it clearer. Adopting classical logic here
would immediately reduce it to the much simpler duality between a subset and its complement. In
fact, by classical logic we would have: D closed ≡ (∀a ∈ S)(x  a → ext a G D) → x ε D
if and only if ¬(∃a ∈ S)(x  a&¬( ext a G D)) → x ε D if and only if x ε −D →
(∃a ∈ S)(x  a& ext a ⊆ −D) ≡ −D open.

So, in the same way as classical logic reduces the meaning of existential quantification to a
negation of a universal quantification, here it would reduce the definition of closed subset, which
in the essence is a quantification of the form ∀∃, to that of open subset, which is of the form ∃∀.

An obvious remark, which however is of crucial importance for what follows, is that the condi-
tions B1 and B2 have no role in the definitions of open and of closed subsets. Then it is worthwile
to analyse the logical duality between closure and interior in the more general structure given sim-
ply by two sets X, S and any binary relation  between them. I call it a basic pair. Moreover, the
simple remark that the notion of basic pair is perfectly self-symmetric, will lead to the discovery
of the role of symmetry in topology.

2.2 A structure for topology

From now on, we keep the sets X and S always fixed, also in the sense that we think of X as
situated at the left, and of S as situated at the right as in Picture 1 below.

X  S

points observables

Picture 1

We systematically use x, y, . . . for elements and D,E, . . . for subsets of X, a, b, . . . for elements
and U, V, . . . for subsets of S. In this way we can avoid to mention the domain of quantifications,
and we shall do so from now on. One can think intuitively of x, y, . . . as points and of a, b, . . . as
observables (cf. [30]), so that x  a means that the observable a applies to the point x.

The relation x  a is expressed at the left by the synonym x ε ext a, where ext a ≡ {x : x  a}
is the extension of a, and at the right by the synonym a ε 3x, where 3x ≡ {a : x  a}. The
relation  induces four monotone operators on subsets; in the language of categories, these are just
functors from PX into PS or conversely, when both PX and PS are seen as preordered categories.
First we define the functors ext and rest from PS into PX by setting:

x ε ext (U) ≡ 3x G U

x ε rest (U) ≡ 3x ⊆ U

These are, respectively, just the definitions of weak, or existential, and of strong, or universal,
anti-image of the subset U along the relation . The name rest is due to the idea of conceiving
rest U as the restriction to those points of X which live in U , in the sense that all their observables
belong to U . If the relation from X to S is denoted more simply by R, or even better by a
small r (because we will think of it also as a function from X into PS, and not only as a binary
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propositional function), a good notation is r− for the weak, and r∗ for the strong anti-image. That
is, using the notation rx ≡ {a : xra} for the r-image of x (which is 3x when r is denoted by ),
we put

x ε r−(U) ≡ rx G U

x ε r∗(U) ≡ rx ⊆ U

An important little observation, which will often be used tacitly, is that the existential anti-image
is just the union of anti-images of elements, that is ext (U) ≡ ∪bεU ext b; note also that this gives
in particular ext ({b}) = ext b, and this is why we can use the same letter ext without confusion
both for the operator on elements and for that on subsets. Note also that r− and r∗ coincide when
r is the graph of a function, because x G U if and only if rx ⊆ U when rx is a singleton.

The same definitions apply also to the inverse relations. So we have two functors 3 and 2 from
PX into PS which are defined by6

a ε 3D ≡ ext a G D

a ε 2D ≡ ext a ⊆ D

Note that, as for ext , 3({b}) = 3b. In the abstract notation with r, we write r− for the relation
which is inverse of r, that is, which is defined by ar−x ≡ xra and also extend to r− the notation
for images of elements, so that r−a ≡ {x : xra}; this notation is justified since the r−-image of
the element a coincides with the weak anti-image of the singleton subset {a} along r as defined
before, that is r−a = r−{a}. Then we can put:

a ε rD ≡ r−a G D

a ε r−∗D ≡ r−a ⊆ D

Note that the weak anti-image of U along r, as defined before, coincides with the (direct) image
of U along the inverse relation r−, and so both are denoted by r−U . As before for ext and r−,
one can see also that r{x} = rx and that rD = ∪xεDrx.

The starting point of the basic picture is the discovery that the operators int and cl as defined
in the preceding section are nothing but the composition of the operators just defined:

int ≡ ext 2 and cl ≡ rest 3

In fact, one can easily see that x ε intD ≡ ∃a(x  a & ext a ⊆ D) ≡ 3x G 2D and that
x ε cl D ≡ ∀a(x  a → ext a G D) ≡ 3x ⊆ 3D. So one can see that the duality between int and
cl is the result of a deeper duality between 3 and 2, and between ext and rest .

This is a good point to repeat that the structure consisting of X,  and S is absolutely
symmetric. Maybe it takes some effort to abandon the intuition of X as points and of S as
observables, but the plain mathematical content is only that they are two sets linked by an arbitrary
relation. So, in a fully symmetric way we can define two operators on PS, which are symmetric of
int and of cl respectively:

J ≡ 3 rest and A ≡ 2 ext

In fact, they are obtained by replacing ext , 2, rest , 3 with their symmetric 3, rest , 2, ext ,
respectively. The meaning of such operators7 becomes clearer by making definitions explicit. Since
a ε AU ≡ ext a ⊆ ext U ≡ ∀x(x  a→ x  U), then a ε AU means that all points lying in a also

6Clearly, the signs 3 and 2 are taken from modal logic; if S = X and  is the accessibility relation, then 3D
and 2D are the valuations of formulae 3φ and 2φ, repectively, if D is the valuation of φ. The operators ext and
rest then correspond to possibility and necessity in the past, respectively, as in temporal logic.

7The choice of the letter J is due to the fact that I had no other available, and it should not be connected with
the so called j-operators of locale theory, see [12].
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lie in U . So, a ε AU is something we know already, since it expresses the intuition of the formal
cover a � U , as in section 1.2.

Let us turn to a ε JU ≡ ext a G rest (U). The explicit definition is ∃x(x  a&3x ⊆ U),
which means that a is inhabited by some point, about which we know in addition that all its
neighbourhoods are in U . Informally, a ε JU says that there is a point in ext a, and U gives
positive information on where inside ext a it is. In the special case U = S, a ε J S means simply
that ext a is inhabited; we met this in section 1.2 as the intuitive explanation of the predicate Pos.

So a ε JU is the pointwise definition of a new formal relation between an element a and a
subset U of S; we denote it by a n U , and call it a positivity relation. As it is evident from
the preceding explanation, the idea of introducing J or n is quite natural by structural reasons:
symmetry, since J is symmetric to int , and logical duality, since J is dual to A. Whatever is the
way to reach it, however, it gives a new possible choice of primitive relation on S, namely n, to
be added to �. So following the method in section 1.2 one is lead to a new definition of formal
topology, with a positivity relation, see section 2.4. This is one of the main conceptual novelties
of the present approach. Also, since A and J can be defined on any basic pair, one can apply the
same method on an arbitrary basic pair and obtain a weaker notion than that of formal topology,
see section 2.4. This is another important conceptual novelty.

Since the operators are defined in terms of a relation, through existential and universal quantifi-
cations, it follows that there is an adjunction between each existential operator and the universal
operator in the opposite direction. So ext is left adjoint of 2 and 3 is left adjoint of rest :

ext a 2 that is extU ⊆ D if and only if U ⊆ 2D, for any D,U ,

3 a rest that is 3D ⊆ U if and only if D ⊆ rest U , for any D,U .

A formal proof is based on the equivalence between ∃xAx→ B and ∀x(Ax→ B), in intuitionistic
logic. In the notation with r, these are just the adjunctions:

r− a r−∗ that is r−U ⊆ D if and only if U ⊆ r−∗D, for any D,U ,

r a r∗ that is rD ⊆ U if and only if D ⊆ r∗U , for any D,U ,

respectively. I call these the two fundamental adjunctions determined by the relation r.
It is a general well known fact that the composition of the left adjoint (existential) after the

right adjoint (universal) operator gives an interior operator. So J ≡ 3 rest is an interior operator;
this means that J satisfies JU ⊆ U , U ⊆ V → JU ⊆ J V and JU ⊆ JJU , or equivalently
JU ⊆ U and JU ⊆ V → JU ⊆ J V . By symmetry, int ≡ ext2 also is an interior operator.
Note that i. int is proved to be an interior operator on any basic pair (thus also when B1 and
B2 are not assumed) and hence ii. int does not in general preserve finite intersections (one can
prove that this is actually equivalent to B1), that is, it is not what is sometimes called a topological
interior operator (see e.g. [30]).

Similarly, 2 after ext , namely A, and of rest after 3, namely cl , are closure operators. This
means that U ⊆ AU , U ⊆ V → AU ⊆ AV and AAU ⊆ AU hold, or equivalently U ⊆ AU and
U ⊆ AV → AU ⊆ AV . Similarly for cl ; of course, two remarks analogous to those on int apply
to cl .

For a closure operator, such as A, we say that a subset U ⊆ S is A-saturated if U = AU . So
D ⊆ X is cl -saturated if D = cl D, that is when D is closed. We denote by Sat(A), and Sat( cl ),
the collection of saturated subsets.

Similarly, for an interior operator, such as J , we say that a subset U ⊆ S is J -reduced if
U = JU . So D ⊆ X is int -reduced if D = intD, that is when D is open. The collections of
reduced subsets are denoted by Red(J ) and Red( int ).

For any operator C, either a closure or an interior operator, one can define suprema and infima
by putting

∨i∈ICUi ≡ C(∪i∈ICUi) and ∧i∈I CUi ≡ C(∩i∈ICUi).

17



So Sat(A), Sat( cl ), Red(J ) and Red( int ) are all complete lattices. It is not difficult to prove (by
making systematic use of the two fundamental adjunctions) that actually Red( int ) is isomorphic
to Sat(A), via the isomorphism 2 : Red( int ) → Sat(A) with inverse ext : Red( int ) ← Sat(A).
This is why A-saturated subsets are called formal open, and int -reduced subsets, viz. open subsets
of X, are called concrete open when there is danger of confusion.

The isomorphism between formal open and concrete open subsets was somehow expected, see
the ideas in section 1.2. What come as a surprise is the fact that to be able to obtain a similar
isomorphism for concrete closed subsets one has to introduce a new primitive, namely J or n, and
define a subset of S to be formal closed if it is J -reduced.

Picture 2 sums up the situation. Note that in the top line we have two closure operators, which
are of the form ∀∃, while in the bottom line we have two interior operators, of the form ∃∀. The
choice of names is due to the fact that we want the two lattices of (concrete and formal) open
subsets, and equally for closed subsets, to be isomorphic. This has the consequence that formal
open subsets are described by a closure operator and formal closed subsets by an interior operator.

concrete closed formal open
cl D = D symmetric AU = U

intD = D symmetric JU = U
concrete open formal closed

Picture 2

This concludes the first chapter of the basic picture. We are now going to see that similar
structural characterizations can be obtained also for other notions of topology.

2.3 The essence of continuity

A common definition says that a function f : X → Y is continuous if, for any x ∈ X, whatever
neighbourhood E of fx one considers, there is a whole neighbourhood D of x which is all sent
“close” to fx, that is inside E. In our framework, assume X and Y are the sets of points of
two basic pairs or concrete spaces X

1−→S and Y
2−→T (we will omit subscripts unless strictly

necessary). Then the definition of continuity for f is formally expressed by:

∀b(f x  b→ ∃a(x  a & ∀z(z  a→ f z  b))(1)

As it is well known, f is continuous if and only if the inverse-images along f of open subsets of Y
are open in X. In our framework, this means that for each b ∈ T , f− ext b = ext ({a ∈ S : ext a ⊆
f− ext b}). If we define a relation s : S → T by putting a s b ≡ ext a ⊆ f− ext b, this equation
means that f− ◦ 2

− = 1
− ◦ s−. But then, to restore symmetry, one is lead to generalize the

treatment to a relation r also from X to Y . This move is of crucial importance, since it allows to
make the structure underlying continuity more clearly visible, and simpler, than with functions.

Let us first find a suitable extension of (1) to relations. First, rewrite (1) as ∀b(fx ε ext b→ ∃a
(x ε ext a & ext a ⊆ f− ext b)). At this point, recall that fx is an element, while r x is a subset
of Y . So we can think of f x ε ext b as {fx} ⊆ ext b or as {fx} G ext b; the second choice works
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better. So we say that r : X → Y is continuous if

r x G ext b→ ∃a(x ε ext a & ext a ⊆ r− ext b)(2)

holds for any x ∈ X, b ∈ T .
An important discovery is the equivalence of the following conditions:

a. r is continuous,

b. r− is open, that is r− ext b is open in X for any b ∈ T ,

c. there exists s : S → T such that r x G ext b↔ 3x G s−b, for any x ∈ X, b ∈ T .

Note that the equivalence in c. is nothing but a way to express that  ◦ r = s ◦ , that is
commutativity of the diagram

X
−→ Syr

ys

Y
−→ T

So we define a morphism from X
−→S to Y

−→T to be a pair of relations r : X → Y and s : S → T
which make the diagram commute. (r, s) is called a relation-pair. The presence of s in the definition
has the purpose of keeping the information which otherwise is restored only by a quantification
over relations, as in c. above.

Commutativity of a diagram is the clearest structural description one can find. The framework
of basic pairs shows that the essence of continuity is just a commutative square. In the case of
functions, we obtain the usual definition as a special case.

Several other equivalent formulations of continuity are possible. Since commutativity of the
diagram is equivalently expressed by r−◦ − = − ◦ s− and r∗◦ ∗ = ∗ ◦ s∗, the notion of
relation-pair is equivalently presented by each of the equations

r− ext V = ext s−V for any V ⊆ T ,

r∗ rest V = rest s∗V for any V ⊆ T .

The first says that r− is open, and s− is a method by which we determine the open subsets
of X which are the existential anti-images of open subsets of Y along r. The second says that
r∗ is closed, and s∗ gives a method by which we determine the closed subsets of X which are
universal anti-images of closed subsets of Y along r. In other words, s gives the method by which
we know that r− is open and r∗ is closed. Even if, given r, one can define a relation s such
that (r, s) is a relation-pair by putting asb ≡ ext a ⊆ r− ext b, to “forget” s thinking that it can
always be restored is not safe. For instance, only keeping the information s, some of the common
equivalent characterizations of continuity, like r− is open if and only if r∗ is closed, can be proved
constructively. If s is lost, by knowing that r∗ is closed there is no way, not even impredicatively,
neither to restore s, nor to prove that r− is open; in fact, two finite counterexamples in [25] show
that the two conditions are no longer equivalent when the formal side is forgotten.

The category BP with basic pairs as objects and relation-pairs as arrows differs from the well-
known category Rel2, of relations and commutative square diagrams, only in the fact that equality
between relation-pairs is explicitly defined. Two relation-pairs (r, s) and (r′, s′) are declared to be
equal if they behave in the same way with respect to open and to closed subsets, both concrete
and formal. This too turns out to be equivalent to a fully structural condition, namely that their
top-left bottom-right diagonals coincide,
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that is 2 ◦ r =2 ◦ r′ = s ◦ 1 = s′ ◦ 1. The category BP is also different from the category
of boolean Chu spaces (see [20]), since morphisms of Chu spaces are functions (one in the reverse
direction of the other).

Finally, the intrinsic symmetry of basic pairs and of relation-pairs is formally expressed by
the fact that the functor ( )−, defined by (X, , S)− ≡ (S, −, X) and by (r, s)− ≡ (s−, r−), is a
self-duality of BP.

2.4 Basic topologies

The methodology to obtain the definition of a formal notion is always the same, and it has been
described in section 1.2. The difference is that now for this task we can make use of the preceding
analysis of the structure induced on a basic pair, and hence also on a concrete space. So on one
hand it is easier, and on the other hand it produces a richer structure. First we introduce a new
notion, namely that of basic topology, which is obtained by describing the structure induced on the
formal side of a basic pair, and by taking the result as an axiomatic definition. The new definition
of formal topology is then obtained simply by adding a formal condition expressing that the basic
pair is actually a concrete space. Finally, the notion of formal point is obtained as an axiomatic
description of the subset 3x determined by a concrete point x on the formal side.

There are a few good reasons to do all this, that is, to study formal topology: the first is that
it is a natural way, and often the only one, to be able to deal predicatively with certain spaces.
After all, this is just how the real numbers are obtained from the topology of rational intervals.
The second reason is that it provides more general tools to topology. A third good reason to do it
is simply that it can be done, and that nice new structures emerge in this way. Thus it contributes
to expand the territory of mathematical thought.

We have already seen that any basic pair X
−→S induces a closure operator A ≡ 2 ext and an

interior operator J ≡ 3 rest on the formal side, namely on the set S. This is all we can say given
that ext is left adjoint to 2, and that 3 is left adjoint to rest , respectively. What we have to add
now is a condition linking A with J and expressing the fact that the two adjunctions ext a 2 and
3 a rest are induced by the same relation . For any a ∈ S and U, V ⊆ S, the rule

ext a G rest V ext a ⊆ extU

extU G rest V

clearly holds. Since ext a G rest V ≡ a ε J V , ext a ⊆ extU ≡ a ε AU and extU G rest V iff
∃b(b ε U & b ε J V ), it says that a ε AU and a ε J V imply U G J V . Since the element a does not
appear in the conclusion, the conclusion is valid simply if such an element exists. So we have the
rule

compatibility
AU G J V

U G J V
Thus the first definition is simply that a basic topology is a triple S = (S,A,J ) where S is a set,
A is a closure operator, J is an interior operator, and they are linked by compatibility (note that
compatibility is the same as the equivalence AU G J V ↔ U G J V , since the direction ← holds
trivially). In the notation with a � U for a ε AU and a n V for a ε J V , this amounts to:

20



reflexivity
a ε V

a � V
transitivity

a � U U � V

a � V

coreflexivity
a n V

a ε V
cotransitivity

a n U (∀b)(b n U → b ε V )
a n V

compatibility
a n V a � U

U n V

where we now add the shorthand U n V for (∃b ε U)(b n V ). It is just natural to carry over
the terminology from basic pairs and say that U is formal closed if U = JU and formal open if
U = AU .

The intuitive meaning of compatibility is that any formal closed subset V = J V must split any
cover, in the sense that if a�U and if a ε V , then V must proceed and meet U . This is nothing but
the symmetric of the usual condition defining the concrete closure. To see this, first note that, if we
apply the same methodology to the concrete side, since a basic pair is fully symmetric we obtain
a fully symmetric definition: a triple (X, int , cl ) where X is a set, int is an interior operator, cl
is a closure operator, and they are linked by

compatibility cl D G intE ↔ D G intE.

The role of compatibility perhaps gets clearer by examining its link with the impredicative definition
of closure. In fact, if one defines closure CL int (impredicatively) in terms of all open subsets, rather
than subbasic neighbourhoods (as in section 2.1), one puts:

x ε CL int (D) ≡ ∀E(x ε intE → D G intE)

(here for convenience we quantify over an arbitrary subset E, and obtain the same effect as quan-
tifying over open subsets by prefixing E with int inside the quantifier). Then one can easily see
that compatibility is equivalent to: cl D ⊆ CL int D for every D ⊆ X. One can say that a basic
topology is dense if the equation cl = CL int holds. This equation is not part of the definition
of basic topology for two reasons: 1. the definition of CL int is impredicative, 2. even admit-
ting impredicative reasoning, the equation cl = CL int is not preserved under morphisms of basic
topologies, viz. continuous relations.

The definition of basic topology is very simple, and should find its place together with other
definitions weaker than that of topological space which were given long ago by Kuratowski, Frechet,
Čech, and others. Its peculiarity is that it has a purely structural justification, and that it is
meaningful only by assuming intuitionistic logic and a primitive notion of closed subset.

It is to be noted, however, that also assuming classical reasoning, the definition of basic topology
does not collapse. Given any interior operator int on a set X, one can classically prove that
(X, int ,− int−) is a basic topology (actually, it is a dense basic topology). But again, also reasoning
classically, not all basic topologies are of this form. Compatibility is classically equivalent to
cl ⊆ − int−, but even classically not all basic topologies satisfy the equality cl = − int−. One
can prove that a basic topology (X, int , cl ) is classically the same as a structure (X, int , int ′),
where int ⊆ int ′.

The fact that the definition of basic topology is not too weak is confirmed by some initial results
on the structure of possible combinations of the operators int , cl and opposite −. First, one can
easily prove that the different combinations of int and cl are exactly seven, and that the mutual
inclusions are only8 those shown in the picture (in which inclusion appears as an edge upwards):

8The method to find counterexamples for the other inclusions is interesting: one can choose a suitable basic pair,
and use the logical expressions for int and cl to show that they would give some implications which are not valid
intuitionistically.
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Adding the equation cl = − int− and classical logic, one can then easily obtain the well known
result by Kuratowski telling that there are at most 14 different combinations of −, int and cl .

In the general case, from compatibility one can obtain that cl D ∩ intE = ∅ ↔ D ∩ intE = ∅,
and using this one can derive that the equations linking −, int and cl are:

cl −D ⊆ − intD = cl − intD

int − cl D = int −D ⊆ − cl D

It is easy to find out that the inclusions − int D ⊆ cl − D and − cl D ⊆ int − D do not hold in
general. The above equations seem to express the basic properties of closure, interior and opposite
in the intuitionistic case. However, it is still not known whether other inclusions or equations
involving more occurrences of −, int and cl hold. An initial study has shown that all the different
combinations with only one occurrence of − do not exceed the number of 22. With two occurrences
of −, the number seems to get much higher. In general, it is apparently still an open problem even
to decide whether the total number of combinations is finite or infinite.

2.5 Formal topologies and formal spaces

It must be emphasized that all definitions and results so far have been obtained starting from an
arbitrary basic pair. It is now a relatively easy matter to find a formal condition corresponding
to the property we called B1, that is ext U ∩ ext V = ext (U ↓ V ). In fact, if we express it in
the equivalent form ∀x(x  U & x  V → x  U ↓ V ) we see that, by replacing an arbitrary
concrete point x with an arbitrary observable a and the relation  with the cover �, we obtain
∀a(a � U & a � V → a � U ↓ V ). This is the same as the rule

↓-Right
a � U a � V

a � U ↓ V

Note that the formal expression of ext b ∩ ext c = ext (b ↓ c), which by distributivity is equivalent
to extU ∩ extV = ext (U ↓ V ), would bring to a � b & a � c → a � b ↓ c, which is trivial since
a � b & a � c gives a ε b ↓ c by definition. In fact, the purpose of ↓-Right is exactly to express
distributivity formally, and that is why we must start from ext U ∩ extV = ext (U ↓ V ).

In this way we have obtained yet another definition of formal topology, simply as a basic
topology in which ↓-Right holds. To distinguish it from that given in section 2.1, one could call it
a convergent basic topology or a balanced formal topology, because the difference is the presence of
a positivity relation and the absence of the positivity axiom (see section 1.3).

As I hinted at in section 1.3, the variety of possible definitions is a richness which one should
not be afraid of. In fact, at this stage of development it is hard to see which one will become
the standard one. The different requests on the positivity predicate n seem to be the analogue of
different separation principles in pointwise topology. Like in pointwise topology, it will take time
to find out virtues and defects of each assumption.

Some of the advantages of the definition given above are already clearly visible. The first is that
it has a solid structural motivation. In fact, the new predicate n is the result of the isomorphism
between concrete closed and formal closed subsets, and at the same time it is the symmetric of
the interior operator int and the dual of the operator A, that is of the cover �. So n seems to be
exactly what is necessary to make the definition fully balanced.
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The second is that in this way it allows to introduce a natural notion of formal closed subset;
recall that a subset U is said to be formal closed if JU = U or equivalently if a ε U → a n U .

The third is that the richness of the structure allows to see that it is better to get rid of the
condition called positivity (and study it as an extra assumption, if wished). In this way one can
obtain both the theory of locales (or frames) and the previous version of formal topology as special
cases. In fact, we say that J is improper when JU = ∅ for any U ; then one is left essentially
only with the cover �, which amounts to a predicative formulation of frames. We say that J is
trivial when J S and ∅ are the only two formal closed subsets. One can prove constructively that
J is trivial exactly when it satisfies a ε JU → a ε H & H ⊆ U for some monotone subset H (H
is monotone if a ε H & a � U → H G U ; when J is trivial, put H ≡ {a : a n S}). So a formal
topology in the sense of definition 1.1 is obtained as a special case by defining Pos to be H and by
requiring the condition of positivity.

I expect also other advantages, or applications, to become visible after learning how the new
expressive power - due to the presence of n - can be exploited. Before that, one has to adjust all
the definitions and results of formal topology to take care also of the positivity relation n. This is
not a routine task. As an example, I give here the new definition of formal point. Another example
is given in section 2.10.

The definition of formal point of a formal topology S = (S, �, n) is obtained as usual by
considering the case in which S is presentable. So assume that S is the structure induced by a
concrete space (X, , S) on the set S. The idea is first to describe the formal properties of a subset
3x traced on S by a concrete point x, and take them as abstract conditions for a subset α ⊆ S to
be called a formal point. Recalling that ↓, � and n in the presentable case are defined by means
of concrete points, we see that the properties we need are simply

x  a x  b

x  a ↓ b

x  a a � U

x  U

x  a 3x ⊆ U

a n U
.

The first says that (X, , S) satisfies B1, the second and third are just a re-formulation of the
definitions a � U ≡ ext a ⊆ extU and a n U ≡ ext a G rest U . We also add ∃b(x  b), which
corresponds to B2. Now we can transform such properties into properties of 3x by writing a ε 3x
in place of x  a, and of course 3x G U in place of x  U , and then take them as properties of
an arbitrary α ⊆ S. But if we now write α  a for a ε α, we see that the definition we look for is
obtained by literally replacing α for x in the properties above. So we have that α ⊆ S is a formal
point if

α is inhabited: α G S

α is convergent:
α  a α  b

α  a ↓ b

α splits �:
α  a a � U

α  U
(where α  U ≡ α G U)

α enters n:
α  a α ⊆ U

a n U

The condition that α splits � is actually redundant (in fact, it can be deduced from α enters Pos
and compatibility), but it helps to see that, when n is trivial, the above definition gives back the
definition of formal point previously given in [21].

As a last remark, note that the definition becomes much shorter in the notation with A, J
and G. I leave it to readers to check that it is equivalent to α G S, α G U & α G V → α G U ↓ V ,
α G AU → α G U , α G U & α ⊆ F → U G JF . Or, even more simply, a subset α is a formal point
if it is inhabited, convergent and formal closed.
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2.6 Formal continuity and convergence

A notion of morphisms between basic topologies is introduced by following the same methodology
which led us to the notion of basic topology. That is, we consider the notion of morphism between
basic pairs, alias relation-pair, and we look for the properties which are enjoyed by its component
on the formal side, with respect to formal open and formal closed subsets. These will be the
properties we require to characterize morphisms between basic topologies.

It can be shown that a relation-pair (r, s) is equivalently presented by each of the following two
properties, symmetric to those mentioned in section 2.3:

s3D = 3r D for any D ⊆ X,

which means that s is formal closed, and r is a method to determine the formal closed subsets of
T , which are the existential image of formal closed subsets of S along s;

s−∗2D = 2r−∗D, for any D ⊆ X,

which means that s−∗ is formal open, and r−∗ is a method to determine the formal open subsets,
which are the universal image of formal open subsets of S along s.

When only the formal side is considered, the relations r and r−∗ are lost, and the properties
characterizing morphisms between basic topologies are then just the properties enjoyed by s. How-
ever, once r and r−∗ are forgotten, it is no longer possible to prove the two conditions, that s is
formal closed and that s−∗ is formal open, to be equivalent to each other (counterexamples are
given in [25]). Hence both of them are required.

Thus a morphism between two basic topologies S ≡ (S,A,J ) and T ≡ (T,B,H) is a relation
s : S → T such that

i. s is formal closed, that is U = JU → sU = HsU ,

ii. s−∗ is formal open, that is U = AU → s−∗U = Bs−∗U .

We call it a continuous relation, and we denote it by s : S → T . One can prove that, in the
notation with n and �, the two conditions on s are equivalent to:

a s b b � V

a � s−V

a s b a n s∗V

b n V

Several other equivalent characterizations are also possible.
Given any basic topology S, one can always define the image of S along any relation s : S → T ,

by setting sS ≡ T ′ ≡ (T, s−∗As−, sJ s∗). This is a basic topology in which formal open subsets
are just the universal images of formal open subsets of S, and dually formal closed subsets are just
the existential images of formal closed subsets of S. It is the coarsest basic topology which makes
s a continuous relation.

Following this definition of image, it can happen that S satisfies ↓-Right, while its image T ′
does not. So the notion of continuous relation is not the right notion of morphism between formal
topologies. As the notion of formal topology was obtained by describing axiomatically the formal
side of a concrete space, that is a basic pair satisfying B1 and B2, now the correct definition of
morphism between formal topologies is obtained by describing axiomatically the right component
of a relation-pair which preserves the validity of B1 and B2.

So assume that S is the formal topology which is presented by a concrete space X = (X, , S).
One can see that the image of S along a relation s : S → T is the same thing as the basic topology
presented by the basic pair (X, s ◦ , T ). Since (s ◦ )− = ext s−, this satisfies B1 and B2 if
ext s−T = X and ext s−b ∩ ext s−d = ext s−(b ↓ d), for any b, d ∈ T . But then, since X satisfies
B1 and B2 (that is extS = X and extU ∩ extV = ext (U ↓ V )), these two equations are equivalent
to ext s−T = extS and ext (s−b ↓ s−d) = ext s−(b ↓ d), and hence finally, by the isomorphism
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Sat(A) ∼= Red( int ), also to As−T = AS and A(s−b ↓ s−d) = As−(b ↓ d), for any b, d ∈ T . In the
notation with �, these are equivalent to

totality S � s−T convergence s−b ↓ s−d � s−(b ↓ d)

So a morphism between formal topologies is defined to be a continuous relation which satisfies
totality and convergence; it is called a formal map. Now one can easily check that the image
T ′ = sS of a formal topology S along a formal map is a formal topology too.

The notion of morphism between formal topologies presented in [21] is easily seen to be a special
case of formal map. It is important to observe that the conditions of totality and of convergence
are automatically satisfied by a relation s when it is the right component of a relation pair (f, s),
where f : X → Y is a function and (X, , S), (Y,, T ) are concrete spaces (the proof is left to
readers). This shows that, when only functions are considered, the notion of continuity includes
that of convergence.

The reason motivating the name of formal maps is that they induce functions between the formal
spaces determined by the formal topologies; actually, they are the predicative way to present such
maps. In fact, it is routine to check that whenever s : S → T is a formal map between formal
topologies and α is a formal point of S, then the image sα of the subset α along s is a formal point
of T . Hence s induces a map between Pt(S) and Pt(T ).

Actually also the converse holds (confirm the correctness of definition of formal maps): one can
see that under suitable conditions (that is, when S and T are spatial), the mapping α 7→ sα is a
function from Pt(S) into Pt(T ) if and only if the relation s : S → T is a formal map.

2.7 Generating positivity by coinduction

It has been shown in [7] that the most general way to generate a formal cover on a set S is to
start from a family of sets I(a) set (a ∈ S) and a family of subsets C(a, i) ⊆ S (a ∈ S, i ∈ I(a)).
The intuition is that I(a) is a set of indexes for the covers of a, and that C(a, i) is the cover of a
with index i, taken as an axiom. Then a cover � (I mean, � reflexive and transitive) is generated
inductively simply by the rules (see [7])

a ε U

a � U

i ∈ I(a) C(a, i) � U

a � U
.(3)

The new idea now is to generate the largest predicate n compatible with � by coinduction, that
is by forcing compatibility to hold by successively taking away elements which do not satisfy it.
Given that � is generated from axioms a � C(a, i), to force compatibility it is enough to consider
this case. And of course one must also force reflexivity to hold. So the rules are

a n U

a ε U

i ∈ I(a) a n U

C(a, i) n U
The relation � is the minimal relation satisfying the rules written in (3). This means that for every
subset U , the subset AU ≡ {a ∈ S : a � U} is the least among the subsets P satisfying U ⊆ P
and C(b, i) ⊆ P → b ε P for any b ∈ S and i ∈ I(b). In other terms, the following principle of
induction holds:

a � U U ⊆ P

[i ∈ I(b), C(b, i) ⊆ P ]
|

b ε P

a ε P

Dually, for every U the subset JU ≡ {a ∈ S : a n U} is the largest among subsets Q such that
Q ⊆ U and b ε Q→ C(b, i) G Q for any b ∈ S and i ∈ I(b). So the following principle of coinduction
holds:

a ε Q Q ⊆ U

[b ε Q, i ∈ I(b)]
|

C(b, i) G Q

a n U
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Using these two principles, it is possible to prove that (S, �, n) is indeed a basic topology. By
combining this with the treatment of ↓-Right in [7], one can also easily generate convergent basic
topologies. This shows at least that there is a wealth of examples for the new definitions.

Moreover, there is a wealth of examples also of continuous relations. In fact, assume that
S is generated as above by I, C and that T is similarly generated by J(b) set (b ∈ T ) and
D(b, j) ⊆ T (b ∈ T, j ∈ J(b)). Assume that s : S → T is any relation respecting the axioms, that
is satisfying s−b �S s−D(b, j) for any b ∈ T and j ∈ J(b). Then one can prove by induction that
s−∗ is formal open and by coinduction that s is formal closed.

The idea of a coinductive generation of n first came to Martin-Löf, in July 1996 soon after
several conversations by the author on the basic picture and in particular on the ∀∃-∃∀ duality
between open and closed subsets. The joint paper [17] includes also a game theoretic interpretation
of � and n. Valentini [32] has later shown that one can force n to satisfy any given axioms, fully
independently of the axioms for �. This shows that there is a wealth of examples in which formal
closed subsets are by no means determined by formal open ones.

2.8 Overlap algebras and the algebraization of topology

The algebraic structure traditionally associated with a topological space is that of its open subsets,
which form a complete lattice satisfying infinite distributivity (of arbitrary joins over binary meets).
This is called frame or locale, according to the direction of arrows (see [12]). Due to the topological
interpretation of intuitionistic logic (propositions as open subsets), the structure of locale is also
the intuitionistic algebraic counterpart of the structure of the power of a set; in this context, it
is often called a complete Heyting algebra, to stress the presence of implication (which is anyway
impredicatively definable in any locale).

The discovery and development of the basic picture has shown that closed subsets should be
defined and treated independently of open subsets, and not just as their complement. To be able
to reflect into an algebraic definition also the presence of a primitive notion of closed subsets, the
notion of locale has to be modified. Then there are apparently two main possible choices to express
topological notions algebraically: either we assume, as it is usually done, that the right structure
associated to the intuitionistic notion of the power of a set is that of locale, or we prepare ourselves
to change that too.

In the first case, the algebraic version of the definition of basic topology is that of a frame, or
better of a locale because of the direction of arrows, equipped both with a saturation and with a
reduction operator, corresponding to A and to J , respectively, in a basic topology. The problem
with this notion is that one cannot express the link between A and J which is assumed to hold
in a basic topology, namely compatibility, since locales lack any notion corresponding to overlap
G. In a locale, one can express only the equational, or negative, version of compatibility, which is
equivalent to proper compatibility only classically.

More interesting is the second alternative. To express compatibility in full form, using only
algebraic notions, one has to add an algebraic counterpart of overlap G between subsets. This
brings to a new algebraic description of the structure of the power of a set PS, which is obtained
from the notion of locale by adding a new primitive ><, corresponding to G (just like ≤ corresponds
to ⊆; the shape of the new sign >< should recall this). The problem then is to find the right axioms
to be assumed for ><. My proposal is to define an algebra of subsets with overlap, briefly overlap
algebra, or 0-algebra, to be a locale (P,≤,∧,∨, 0, 1) equipped with an extra relation >< defined on
every element p, q : P which satisfies:

symmetry if p >< q then q >< p, for every p, q in P;

and which is connected with the other components by the following conditions:

preservation of meet: if p >< q then p >< p ∧ q

splitting of join: p ><
∨

i∈I qi iff there exists i ∈ I such that p >< qi;
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density

q >< r
|

p >< r

p ≤ q
(where r must be an arbitrary element of P).

It is also interesting to study structures in which some conditions, like density or distributivity (of
the underlying locale) are not assumed.

The definition of overlap algebra is not vacuous because clearly for any set X the structure
(PX,⊆, G,∪,∩, ∅, X) is an example, and actually the motivating example. It can be shown shown
that atomic o-algebras are exactly the same as powers of sets. Still, the notion of o-algebra is more
general than that of PS and there are very natural examples of nonatomic overlap algebras. In
particular, global H-subsets of a set form a non-atomic overlap algebra.

The presence of the algebraic overlap >< allows to express compatibility in full. It is natural to
define an o-basic topology, that is a basic topology over an arbitrary o-algebra, to be an overlap
algebra P with a saturation operator a and a reduction operator j linked by compatibility:

a p >< j q if and only if p >< j q.

A basic topology then becomes exactly the same as an o-basic topology over the specific o-algebra
PS.

Also all other notions of the basic picture can be similarly generalized. A systematic way to do
this is to repeat step by step the development of the basic picture, starting from a generalization
of basic pairs in which arbitrary o-algebras P and Q replace the power of sets PX and PS,
respectively. The first obstacle (and essentially the only one) is to define the algebraic counterpart
of the forcing relation  between X and S. In other terms, the problem is to find an algebraic
characterization of relations. This problem is solved by exploiting the presence of ><.

We have seen that the operators on subsets ext , rest ,3,2 form two pairs of adjoint functors,
ext a 2 and 3 a rest . But if we consider two arbitrary pairs of adjoint functors F a G and
F ′ a G′, with F,G′ : PX → PS and F ′, G : PX ← PS, nothing is said about the fact that they
are induced by the same relation, or better by a relation and by its converse.

It is well known that any adjunction F a G between PX and PS is induced by a relation
between X and S. In fact, the left adjoint functor F respects unions, and hence one can define
r : X → S by putting x r a ≡ a ε F{x} and then obtain that F (D) =

⋃
xεD F{x} ≡

⋃
xεD r x ≡ r(D).

So F is the same as the existential image along r. Since r a r∗, by the uniqueness of adjoints G = r∗

holds. Assuming a second pair F ′ a G′ of adjoint functors in the opposite direction tells us that
there is a second relation r′ : X ← S such that F ′ = r′ and G′ = r′

∗. So now the problem is:
which condition should one add to characterize abstractly the fact that r′ = r−? The answer is,
a posteriori, incredibly simple: r′ = r− holds if and only if the two existential functors F and F ′

are linked by
F (D) G U if and only if D G F ′(U), for any D ⊆ X, U ⊆ S.(4)

In fact, if r′ = r− then (4) holds, because for an arbitrary r we have

r(D) G U if and only if D G r−(U), for any D ⊆ X, U ⊆ S.(5)

(this is easily checked by intuitionistic logic). Conversely, if F = r, F ′ = r′ and (4) holds, then for
every x ∈ X and a ∈ S we have x ε r′a iff {x} G r′a iff r x G {a} iff {x} G r−a iff x ε r−a, that is
r′ = r−. I call (5) the fundamental symmetry, and say that two functors F , F ′ satisfying (4) are
symmetric, written F ·|·F ′.

It is thus proved that four functors F,G′ : PX → PS and F ′, G : PX ← PS are those induced
by a relation r : X → S, that is F = r, G = r∗, F ′ = r−, G′ = r−∗, if and only if they form two
adjoint pairs F a G, F ′ a G′ and, moreover, F is symmetric to F ′, F ·|·F ′. This I suggest to call a
symmetric pair of adjunctions.

The algebraic counterpart of relations is therefore the expression in the language of o-algebras
of the characterization of a relation as a symmetric pair of adjunctions. Thus we say that an o-
relation from the o-algebra P into the o-algebra Q is a quadruple of functions F = 〈f, f−, f∗, f−∗〉,
where f, f−∗ : P → Q and f−, f∗ : Q → P, such that:
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f is left adjoint to f∗, written f a f∗, that is fp ≤ q iff p ≤ f∗q;

f− is left adjoint to f−∗, writtenf− a f−∗, that is f−q ≤ p iff q ≤ f−∗p;

f is symmetric to f−, written f ·|·f−, that is fp >< q iff p >< f−q.

Then an o-basic pair is given by two o-algebras P and Q and an o-relation F : P → Q. between
them.

One can now see that the definition o-basic topology is just the result of transferring the
structure of an o-algebra P into a second o-algebra Q through an o-relation F : P → Q. In
fact, putting a ≡ f−∗f− and j ≡ ff∗ one can easily prove (as with any adjunction) that a is
a saturation operator and j is a reduction operator. The novelty is compatibility, and here is its
proof:

a p >< j q ≡ f−∗f−p >< ff∗q by definition of a and j ;

iff f−f−∗f−p >< f∗q because f ·|·f−;

iff f−p >< f∗q because f−f−∗f− = f−;

iff p >< ff∗q because f ·|·f−;

≡ p >< j q by definition of j .

Following these ideas, one can show that most of the definitions of the basic picture and formal
topology can be expressed in a purely algebraic language and that the axioms of overlap algebras
are sufficient to prove the main results about them. This is a straightforward but quite instructive
exercise. For instance, the operation ↓ is defined in a basic topology by means of singletons.
So, unless the underlying o-algebra is atomic, to express convergence in an o-basic topology (by
assuming ↓-right) one needs an extra primitive. In other words, the notion of o-formal topology
needs a further primitive for convergence.

Thus one reaches an “algebraization” (and generalization) of the basic picture, which apparently
is not possible using locales. The source of the richer expressive power is the presence of the new
primitive ><, corresponding to the existential statement of overlap between two subsets.

This fact has a clear foundational interest, since now the notion of overlap algebra can help and
give a mathematical (rather than ideological) answer to a common question about predicativism.
A typical question of somebody acquainting with the matter is: what am I allowed to use (of the
common classical or impredicative methods) in developing predicative mathematics, topology in
particular? Now a partial answer can be: all what can be transcribed into the theory of overlap
algebras.

2.9 From completeness to invariance

I have already noticed several times that the method to obtain the definition of a formal notion
is that of taking as formal axioms all the relevant properties which hold in the presentable case.
It is now time to analyse this more carefully. The main problems are: what does it mean to take
all properties? how can one be sure that there are no other? And in any case, which are the right
axioms for � and n?

It should be clear that the answers depend both on the choice of the language (that is, of the
primitives) and on the choice of the foundational theory. We now see how the different choices
give different results, in particular on three specific questions: should closed subsets be uniquely
determined by open subsets? should the cover be always assumed to be inductively generated?
should one assume the condition of positivity (Pos(a)→ a � U)→ a � U? I will argue that in the
most basic approach the answer must be no to each question.

Assuming classical logic, as we have seen in section 2.1, in any basic pair the equation cl = − int−
holds. By the same reason, on the formal side J = −A−. Moreover, classical logic guarantees
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compatibility of −A− with A to hold: AU G −A − V ↔ U G −A − V is classically equivalent to
AU ⊆ A−V ↔ U ⊆ A−V , which is the characteristic property of closure operators. So classically
the definition of basic topology boils down to that of a set S with a closure operator A. In this
sense, it is not visible in a classical foundation. Note, however, that reasoning classically after
having assumed our definition of basic topology is not enough to make it trivial. That is, adding
the law of double negation on subsets −−U = U is not enough to force J = −A− to hold: in fact,
when A is the identity, any interior operator J is trivially compatible with it. This seems to mean
that the structure of basic topologies has after all some stability which goes beyond foundations.

If definitions through quantification over subsets are allowed, like in topos theory, then on any
set X with an interior operator int one can define closure as usual by quantifying over all open
subsets. That is, the definition of cl in a basic pair, namely x ε cl D ≡ ∀a(x ε ext a→ ext a G D),
is turned into

x ε CL (D) ≡ ∀E(x ε int E → intE G D).

One can check directly that such CL is indeed a closure operator compatible with int , and that
actually it is the greatest of such operators. However, it is more instructive to note that impred-
icatively the collection of open subsets is actually a set, defined by {D ⊆ X : D = int D}. Then
the above definition of CL coincides with the definition of cl ≡ rest 3 in the basic pair formed by
X, the set of open subsets and x  D ≡ x ε D.

On the formal side, by symmetry one can always define a cover �n impredicatively in terms of
a positivity predicate n:

a �n U ≡ ∀W (a n W → U n W ).

To get an intuitive grasp of this definition, one should compare it with the pointwise definition of
cover ∀x(x  a → x  U), and recall that a n W expresses formally the existence of a point in
ext a ∩ rest W .

So also in the impredicative case the full structure of basic topology would not be visible, since
one can always choose the cover, and hence formal open subsets, to be uniquely determined by
formal closed subsets. Moreover, when �n is defined as above, the formal topology (S, �n, n) is
actually presentable (with X the set of formal closed subsets and U  a ≡ a ε U). So the reasons
for introducing basic topologies in this context are not so compelling. It is still unknown to me
whether, conversely, one can find a similar impredicative definition of the positivity relation in
terms of a given cover �. In the special case of a positivity predicate Pos which moreover satisfies
positivity, this is well known, and the definition is Pos(a) ≡ ∀U(a � U → U G S).

Also in a foundation based on the notion of computation, such as Martin-Löf’s type theory,
there are some good reasons for a less general notion of basic topology than that given here. In fact,
because of the validity of the axiom of choice, the cover defined on the formal side of a basic pair
is always inductively generated (this was remarked by Martin-Löf, and Milly Maietti has shown
that the proof in [7] can be extended to the case in which sets are assumed to have an extensional
equality). So it is natural to require inductive generation of the cover � as part of the definition. In
this case, a positivity relation is uniquely determined, and it is the greatest positivity relation that
is compatible with �, which is defined by coinduction (see section 2.7 above). In the same spirit,
one can prove that for a relation between two such basic topologies to be a continuous relation it
is enough that it respects the axioms (a proof is in [17]). In this sense the two conditions defining
continuous relations are no longer independent. It is to be recalled, however, that here too the
fact that n is uniquely determined by � cannot be proved starting from our definition of basic
topology, even assuming full Martin-Löf type theory.

The foundation we have been working with so far is essentially just intuitionistic many sorted
logic with comprehension restricted to elementary formulae. No assumption is made on the nature
of sets; in particular, no axiom of choice and no powerset axiom are assumed to be valid. So
there is no principle which allows to reconstruct that half of topology, dealing with existential
statements and with closed subsets, in terms of the other half, namely universal statements and
open subsets. This is why one can never forget either of them. The main conceptual advantage
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is that the resulting mathematics respects both the intuition of computation, which underlies the
justification of the axiom of choice, and the intuition of some kind of continuity, by which one can
sometimes be in the position of knowing a statement of the form ∀x∃y to hold also without having
a function giving y in terms of x.

Once a language L is fixed, the “problem of completeness” is made rigorous in the following
way. For every basic topology, one defines the theory in L of a basic topology S, that is put

Th(S) ≡ all statements which can be expressed in the language L and which hold in S

Then one extends this to any class K of basic topologies, putting:

Th(K) ≡ all statements which are in Th(S), for every S in K

Then completeness would be the following fact: if BT is the class of all basic topologies, and RBT
the class of all representable basic topologies, then

Th(BT ) = Th(RBT )(6)

I don’t know whether this holds, for a reasonable choice of L. Would the definition of basic topology
be better if it were given in such a way that completeness as formulated above holds?

Perhaps yes; but in my opinion, not at any cost. For instance, imagine we could reach com-
pleteness by adding a condition C to the definition, where however C is very complicated, and
the proof that the completeness holds also is very complicated, and perhaps uses nonconstructive
methods. Would that make the definition better? My opinion is that it would not be worthwhile
to add C to the basic definition (which does not mean, of course, that I am against studying what
happens when C is assumed!).

However, we analyse better what we should do to be able to obtain a completeness result. This
will be helpful to organize what I want to say. As I said above, we should first of all specify the
language in which Th(S) is expressed.

After the specification of the language, the problem of completeness is in perfectly rigorous
terms. In fact, now the equation (6) has a proper sense. It is enough to specify that the theory
Th(S) (and hence Th(K) for a class K) is formed by all properties of S which can be written in
the language of overlap algebras, with functors between them.

How can we check that a certain property of PS is written in the language of overlap algebras?
It is just easier to formalize the notion of PS directly in that language, which is the same as to
replace PS (and PX) directly with overlap algebras. An isomorphic copy of PS is just an atomic
overlap algebras. And then basic topologies are replaced with o-basic topologies. An o-basic
topology (P, a , j ) is said to be representable if it is the image under a morphism 〈f, f−, f∗, f−∗〉
of a discrete 0-basic topology (P, id, id). Then the question becomes: is the theory of o-basic
topologies over an atomic overlap algebra the same as the theory of images under an o-continuos
relation of a discrete o-basic topology over an atomic overlap algebra? I purposely put it in words,
so that one can see that one restriction is totally artificial from an algebraic point of view: there is
no reason to restrict to atomic overlap algebras. In fact, they still have a logical flavour, because
of the presence of atoms (by which one can define elements by comprehension: every subset of
the atoms determines an element of the o-algebra). If we also suppress the restriction to discrete
o-basic topologies, we get the following question: is the theory of o-basic topologies the same as
the theory of images of o-basic topologies under an o-continuos relation?

In this way the original question has become more mathematical, since now it is equivalent
to saying that the definition of basic topology must be invariant under transfer along continuous
relations. It is also more general, since not all overlap algebras are atomic.

This seems to me a more solid criterion for the correctness (and completeness) of the definition
of basic topology. I conjecture that the definition of basic topology given above is the best one can
do, i.e., it is the strongest definition which is invariant under continuous relations. Work on this is
still going on.
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2.10 The dark side of the moon

The treatment of existential statements, or of statements of the form ∃∀ like that in the definition
of interior, is the dark side of the mathematical planet. They have usually been reduced either
to a negation (as in classical logic, where ∃ is the same as ¬∀¬ and hence closed is the same
as complement of open) or to an impredicative quantification (closure defined in terms of all
open subsets). The main aim of the basic picture, and of formal topology developed on it, is the
beginning of a more direct, positive exploration of that kind of information which is usually treated
as negative.

Specifically, the aim is to develop a mathematics which keeps on the scene as primitive also
the notions which are connected with existential quantifications. The introduction of the notation
G has this purpose; in fact, it allows to transform logical argumentations involving the existential
quantifier into mathematical arguments involving G, which are based on a spatial intuition. The
first step is then to treat closed subsets as independent of open subsets. On the formal side, this
brings to the introduction of the positivity relation n, which means a direct treatment of the
notion of closed in pointfree terms. Another interesting example is the generation of the positivity
relation n by coinduction.

Only time and further work will tell whether the mathematics which is beginning to come
out is interesting and with interesting new applications. My expectation is that it should find
applications in those sciences in which a careful management of information seems important, like
computer science, theoretical biology and perhaps quantum theory.
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