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1. IDEALS IN PREADDITIVE CATEGORIES

 preadditive category.

Ideals in preadditive categories

An ideal  in  is an additive subfunctor of the Hom functor:

For any diagram

with , .



Inclusion of ideals

Maximal and minimal ideals

The ideal  is

minimal if it is not zero and does not contain any other non-zero ideal.

maximal if it is not Hom and is not contained in any other proper ideal.



 not necessarily commutative ring with identity.

Mod-  is the category of right modules.

Minimal ideals in Mod-R

Facchini, 2009. There is a one-to-one correspondence

Maximal ideals in Mod-

There is no such description

OBJECTIVE: Study maximal indeals in module categories.



Constructing ideals in 

Take  and  an ideal. We define the ideal associated to , ,
as

If  need not be maximal, even if  is.

 might not be maximal.

Then .

Caracterization of maximal ideals

Facchini, Perone, Prihoda, 2011. An ideal  of  is maximal if and only if
 and satisfies that

 or

 is a maximal ideal.



Corollary

If  is additive with split idempotents and , then the maximal ideals in add
are the ideals associated to maximal ideals of End .

What about Mod- ?

OBJECTIVE: Study maximal indeals in module categories.



2. A PARTIAL ORDER BETWEEN OBJECTS OF 

 preadditive category.

.

Strict order

 if exists  with

1.  infinite.

2. .

3. For each , .

Partial order



Main example in Mod-
Let  be an infinite regular cardinal:

If  is a non-zero and -generated, then .

We can embedd  in  in "  distinct ways".

Any morphisms  "only touches less than  of these direct
summands".

Corollary

For each non-zero  in Mod- , there exists  with .

Vector spaces
If  and  are non-zero vector spaces, then  if and only if  is infinite
dimensional and dim dim .



3. MAXIMAL IDEALS

Theorem

If  and  is proper, then  is proper and not maximal.

Proof.

Set  the ideal of End  consisting of all morphisms that factors through . Then

For any ,  and not in , since .



If  and , then

However

This means that .



Theorem

If  and  is proper, then  is proper and not maximal.

Corollary 1

If there do not exist maximal objects with respect to , then  does not have maximal
ideals.

Proof.

If  is proper

 Since  is not maximal, 
  is not maximal in End  by the Theorem.

 is not maximal. 



Corollary 2

Mod-  does not have maximal ideals (actually, there are no maximal ideals in any
Grothendieck category).

Proof.

If  is a module  is -generated  

Corollary 3

If  is maximal

, then  is maximal with respect to .

In other words, if  is not maximal with respect , .



4. A STRATEGY FOR COMPUTING MAXIMAL IDEALS

Corollary 3
If  is maximal

, then  is maximal with respect to .

In other words, if  is not maximal with respect , .

Computing maximal ideals

Take  Maximal objects with respect to .

Take a maximal ideal  of .

 for some .

Set  the associated ideal in .



Computing maximal ideals

Take  Maximal objects with respect to .

Take a maximal ideal  of .

 for some .

Set  the associated ideal in .

Is  maximal in ?

 for each 

, where
 non maximal  for which exists  with .

 the rest of them.

Proposition

 for each .

Not always  for each .



Theorem

Given a preadditive category , there is a bijective correspondence between:

Maximal ideals of .

Maximal ideals  of  satisfying  for every
.
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