

MAXIMAL IDEALS IN MODULE CATEGORIES

Manuel Cortés Izurdiaga

Departamento de Matemática Aplicada. Universidad de Málaga

Dedicated to Alberto Facchini

Based on

Cortés-Izurdiaga, M., Facchini, A. Maximal ideals in module categories and applications Applied categorical structures.

1. IDEALS IN PREADDITIVE CATEGORIES

• $\mathbf{C} =$ preadditive category.

Ideals in preadditive categories

An ideal \mathcal{I} in \mathbf{C} is an additive subfunctor of the Hom functor:

- $\mathcal{I}(A,B) \leq_{\mathbb{Z}} \operatorname{Hom}(A,B)$
- For any diagram

$$X \xrightarrow{f} A \xrightarrow{i} B \xrightarrow{g} Y$$

with $i\in \mathcal{I}(A,B)$, $gif\in \mathcal{I}(X,Y)$.

Inclusion of ideals

$\mathcal{I} \leq \mathcal{J} \Leftrightarrow \mathcal{I}(A,B) \leq \mathcal{J}(A,B), orall A,B \in \mathbf{C}$

Maximal and minimal ideals

The ideal ${\cal I}$ is

- minimal if it is not zero and does not contain any other non-zero ideal.
- maximal if it is not Hom and is not contained in any other proper ideal.

- R not necessarily commutative ring with identity.
- Mod-R is the category of right modules.

Minimal ideals in Mod-R

Facchini, 2009. There is a one-to-one correspondence

 $\{ Minimal \ ideals \ in \ Mod- \} \Leftrightarrow \{ Iso-classes \ of \ simples \}$

${\rm Maximal\ ideals\ in\ Mod-}R$

There is no such description

OBJECTIVE: Study maximal indeals in module categories.

Constructing ideals in ${\boldsymbol C}$

Take $A \in \mathbf{C}$ and $I \trianglelefteq \operatorname{End}_{\mathbf{C}}(A)$ an ideal. We define the **ideal associated to** I, \mathcal{A}_I , as

$$\mathcal{A}_I(X,Y) = \{f: X o Y \mid A \stackrel{lpha}{ o} X \stackrel{f}{ o} Y \stackrel{eta}{ o} A \in I ext{ for all } lpha, eta\}$$

- If \mathcal{A}_I need not be maximal, even if I is.
 - $\circ \; \mathcal{A}_I(B,B) = I'$ might not be maximal. $\circ \;$ Then $\mathcal{A}_I < \mathcal{A}_{I'}.$

Caracterization of maximal ideals

Facchini, Perone, Prihoda, 2011. An ideal \mathcal{M} of \mathbf{C} is maximal if and only if $\mathcal{M} = \mathcal{A}_I$ and satisfies that

- $\mathcal{M}(A,A) = \operatorname{End}_{\mathbf{C}}(A)$ or
- $\mathcal{M}(A,A)$ is a maximal ideal.

Corollary

If C is additive with split idempotents and $A \in C$, then the maximal ideals in add(A) are the ideals associated to maximal ideals of $End_{C}(A)$.

$$\operatorname{add}(A) = \{ \operatorname{direct summands of} A^n \}$$

What about Mod-R?

OBJECTIVE: Study maximal indeals in module categories.

2. A PARTIAL ORDER BETWEEN OBJECTS OF \boldsymbol{C}

- $\mathbf{C} =$ preadditive category.
- $A,B\in {f C}.$

Strict order

 $A\prec B$ if exists $E\subseteq Hom(B,A) imes Hom(A,B)$ with

1. E infinite.

2.
$$(f,g)\in E\Rightarrow fg=1_A.$$

3. For each arphi:A o B, $|\{(f,g)\in E:|\; farphi
eq 0\}|<|E|.$

Partial order

$$A \preceq B \Leftrightarrow A \prec B \text{ or } A = B$$

Main example in Mod- $\!R$

Let κ be an infinite regular cardinal:

- If A is a non-zero and $<\kappa$ -generated, then $A\prec A^{(\kappa)}$.
 - \circ We can embedd A in $A^{(\kappa)}$ in " κ distinct ways".
 - \circ Any morphisms $\varphi:A\to A^{(\kappa)}$ "only touches less than κ of these direct summands".

Corollary

For each non-zero A in Mod-R, there exists B with $A \prec B$.

Vector spaces

If U and V are non-zero vector spaces, then $U \prec V$ if and only if V is infinite dimensional and $\dim(U) < \dim(V)$.

3. MAXIMAL IDEALS

Theorem

If $A \prec B$ and $I \triangleleft \operatorname{End}(A)$ is proper, then $\mathcal{A}_I(B, B)$ is proper and not maximal.

Proof.

Set J the ideal of End(B) consisting of all morphisms that factors through A. Then

• $\mathcal{A}_I(B,B) \triangleleft \mathcal{A}_I(B,B) + J$ \circ For any $(f,g) \in E, gf \in J$ and not in $\mathcal{A}_I(B,B)$, since $fgfg = 1_A
otin I$.

•
$$\mathcal{A}_I(B,B) + J \triangleleft \operatorname{End}(B)$$

 $\circ \operatorname{If} \varphi = h + \sum g_i f_i \operatorname{and} (f,g) \in E$, then
 $f \varphi g = fhg + \sum fg_i f_i g$
 $A_{\varphi} = \{(f,g) \in E \mid f \varphi g \notin I\} \subseteq \bigcup_{i=1}^n \{(f,g) \in E \mid fg_i f_i g \neq 0\} \Rightarrow A_{\varphi} \neq E$

 \circ However

$$A_{1_B}=\{(f,g)\in E\mid f1_Bg\}=E$$
 \circ This means that $1_B
ot\in \mathcal{A}_I(B,B)+J.$

Theorem

If $A \prec B$ and $I \triangleleft \operatorname{End}(A)$ is proper, then $\mathcal{A}_I(B, B)$ is proper and not maximal.

Corollary 1

If there do not exist maximal objects with respect to \preceq , then ${f C}$ does not have maximal ideals.

Proof.

If \mathcal{M} is proper $\Rightarrow \mathcal{M}(A, A) \neq A$ \Rightarrow Since A is not maximal, $\exists A \prec B$ $\Rightarrow \mathcal{M}(B, B)$ is not maximal in End(B) by the Theorem. $\Rightarrow \mathcal{M}$ is not maximal. \Box

Corollary 2

Mod-R does not have maximal ideals (actually, there are no maximal ideals in any Grothendieck category).

Proof.

If M is a module \Rightarrow M is < κ -generated \Rightarrow M \prec $M^{(\kappa)}$. \Box

Corollary 3

If ${\mathcal M}$ is maximal

- $\mathcal{M}(A, A) \neq \operatorname{End}(A)$, then A is maximal with respect to \preceq .
- In other words, if A is not maximal with respect \preceq , $\mathcal{M}(A, A) = \operatorname{End}(A)$.

4. A STRATEGY FOR COMPUTING MAXIMAL IDEALS

Corollary 3

If ${\cal M}$ is maximal

- $\mathcal{M}(A, A) \neq \operatorname{End}(A)$, then A is maximal with respect to \preceq .
- In other words, if A is not maximal with respect \preceq , $\mathcal{M}(A, A) = \operatorname{End}(A)$.

Computing maximal ideals

- Take $\mathbf{M}(\mathbf{C}) =$ Maximal objects with respect to \preceq .
- Take a maximal ideal $\mathcal M$ of $\mathbf M(\mathbf C).$
- $I = \mathcal{M}(A, A)
 eq \operatorname{End}(A)$ for some $A \in \mathbf{M}(\mathbf{C})$.
- Set $\mathcal{M}^e = \mathcal{A}_I$ the associated ideal in \mathbf{C} .

Computing maximal ideals

- Take $\mathbf{M}(\mathbf{C}) =$ Maximal objects with respect to \preceq .
- Take a maximal ideal $\mathcal M$ of $\mathbf M(\mathbf C).$
- $I=\mathcal{M}(A,A)
 eq\operatorname{End}(A)$ for some $A\in \mathbf{M}(\mathbf{C}).$
- Set $\mathcal{M}^e = \mathcal{A}_I$ the associated ideal in ${f C}$.

Is \mathcal{M}^e maximal in C?

- $\Leftrightarrow \mathcal{M}^e(B,B) = \operatorname{End}(B)$ for each $B
 ot\in \mathbf{M}(\mathbf{C})$
 - $\mathbf{C} \mathbf{M}(\mathbf{C}) = \mathbf{S}(\mathbf{C}) \cup \mathbf{T}(\mathbf{C})$, where $\circ \mathbf{S}(\mathbf{C}) =$ non maximal *B* for which exists $C \in \mathbf{M}(\mathbf{C})$ with $B \prec C$. $\circ \mathbf{T}(\mathbf{C}) =$ the rest of them.

Proposition

- $\mathcal{M}^e(B)=\operatorname{End}(B)$ for each $B\in \mathbf{S}(\mathbf{C}).$
- Not always $\mathcal{M}^e(B) = \operatorname{End}(B)$ for each $B \in \mathbf{T}(\mathbf{C})$.

Theorem

Given a preadditive category \mathbf{C} , there is a bijective correspondence between:

- Maximal ideals of **C**.
- Maximal ideals $\mathcal M$ of $\mathbf T(\mathbf C)$ satisfying $\mathcal M(A,A)=\operatorname{End}(A)$ for every $A\in \mathbf T(\mathbf C)$.

THANK YOU VERY MUCH!