Commutators in the Category SKB of Skew Braces

Mara POMPILI
Joint work with D. Bourn and A. Facchini
University of Graz
Institute for Mathematics and Scientific Computing, NAWI Graz

Padova, 28th January 2023

Lattices

Definition

A lattice is a partially order set (L, \leq) such that every two elements $a, b \in L$ have a least upper bound (denoted by $a \vee b$ and called a join for a and b) and a greatest lower bound (denoted by $a \wedge b$ and called a meet for a and b).

Lattices

Definition

A lattice is a partially order set (L, \leq) such that every two elements $a, b \in L$ have a least upper bound (denoted by $a \vee b$ and called a join for a and b) and a greatest lower bound (denoted by $a \wedge b$ and called a meet for a and b).

A lattice is complete if every infinite subset of L has a meet and a join.

Multiplicative Lattices

Definition (A. Facchini, C.A. Finocchiaro, G. Janelidze, $2022{ }^{1}$) A multiplicative lattice is a complete lattice L equipped with a further binary operation $\cdot: L \times L \rightarrow L$ (multiplication) satisfying $x \cdot y \leq x \wedge y$ for all $x, y \in L$.

Multiplicative Lattices

Definition (A. Facchini, C.A. Finocchiaro, G. Janelidze, $2022{ }^{1}$) A multiplicative lattice is a complete lattice L equipped with a further binary operation $: L \times L \rightarrow L$ (multiplication) satisfying $x \cdot y \leq x \wedge y$ for all $x, y \in L$.

The smallest and the largest elements of the complete lattice L will be denoted by 0 and 1 , respectively.

Some Examples

- Let G be a group and $(\mathcal{N}(G), \cap, \cdot)$ the complete lattice of all normal subgroups of G. With the multiplication of any two normal subgroups N and M given by the commutator [$N, M], \mathcal{N}(G)$ is a commutative (not associative) multiplicative lattice.

Some Examples

- Let G be a group and $(\mathcal{N}(G), \cap, \cdot)$ the complete lattice of all normal subgroups of G. With the multiplication of any two normal subgroups N and M given by the commutator $[N, M], \mathcal{N}(G)$ is a commutative (not associative) multiplicative lattice.
- Let R be a ring and $(\mathcal{I}(R), \cap,+)$ the complete lattice of all two-sided ideals of R. As multiplication in $\mathcal{I}(\mathcal{R})$, take the product IJ of any two two-sided ideals I and J of R. Then $\mathcal{I}(R)$ is an associative (not commutative) multiplicative lattice.

Some Examples

- Let G be a group and $(\mathcal{N}(G), \cap, \cdot)$ the complete lattice of all normal subgroups of G. With the multiplication of any two normal subgroups N and M given by the commutator $[N, M], \mathcal{N}(G)$ is a commutative (not associative) multiplicative lattice.
- Let R be a ring and $(\mathcal{I}(R), \cap,+)$ the complete lattice of all two-sided ideals of R. As multiplication in $\mathcal{I}(\mathcal{R})$, take the product $I J$ of any two two-sided ideals I and J of R. Then $\mathcal{I}(R)$ is an associative (not commutative) multiplicative lattice.
- We can also consider different multiplication in the same lattice. For instance $\mathcal{I}(R)$ is a multiplicative lattice also with respect to the multiplication given by $I \cdot J=[I, J]$ or $I \cdot J=I \cap J$.

Some Definitions

Let L be a multiplicative lattice and $x \in L$.

Some Definitions

Let L be a multiplicative lattice and $x \in L$.

1. The lower central series of x is the descending series

$$
\begin{aligned}
& \qquad x=: x_{1} \geq x_{2} \geq x_{3} \cdots \\
& \text { with } x_{n+1}:=x_{n} \cdot x \text {. If } x_{n}=0 \text { for some } n \geq 1 \text { then } x \text { is (left) } \\
& \text { nilpotent. }
\end{aligned}
$$

Some Definitions

Let L be a multiplicative lattice and $x \in L$.

1. The lower central series of x is the descending series

$$
x=: x_{1} \geq x_{2} \geq x_{3} \cdots
$$

with $x_{n+1}:=x_{n} \cdot x$. If $x_{n}=0$ for some $n \geq 1$ then x is (left) nilpotent.
2. The derived series of x is the descending series

$$
x=: x^{(0)} \geq x^{(1)} \geq x^{(2)} \ldots
$$

with $x^{(n+1)}:=x^{(n)} \cdot x^{(n)}$. If $x^{(n)}=0$ for some $n \geq 0$ then x is solvable.

Some Definitions

Let L be a multiplicative lattice and $x \in L$.

1. The lower central series of x is the descending series

$$
x=: x_{1} \geq x_{2} \geq x_{3} \ldots
$$

with $x_{n+1}:=x_{n} \cdot x$. If $x_{n}=0$ for some $n \geq 1$ then x is (left) nilpotent.
2. The derived series of x is the descending series

$$
x=: x^{(0)} \geq x^{(1)} \geq x^{(2)} \ldots
$$

with $x^{(n+1)}:=x^{(n)} \cdot x^{(n)}$. If $x^{(n)}=0$ for some $n \geq 0$ then x is solvable.

If L is commutative, left nilpotency=right nilpotency.
If L is associative, left nilpotency=right nilpotency=solvability.
3. An element $x \in L$ is abelian if $x \cdot x=0$.
3. An element $x \in L$ is abelian if $x \cdot x=0$.
4. The right annihilator of x is the element $r . \operatorname{ann}_{L}(x):=\bigvee\{y \in L \mid x \cdot y=0\}$. Similarly the left annihilator of x is the element $I . \operatorname{ann}_{L}(x):=\bigvee\{y \in L \mid y \cdot x=0\}$.
3. An element $x \in L$ is abelian if $x \cdot x=0$.
4. The right annihilator of x is the element $r . \operatorname{ann}_{L}(x):=\bigvee\{y \in L \mid x \cdot y=0\}$. Similarly the left annihilator of x is the element $l . \operatorname{ann}_{L}(x):=\bigvee\{y \in L \mid y \cdot x=0\}$.
5. The right center of x is the element $r . Z(x):=x \wedge r . \operatorname{ann}_{L}(x)$ and similarly the left center of x is the element $I . Z(x):=x \wedge I . a n n_{L}(x)$.

The Multiplicative Lattice $\mathcal{N}(G)$

For the multiplicative lattice $(\mathcal{N}(G),[-,-])$ of a group G, the element $1=G$ of $\mathcal{N}(G)$ is nilpotent (resp. solvable, abelian) as an element of the multiplicative lattice if and only if the group G is nilpotent (resp. solvable, abelian).

The Multiplicative Lattice $\mathcal{N}(G)$

For the multiplicative lattice $(\mathcal{N}(G),[-,-])$ of a group G, the element $1=G$ of $\mathcal{N}(G)$ is nilpotent (resp. solvable, abelian) as an element of the multiplicative lattice if and only if the group G is nilpotent (resp. solvable, abelian).

Let N be a normal subgroup of G. Then the left(=right) annihilator of N $\operatorname{ann}_{\mathcal{N}(G)}(N)$ is the centralizer $C_{G}(N)$ of N in G.

The Multiplicative Lattice $\mathcal{N}(G)$

For the multiplicative lattice $(\mathcal{N}(G),[-,-])$ of a group G, the element $1=G$ of $\mathcal{N}(G)$ is nilpotent (resp. solvable, abelian) as an element of the multiplicative lattice if and only if the group G is nilpotent (resp. solvable, abelian).

Let N be a normal subgroup of G. Then the left(=right) annihilator of N $\operatorname{ann}_{\mathcal{N}(G)}(N)$ is the centralizer $C_{G}(N)$ of N in G.

The center of the element $1=G$ in $\mathcal{N}(G)$ is the center $Z(G)$ of the group G.

The Multiplicative Lattice $\mathcal{I}(R)$

For the multiplicative lattice $\mathcal{I}(R)$ of a ring R with operation the product of two ideals, the element $1=R$ of $\mathcal{I}(R)$ is left nilpotent ($=$ right nilpotent=solvable) as an element of the multiplicative lattice if and only if the ring R is nilpotent, and is an abelian element if and only if the ring R is an additive abelian group with the zero multiplication.

The Multiplicative Lattice $\mathcal{I}(R)$

For the multiplicative lattice $\mathcal{I}(R)$ of a ring R with operation the product of two ideals, the element $1=R$ of $\mathcal{I}(R)$ is left nilpotent (=right nilpotent=solvable) as an element of the multiplicative lattice if and only if the ring R is nilpotent, and is an abelian element if and only if the ring R is an additive abelian group with the zero multiplication.

Let I be an ideal of R. Then the (right) annihilator of I is the ideal $r . \operatorname{ann}_{\mathcal{I}(R)}(I)=\{r \in R \mid$ ir $=0$ for all $i \in I\}$.

The Multiplicative Lattice $\mathcal{I}(R)$

For the multiplicative lattice $\mathcal{I}(R)$ of a ring R with operation the product of two ideals, the element $1=R$ of $\mathcal{I}(R)$ is left nilpotent (=right nilpotent=solvable) as an element of the multiplicative lattice if and only if the ring R is nilpotent, and is an abelian element if and only if the ring R is an additive abelian group with the zero multiplication.

Let I be an ideal of R. Then the (right) annihilator of I is the ideal $r . \operatorname{ann}_{\mathcal{I}(R)}(I)=\{r \in R \mid$ ir $=0$ for all $i \in I\}$.

The (right) center of the element $1=R$ in $\mathcal{I}(R)$ is the ideal $r . Z(R)=\{r \in R \mid r s=0$ for all $s \in R\}$.

The Multiplicative Lattice $\mathcal{I}(R)$

For the multiplicative lattice $\mathcal{I}(R)$ of a ring R with operation the product of two ideals, the element $1=R$ of $\mathcal{I}(R)$ is left nilpotent (=right nilpotent=solvable) as an element of the multiplicative lattice if and only if the ring R is nilpotent, and is an abelian element if and only if the ring R is an additive abelian group with the zero multiplication.

Let I be an ideal of R. Then the (right) annihilator of I is the ideal $r . \operatorname{ann}_{\mathcal{I}(R)}(I)=\{r \in R \mid$ ir $=0$ for all $i \in I\}$.

The (right) center of the element $1=R$ in $\mathcal{I}(R)$ is the ideal $r . Z(R)=\{r \in R \mid r s=0$ for all $s \in R\}$.

Notice that the centralizer of an ideal and the center of a ring in the usual sense is not an ideal, but it is just a subring and they do not coincide with our definition of annihilator and center.

Left Skew Braces

Definition

A (left) skew brace is a triple $(A, *, \circ)$, where $(A, *)$ and (A, \circ) are groups such that

$$
a \circ(b * c)=(a \circ b) * a^{-*} *(a \circ c),
$$

for every $a, b, c \in A$.
We indicate with a^{-*}, a^{-0} the inverses of a respectively to the * operation and the o operation.

Left Skew Braces

Definition

A (left) skew brace is a triple $(A, *, \circ)$, where $(A, *)$ and (A, \circ) are groups such that

$$
a \circ(b * c)=(a \circ b) * a^{-*} *(a \circ c),
$$

for every $a, b, c \in A$.
We indicate with a^{-*}, a^{-0} the inverses of a respectively to the * operation and the o operation.

Notice that $1_{(A, 0)}=1_{(A, *)}$. We will write 1 for the unique identity element.

Ideals of a Left Skew Brace

A subset I of a left skew brace $(A, *, \circ)$ is called an ideal of A if it is a normal subgroup of both the groups (A, \circ) and $(A, *)$ such that $a * I=a \circ I$ for every $a \in A$. We will indicate with $\mathcal{I}(A)$ the set of all the ideals of A.

Ideals of a Left Skew Brace

A subset I of a left skew brace $(A, *, \circ)$ is called an ideal of A if it is a normal subgroup of both the groups (A, \circ) and $(A, *)$ such that $a * I=a \circ I$ for every $a \in A$. We will indicate with $\mathcal{I}(A)$ the set of all the ideals of A.

Remark

A subset I of A is an ideal of A if and only if (I, \circ) is a normal subgroup of $(A, \circ), a * I=I * a$ and $\lambda_{a}(I) \subseteq I$ for every $a \in A$, where
$\lambda:(A, \circ) \rightarrow \operatorname{Aut}(A, *)$, is the group homomorphism given by $\lambda: a \mapsto \lambda_{a}$, where $\lambda_{a}(b)=a^{-*} *(a \circ b)$.

Proposition

For any left skew brace A, there is a one-to-one correspondence between the set $\mathcal{I}(A)$ of all its ideals and the set $\mathcal{C}(A)$ of all its congruences, namely the set of all equivalence relations on A compatible with its two operations.

Remark

Let I, J be two ideals of A. Then

$$
I * J=\bigcup_{i \in I} i * J=\bigcup_{i \in I} i \circ J=I \circ J .
$$

Hence we will refer to this set as the product IJ of I and J. Moreover, one can easily prove that IJ is an ideal of A.

Remark

Let I, J be two ideals of A. Then

$$
I * J=\bigcup_{i \in I} i * J=\bigcup_{i \in I} i \circ J=I \circ J
$$

Hence we will refer to this set as the product IJ of I and J. Moreover, one can easily prove that $I J$ is an ideal of A.

Consider the set $\mathcal{I}(A)$ of all the ideals of a left skew brace A.

Remark

Let I, J be two ideals of A. Then

$$
I * J=\bigcup_{i \in I} i * J=\bigcup_{i \in I} i \circ J=I \circ J .
$$

Hence we will refer to this set as the product IJ of I and J. Moreover, one can easily prove that IJ is an ideal of A.

Consider the set $\mathcal{I}(A)$ of all the ideals of a left skew brace A.
With $I \wedge J:=I \cap J$ and $I \vee J:=I J, \mathcal{I}(A)$ turns out to be a complete lattice.

Remark

Let I, J be two ideals of A. Then

$$
I * J=\bigcup_{i \in I} i * J=\bigcup_{i \in I} i \circ J=I \circ J .
$$

Hence we will refer to this set as the product IJ of I and J.
Moreover, one can easily prove that IJ is an ideal of A.

Consider the set $\mathcal{I}(A)$ of all the ideals of a left skew brace A.
With $I \wedge J:=I \cap J$ and $I \vee J:=I J, \mathcal{I}(A)$ turns out to be a complete lattice.

Can we find one a "right" notion of multiplication for the lattice $\mathcal{I}(A)$?

Commutators

Commutators play an important role in the study of algebraic structures.
${ }^{2}$ S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Oxford.
${ }^{3}$ J. D. H. Smith, Mal'tsev Varieties, Lecture Notes in Math., Springer=Verlag, 1976.

Commutators

Commutators play an important role in the study of algebraic structures.
In literature there are several generalizations of commutators.
${ }^{2}$ S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Oxford.
UNON
${ }^{3}$ J. D. H. Smith, Mal'tsev Varieties, Lecture Notes in Math., Springer=Verlag, 1976.

Commutators

Commutators play an important role in the study of algebraic structures.
In literature there are several generalizations of commutators.
Of course, all of these generalizations coincide with the well-known notion of commutator in the case of Rings and Groups. However, there are several examples of algebraic structures for which the various definitions of commutators do not coincide.
${ }^{2}$ S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Oxford.
${ }^{3}$ J. D. H. Smith, Mal'tsev Varieties, Lecture Notes in Math., Springer=Verlag, 1976.

Commutators

Commutators play an important role in the study of algebraic structures.
In literature there are several generalizations of commutators.
Of course, all of these generalizations coincide with the well-known notion of commutator in the case of Rings and Groups. However, there are several examples of algebraic structures for which the various definitions of commutators do not coincide.

The two most important generalizations of commutator for a generic algebraic structure are due to S . Huq^{2} and J. Smith. ${ }^{3}$
${ }^{2}$ S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Oxford.
${ }^{3}$ J. D. H. Smith, Mal'tsev Varieties, Lecture Notes in Math., Springer=Verlag, 1976.

The Huq Commutator and the Smith Commutator

Let I, J be two ideals of a left skew brace A.

The Huq Commutator and the Smith Commutator

Let I, J be two ideals of a left skew brace A.
Definition
The Huq commutator of I and J is the smallest ideal H of A for which the map

$$
\mu: I \times J \rightarrow A / H ; \quad(i, j) \mapsto i * j * H
$$

is a well-defined skew brace morphism.

The Huq Commutator and the Smith Commutator

Let I, J be two ideals of a left skew brace A.

Definition

The Huq commutator of I and J is the smallest ideal H of A for which the map

$$
\mu: I \times J \rightarrow A / H ; \quad(i, j) \mapsto i * j * H
$$

is a well-defined skew brace morphism.

Definition

The Smith commutator of I and J is the smallest ideal S of A for which the map
$p:\left\{(x, y, z) \in A^{3} \mid x * y^{-*} \in I, y * z^{-*} \in J\right\} \rightarrow A / S ; \quad(x, y, z) \mapsto x * y^{-*} * z * S$
is a well-defined skew brace morphism.

Commutator of Ideals of a Skew Brace

Theorem (Bourn, Facchini, P., $2022{ }^{4}$)
Let I, J be two ideals of a left skew brace ($A, *, \circ$). The Huq Commutator and the Smith Commutator of I and J coincide and it is the ideal generated by the union of the following three sets:

1. the set $\left\{i * j * i^{-*} * j^{-*} \mid i \in I, j \in J\right\}$;
2. the set $\left\{i \circ j \circ i^{-\circ} \circ j^{-\circ} \mid i \in I, j \in J\right\}$;
3. the $\operatorname{set}\left\{i * j *(i \circ j)^{-*} \mid i \in I, j \in J\right\}$.
[^0]
The Multiplicative Lattice $\mathcal{I}(A)$

Consider the "commutator operation" given by

$$
[-,-]: \mathcal{I}(A) \times \mathcal{I}(A) \rightarrow \mathcal{I}(A) .
$$

Remark

1. $[I, J] \subseteq I \cap J ;$
2. $[I, J]=[J, I]$;
3. $[I, J K]=[I, J][I, K]$;

The Multiplicative Lattice $\mathcal{I}(A)$

Consider the "commutator operation" given by

$$
[-,-]: \mathcal{I}(A) \times \mathcal{I}(A) \rightarrow \mathcal{I}(A) .
$$

Remark

1. $[I, J] \subseteq I \cap J$;
2. $[I, J]=[J, I]$;
3. $[I, J K]=[I, J][I, K]$;
$(\mathcal{I}(A),[-,-])$ is a commutative multiplicative lattice.

The Multiplicative Lattice $\mathcal{I}(A)$

Let I be an ideal of A. We have the following definition:

The Multiplicative Lattice $\mathcal{I}(A)$

Let I be an ideal of A. We have the following definition:

- The lower central series of l is the descending series

$$
I=: I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots
$$

where $I_{n+1}:=\left[I_{n}, I\right]$ for every $n \geq 0$. If $I_{n}=1$ for some $n \geq 1$, then I is nilpotent.

The Multiplicative Lattice $\mathcal{I}(A)$

Let I be an ideal of A. We have the following definition:

- The lower central series of l is the descending series

$$
I=: I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots
$$

where $I_{n+1}:=\left[I_{n}, I\right]$ for every $n \geq 0$. If $I_{n}=1$ for some $n \geq 1$, then I is nilpotent.

- The derived series of I is the descending series

$$
I=: I^{(0)} \supseteq I^{(2)} \supseteq I^{(3)} \supseteq \cdots
$$

where $I^{(n+1)}:=\left[I^{(n)}, I^{(n)}\right]$ for every $n \geq 0$. If $I^{(n)}=1$ for some $n \geq 1$, then $/$ is solvable.

The Multiplicative Lattice $\mathcal{I}(A)$

Let I be an ideal of A. We have the following definition:

- The lower central series of l is the descending series

$$
I=: I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots
$$

where $I_{n+1}:=\left[I_{n}, I\right]$ for every $n \geq 0$. If $I_{n}=1$ for some $n \geq 1$, then I is nilpotent.

- The derived series of I is the descending series

$$
I=: I^{(0)} \supseteq I^{(2)} \supseteq I^{(3)} \supseteq \cdots
$$

where $I^{(n+1)}:=\left[I^{(n)}, I^{(n)}\right]$ for every $n \geq 0$. If $I^{(n)}=1$ for some $n \geq 1$, then $/$ is solvable.

- An ideal I of A is abelian if $[I, I]=1$.

Center and Centralizer

Proposition

A left skew brace A is abelian if and only if (A, \circ) and $(A, *)$ are abelian groups and the $a \circ b=a * b$, for every $a, b \in A$.

Center and Centralizer

Proposition

A left skew brace A is abelian if and only if (A, \circ) and $(A, *)$ are abelian groups and the $a \circ b=a * b$, for every $a, b \in A$.

We have also the following:

Center and Centralizer

Proposition

A left skew brace A is abelian if and only if (A, \circ) and $(A, *)$ are abelian groups and the $a \circ b=a * b$, for every $a, b \in A$.

We have also the following:

- the centralizer (annihilator) $C_{(A, *, \circ)}(I)$ of an ideal $/$ of A is the greatest ideal of A that contains

$$
C_{(A, \circ)}(I) \cap C_{(A, *)}(I) \cap \operatorname{Ker}\left(\left.\lambda\right|^{\prime}:(A, \circ) \rightarrow \operatorname{Aut}(I, *)\right) ;
$$

Center and Centralizer

Proposition

A left skew brace A is abelian if and only if (A, \circ) and $(A, *)$ are abelian groups and the $a \circ b=a * b$, for every $a, b \in A$.

We have also the following:

- the centralizer (annihilator) $C_{(A, *, \circ)}(I)$ of an ideal $/$ of A is the greatest ideal of A that contains

$$
C_{(A, \circ)}(I) \cap C_{(A, *)}(I) \cap \operatorname{Ker}\left(\left.\lambda\right|^{\prime}:(A, \circ) \rightarrow \operatorname{Aut}(I, *)\right) ;
$$

- the center $Z(A, *, \circ)$ of A is the ideal $Z(A, *) \cap Z(A, \circ) \cap \operatorname{Ker} \lambda=$ $\{a \in A \mid a \circ b=b \circ a=a * b=b * a$, for all $b \in A\}$.

Center and Centralizer

Proposition

A left skew brace A is abelian if and only if (A, \circ) and $(A, *)$ are abelian groups and the $a \circ b=a * b$, for every $a, b \in A$.

We have also the following:

- the centralizer (annihilator) $C_{(A, *, \circ)}(I)$ of an ideal $/$ of A is the greatest ideal of A that contains

$$
C_{(A, \circ)}(I) \cap C_{(A, *)}(I) \cap \operatorname{Ker}\left(\left.\lambda\right|^{\prime}:(A, \circ) \rightarrow \operatorname{Aut}(I, *)\right) ;
$$

- the center $Z(A, *, \circ)$ of A is the ideal $Z(A, *) \cap Z(A, \circ) \cap \operatorname{Ker} \lambda=$ $\{a \in A \mid a \circ b=b \circ a=a * b=b * a$, for all $b \in A\}$.

Observe that A is abelian if and only if $Z(A, *, \circ)=A$.

Thank you for your attention!

[^0]: ${ }^{4}$ D. Bourn, A. Facchini and M. Pompili, Aspects of the category SKB of skew braces, Comm. Algebra (2022), published online 5 Dec 2022.

