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Lattices

Definition
A lattice is a partially order set (L,≤) such that every two elements
a, b ∈ L have a least upper bound (denoted by a ∨ b and called a join for
a and b) and a greatest lower bound (denoted by a ∧ b and called a
meet for a and b).

A lattice is complete if every infinite subset of L has a meet and a join.
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Multiplicative Lattices

Definition (A. Facchini, C.A. Finocchiaro, G. Janelidze, 2022 1)
A multiplicative lattice is a complete lattice L equipped with a further
binary operation · : L× L → L (multiplication) satisfying x · y ≤ x ∧ y for
all x , y ∈ L.

The smallest and the largest elements of the complete lattice L will be
denoted by 0 and 1, respectively.

1A. Facchini, C.A. Finocchiaro, G. Janelidze, Abstractly prime spectra, Alg. Univ.
83 (2022).
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Some Examples

• Let G be a group and (N (G ),∩, ·) the complete lattice of all normal
subgroups of G . With the multiplication of any two normal
subgroups N and M given by the commutator [N,M], N (G ) is a
commutative (not associative) multiplicative lattice.

• Let R be a ring and (I(R),∩,+) the complete lattice of all
two-sided ideals of R. As multiplication in I(R), take the product
IJ of any two two-sided ideals I and J of R. Then I(R) is an
associative (not commutative) multiplicative lattice.

• We can also consider different multiplication in the same lattice. For
instance I(R) is a multiplicative lattice also with respect to the
multiplication given by I · J = [I , J] or I · J = I ∩ J.
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Some Definitions

Let L be a multiplicative lattice and x ∈ L.

1. The lower central series of x is the descending series

x =: x1 ≥ x2 ≥ x3 · · ·

with xn+1 := xn · x . If xn = 0 for some n ≥ 1 then x is (left)
nilpotent.

2. The derived series of x is the descending series

x =: x (0) ≥ x (1) ≥ x (2) · · ·

with x (n+1) := x (n) · x (n). If x (n) = 0 for some n ≥ 0 then x is
solvable.

If L is commutative, left nilpotency=right nilpotency.

If L is associative, left nilpotency=right nilpotency=solvability.
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3. An element x ∈ L is abelian if x · x = 0.

4. The right annihilator of x is the element
r . annL(x) :=

∨
{y ∈ L | x · y = 0}. Similarly the left annihilator of

x is the element l . annL(x) :=
∨
{y ∈ L | y · x = 0}.

5. The right center of x is the element r .Z (x) := x ∧ r . annL(x) and
similarly the left center of x is the element l .Z (x) := x ∧ l . annL(x).
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The Multiplicative Lattice N (G )

For the multiplicative lattice (N (G ), [−,−]) of a group G , the element
1 = G of N (G ) is nilpotent (resp. solvable, abelian) as an element of the
multiplicative lattice if and only if the group G is nilpotent (resp.
solvable, abelian).

Let N be a normal subgroup of G . Then the left(=right) annihilator of N
annN (G)(N) is the centralizer CG (N) of N in G .

The center of the element 1 = G in N (G ) is the center Z (G ) of the
group G .
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The Multiplicative Lattice I(R)

For the multiplicative lattice I(R) of a ring R with operation the product
of two ideals, the element 1 = R of I(R) is left nilpotent (=right
nilpotent=solvable) as an element of the multiplicative lattice if and only
if the ring R is nilpotent, and is an abelian element if and only if the ring
R is an additive abelian group with the zero multiplication.

Let I be an ideal of R. Then the (right) annihilator of I is the ideal
r . annI(R)(I ) = {r ∈ R | ir = 0 for all i ∈ I}.

The (right) center of the element 1 = R in I(R) is the ideal
r .Z (R) = {r ∈ R | rs = 0 for all s ∈ R}.

Notice that the centralizer of an ideal and the center of a ring in the usual

sense is not an ideal, but it is just a subring and they do not coincide with

our definition of annihilator and center.
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Left Skew Braces

Definition
A (left) skew brace is a triple (A, ∗, ◦), where (A, ∗) and (A, ◦) are
groups such that

a ◦ (b ∗ c) = (a ◦ b) ∗ a−∗ ∗ (a ◦ c),

for every a, b, c ∈ A.
We indicate with a−∗, a−◦ the inverses of a respectively to the ∗
operation and the ◦ operation.

Notice that 1(A,◦) = 1(A,∗). We will write 1 for the unique identity
element.
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Ideals of a Left Skew Brace

A subset I of a left skew brace (A, ∗, ◦) is called an ideal of A if it is a
normal subgroup of both the groups (A, ◦) and (A, ∗) such that
a ∗ I = a ◦ I for every a ∈ A. We will indicate with I(A) the set of all the
ideals of A.

Remark
A subset I of A is an ideal of A if and only if (I , ◦) is a normal subgroup
of (A, ◦), a ∗ I = I ∗ a and λa(I ) ⊆ I for every a ∈ A, where
λ : (A, ◦) → Aut(A, ∗), is the group homomorphism given by λ : a 7→ λa,
where λa(b) = a−∗ ∗ (a ◦ b).
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Proposition
For any left skew brace A, there is a one-to-one correspondence between
the set I(A) of all its ideals and the set C(A) of all its congruences,
namely the set of all equivalence relations on A compatible with its two
operations.



Remark
Let I , J be two ideals of A. Then

I ∗ J =
⋃
i∈I

i ∗ J =
⋃
i∈I

i ◦ J = I ◦ J.

Hence we will refer to this set as the product IJ of I and J.

Moreover, one can easily prove that IJ is an ideal of A.

Consider the set I(A) of all the ideals of a left skew brace A.

With I ∧ J := I ∩ J and I ∨ J := IJ, I(A) turns out to be a complete
lattice.

Can we find one a ”right” notion of multiplication for the lattice I(A)?
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Commutators

Commutators play an important role in the study of algebraic structures.

In literature there are several generalizations of commutators.

Of course, all of these generalizations coincide with the well-known
notion of commutator in the case of Rings and Groups.
However, there are several examples of algebraic structures for which the
various definitions of commutators do not coincide.

The two most important generalizations of commutator for a generic
algebraic structure are due to S. Huq2 and J. Smith. 3

2S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Oxford.
3J. D. H. Smith, Mal’tsev Varieties, Lecture Notes in Math., Springer-Verlag, 1976.
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The Huq Commutator and the Smith Commutator

Let I , J be two ideals of a left skew brace A.

Definition
The Huq commutator of I and J is the smallest ideal H of A for which
the map

µ : I × J → A/H; (i , j) 7→ i ∗ j ∗ H

is a well-defined skew brace morphism.

Definition
The Smith commutator of I and J is the smallest ideal S of A for
which the map

p : {(x , y , z) ∈ A3 | x∗y−∗ ∈ I , y∗z−∗ ∈ J} → A/S ; (x , y , z) 7→ x∗y−∗∗z∗S

is a well-defined skew brace morphism.
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Commutator of Ideals of a Skew Brace

Theorem (Bourn, Facchini, P., 2022 4)
Let I , J be two ideals of a left skew brace (A, ∗, ◦). The Huq
Commutator and the Smith Commutator of I and J coincide and it is the
ideal generated by the union of the following three sets:

1. the set {i ∗ j ∗ i−∗ ∗ j−∗ | i ∈ I , j ∈ J};
2. the set {i ◦ j ◦ i−◦ ◦ j−◦ | i ∈ I , j ∈ J};
3. the set {i ∗ j ∗ (i ◦ j)−∗ | i ∈ I , j ∈ J}.

4D. Bourn, A. Facchini and M. Pompili, Aspects of the category SKB of skew
braces, Comm. Algebra (2022), published online 5 Dec 2022.



The Multiplicative Lattice I(A)

Consider the ”commutator operation” given by

[−,−] : I(A)× I(A) → I(A).

Remark
1. [I , J] ⊆ I ∩ J;

2. [I , J] = [J, I ];

3. [I , JK ] = [I , J][I ,K ];

(I(A), [−,−]) is a commutative multiplicative lattice.
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The Multiplicative Lattice I(A)

Let I be an ideal of A. We have the following definition:

• The lower central series of I is the descending series

I =: I1 ⊇ I2 ⊇ I3 ⊇ · · ·

where In+1 := [In, I ] for every n ≥ 0. If In = 1 for some n ≥ 1, then I
is nilpotent.

• The derived series of I is the descending series

I =: I (0) ⊇ I (2) ⊇ I (3) ⊇ · · ·

where I (n+1) := [I (n), I (n)] for every n ≥ 0. If I (n) = 1 for some
n ≥ 1, then I is solvable.

• An ideal I of A is abelian if [I , I ] = 1.
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Center and Centralizer

Proposition
A left skew brace A is abelian if and only if (A, ◦) and (A, ∗) are abelian
groups and the a ◦ b = a ∗ b, for every a, b ∈ A.

We have also the following:

• the centralizer (annihilator) C(A,∗,◦)(I ) of an ideal I of A is the
greatest ideal of A that contains
C(A,◦)(I ) ∩ C(A,∗)(I ) ∩ Ker(λ |I : (A, ◦) → Aut(I , ∗));

• the center Z (A, ∗, ◦) of A is the ideal Z (A, ∗) ∩ Z (A, ◦) ∩ Ker λ =
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Thank you for your attention!


