Infinite direct sums of finitely generated torsion free modules

(Joint work with Dolors Herbera and Román Álvarez Arias)

Pavel Příhoda

CRaM, Conference in honor of Alberto Facchini, 27. 01. 2023

Setting and notation

- Let R be a commutative noetherian domain of Krull dimension 1, R its normalization (i.e., the integral closure of R in its field of quotiens). We assume that R is finitely generated R-module.
- A finitely generated torsion free module over R is called a *lattice*.
- ▶ If $\mathfrak{m} \in Max(R)$ and $M \in Mod$ -R then $M_{\mathfrak{m}} := M \otimes_R R_{\mathfrak{m}}$.
- Two R-modules M, N are in the same genus ([M] = [N]) if M_m ≃ N_m in Mod-R_m for every m ∈ Max(R).

The goal

- A ring R has property (FD) if the class of direct sums of lattices is closed under direct summands.
- For noetherian domains (FD) means that every pure projective torsion free *R*-module is a direct sum of finitely generated modules.
- Describe commutative noetherian domains of Krull dimension 1 with module finite normalization satisfying (FD).

Summary of the talk at ASTA 2014

Theorem

Let R be a commutative noetherian domain of Krull dimension 1 with module finite normalization \tilde{R} . If R has (FD), then

- (a) For every $\mathfrak{m} \in Max(R)$ the normalization of $R_{\mathfrak{m}}$ is a discrete valuation domain.
- (b) If $\mathfrak{m} \neq \mathfrak{n} \in \operatorname{Max}(R)$, N is an indecomposable $R_{\mathfrak{n}}$ -lattice and M is an indecomposable $R_{\mathfrak{m}}$ -lattice, then the ranks of M and N are coprime.

Moreover, R is locally lattice finite then (a) and (b) imply (FD).

Wiegand's corollary

Corollary

(*R.* Wiegand) If *R* is a commutative noetherian domain of Krull dimension 1 with module finite normalization and *R* satisfies (FD), then there exists at most one $\mathfrak{m} \in Max(R)$ such that $R_{\mathfrak{m}}$ is not a Bass domain.

Definition

A reduced commutative noetherian ring with module finite normalization is *Bass* if each of its ideals can be generated by at most 2 elements.

For reduced one-dimensional noetherian rings with module finite normalization, H. Bass considered the following conditions

- (a) Each indecomposable torsion-free *R*-module is isomorphic to an ideal.
- (b) Each ring between R and its normalization is Gorenstein.
- (c) Every ideal of R is 2-generated.

Bass showed (b) and (c) are equivalent and imply (a).

If R is also local domain, then (a), (b), and (c) are equivalent.

Factor categories and infinite direct sums

Definition

Let \mathcal{D} be a class of Λ -modules, M an arbitrary Λ -module, and I an ideal of $\operatorname{End}_{\Lambda}(M)$. The ideal \mathcal{I} of \mathcal{D} is called *the ideal associated* to I if $\mathcal{I}(X, Y) = \{f : X \to Y \mid gfh \in I \forall g : Y \to M, h : M \to X\}.$

Example

(Harada, Sai) Let \mathcal{D} be a class all direct sums of modules with local endomorphism ring, M a module with local endomorphism ring $I = J(\operatorname{End}_{\Lambda}(M))$. Then \mathcal{D}/\mathcal{I} is equivalent to $\operatorname{Mod-End}_{\Lambda}(M)/J(\operatorname{End}_{\Lambda}(M))$ and the 'dimension' of the image in $\oplus_{i \in I} M_i$ in \mathcal{D}/\mathcal{I} is the cardinality of $\{i \in I \mid M_i \simeq M\}$.

Theorem

Let M_i , $i \in I$ be a family of finitely generated Λ -modules with semilocal endomorphism ring, $X, Y \in \text{Add}(\bigoplus_{i \in I} M_i)$. Then $X \simeq Y$ if and only if X and Y are isomorphic in any factor category of the form $\text{Add}(\bigoplus_{i \in I} M_i)/\mathcal{I}$, where \mathcal{I} is the ideal associated a maximal ideal of $\text{End}_R(M_i)$ for some $i \in I$.

Associated ideals and localization

- Let R be a commutative ring, M a finitely generated R-module, n a maximal two-sided ideal of End_R(M).
- Consider $\varphi \colon R \to \operatorname{End}_R(M)$ and let $\mathfrak{m} := \varphi^{-1}(\mathfrak{n})$. Then $\mathfrak{m} \in \operatorname{Max}(R)$.
- Let M_i, i ∈ N be finitely presented R-modules (or finitely generated torsion free R-modules) and consider A, A' ≤_⊕ ⊕_{i∈N} M_i.
- If A_m ~ A'_m then A and A' are isomorphic modulo the ideal of Mod-R associated to n.

Summands of infinite direct sums have trivial genus

Corollary

Let R be a commutative ring, M_1, M_2, \ldots finitely presented R-modules with semilocal endomorphism rings. If A, A' are direct summands of $\bigoplus_{i \in \mathbb{N}} M_i$ then $A \simeq A'$ if and only if [A] = [A'] (i.e., $A_{\mathfrak{m}} \simeq A_{\mathfrak{m}}$ for every $m \in \operatorname{Max}(R)$).

Remark

(Facchini, Herbera) Finitely presented modules over semilocal rings have semilocal endomorphism rings.

Semilocal case

Theorem

Let R be a commutative noetherian semilocal domain of Krull dimension 1 with module finite normalization \tilde{R} . Assume that

- (a) For every $\mathfrak{m} \in Max(R)$ the normalization of $R_{\mathfrak{m}}$ is a discrete valuation domain.
- (b) There is at most one $\mathfrak{m}\in \operatorname{Max}(R)$ such that $R_\mathfrak{m}$ is not a Bass domain

Then R satisfies (FD).

Idea of the proof: If A is a direct summand of $\bigoplus_{i \in \mathbb{N}} M_i$ then $A_{\mathfrak{m}}$ has to be a direct sum of $R_{\mathfrak{m}}$ -lattices for every $\mathfrak{m} \in \operatorname{Max}(R)$. Use Package deal Theorem od Levy and Odenthal to create $A' = \bigoplus_{i \in \mathbb{N}} N_i$ where N_i are lattices and $A_{\mathfrak{m}} \simeq A'_{\mathfrak{m}}$ for every $\mathfrak{m} \in \operatorname{Max}(R)$.

Globalization

Lemma

Let R be a noetherian domain of Krull dimension one with module finite normalization \tilde{R} . Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_k$ be the list of maximal ideals of R such that $R_{\mathfrak{m}}$ is a principal ideal domain any maximal ideal $\mathfrak{m} \notin {\mathfrak{m}_1, \ldots, \mathfrak{m}_k}$ and let $\Sigma = R \setminus \bigcup_{i=1}^k \mathfrak{m}_i$. Further let $M \subseteq \tilde{R}^{(\omega)}$ be such that M_{Σ} is a direct sum of finitely generated R_{Σ} modules. Then M is a direct sum of finitely generated modules.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Corollary

The previous theorem holds for an arbitrary commutative noetherian one-dimensional domain with module-finite normalization. Let R be a Dedekind domain. Note that all nonzero ideals of R are in the same genus but the ideal class group of R can be non-trivial. On the other hand, any projective R-module is either finitely generated or free.

Hence if I_1, I_2, \ldots and J_1, J_2, \ldots are nonzero ideals of R then $\bigoplus_{i \in \mathbb{N}} I_i \simeq \bigoplus_{i \in \mathbb{N}} J_i$.

Genus of infinite direct sums

Proposition

Let Λ be a module-finite algebra over a 1-dimensional noetherian domain R such that Λ_0 is simple artinian. If $M_i, N_i \in \text{Mod}-\Lambda$ are nonzero finitely generated torsion free R-modules and $M = \bigoplus_{i \in \mathbb{N}} M_i, N = \bigoplus_{i \in \mathbb{N}} N_i$ then $M \simeq N \Leftrightarrow [M] = [N]$.

Weak Krull-Schmidt theorem

Theorem

(Facchini, 1996) Let $U_1, \ldots, U_n, V_1, \ldots, V_m$ be non-zero uniserial modules over a ring Λ . Then $\bigoplus_{i=1}^n U_i \simeq \bigoplus_{i=1}^m V_i$ if and only if n = m and there are permutations $\sigma, \tau \in S_n$ such that $[U_i]_m = [V_{\sigma(i)}]_m$ and $[U_i]_e = [V_{\tau(i)}]_e$ for $i = 1, 2, \ldots, n$.

Theorem

Let R be commutative noetherian one dimensional domain with module finite normalization satisfying (FD) and $U_i, V_i, i \in \mathbb{N}$ non-zero ideals of R and $\mathfrak{m}_1, \ldots, \mathfrak{m}_k$ the list of maximal ideals of R containing the conductor of R. Then $\bigoplus_{i\in\mathbb{N}} U_i \simeq \bigoplus_{i\in\mathbb{N}} V_i$ if and only if there are $\sigma_1, \ldots, \sigma_k \in S(\mathbb{N})$ such that

$$(U_i)_{\mathfrak{m}_j}\simeq (V_{\sigma_j(i)})_{\mathfrak{m}_j}, i\in\mathbb{N}, j=1,\ldots,k$$
.

Thank you for your attention.

