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Setting and notation

▶ Let R be a commutative noetherian domain of Krull
dimension 1, R̃ its normalization (i.e., the integral closure of
R in its field of quotiens). We assume that R̃ is finitely
generated R-module.

▶ A finitely generated torsion free module over R is called a
lattice.

▶ If m ∈ Max(R) and M ∈ Mod-R then Mm := M ⊗R Rm.

▶ Two R-modules M,N are in the same genus ([M] = [N]) if
Mm ≃ Nm in Mod-Rm for every m ∈ Max(R).



The goal

▶ A ring R has property (FD) if the class of direct sums of
lattices is closed under direct summands.

▶ For noetherian domains (FD) means that every pure projective
torsion free R-module is a direct sum of finitely generated
modules.

▶ Describe commutative noetherian domains of Krull dimension
1 with module finite normalization satisfying (FD).



Summary of the talk at ASTA 2014

Theorem
Let R be a commutative noetherian domain of Krull dimension 1
with module finite normalization R̃. If R has (FD), then

(a) For every m ∈ Max(R) the normalization of Rm is a discrete
valuation domain.

(b) If m ̸= n ∈ Max(R), N is an indecomposable Rn-lattice and
M is an indecomposable Rm-lattice, then the ranks of M and
N are coprime.

Moreover, R is locally lattice finite then (a) and (b) imply (FD).



Wiegand’s corollary

Corollary

(R. Wiegand) If R is a commutative noetherian domain of Krull
dimension 1 with module finite normalization and R satisfies (FD),
then there exists at most one m ∈ Max(R) such that Rm is not a
Bass domain.

Definition
A reduced commutative noetherian ring with module finite
normalization is Bass if each of its ideals can be generated by at
most 2 elements.



Bass domains

For reduced one-dimensional noetherian rings with module finite
normalization, H. Bass considered the following conditions

(a) Each indecomposable torsion-free R-module is isomorphic to
an ideal.

(b) Each ring between R and its normalization is Gorenstein.

(c) Every ideal of R is 2-generated.

Bass showed (b) and (c) are equivalent and imply (a).
If R is also local domain, then (a), (b), and (c) are equivalent.



Factor categories and infinite direct sums

Definition
Let D be a class of Λ-modules, M an arbitrary Λ-module, and I an
ideal of EndΛ(M). The ideal I of D is called the ideal associated
to I if I(X ,Y ) = {f : X → Y | gfh ∈ I ∀ g : Y → M, h : M → X}.

Example

(Harada, Sai) Let D be a class all direct sums of modules with
local endomorphism ring, M a module with local endomorphism
ring I = J(EndΛ(M)). Then D/I is equivalent to
Mod-EndΛ(M)/J(EndΛ(M)) and the ’dimension’ of the image in
⊕i∈IMi in D/I is the cardinality of {i ∈ I | Mi ≃ M}.



A result we could apply

Theorem
Let Mi , i ∈ I be a family of finitely generated Λ-modules with
semilocal endomorphism ring, X ,Y ∈ Add(⊕i∈IMi ). Then X ≃ Y
if and only if X and Y are isomorphic in any factor category of the
form Add(⊕i∈IMi )/I, where I is the ideal associated a maximal
ideal of EndR(Mi ) for some i ∈ I .



Associated ideals and localization

▶ Let R be a commutative ring, M a finitely generated
R-module, n a maximal two-sided ideal of EndR(M).

▶ Consider φ : R → EndR(M) and let m := φ−1(n). Then
m ∈ Max(R).

▶ Let Mi , i ∈ N be finitely presented R-modules (or finitely
generated torsion free R-modules) and consider
A,A′ ≤⊕

⊕
i∈NMi .

▶ If Am ≃ A′
m then A and A′ are isomorphic modulo the ideal of

Mod-R associated to n.



Summands of infinite direct sums have trivial genus

Corollary

Let R be a commutative ring, M1,M2, . . . finitely presented
R-modules with semilocal endomorphism rings. If A,A′ are direct
summands of

⊕
i∈NMi then A ≃ A′ if and only if [A] = [A′] (i.e.,

Am ≃ Am for every m ∈ Max(R)).

Remark
(Facchini, Herbera) Finitely presented modules over semilocal rings
have semilocal endomorphism rings.



Semilocal case

Theorem
Let R be a commutative noetherian semilocal domain of Krull
dimension 1 with module finite normalization R̃. Assume that

(a) For every m ∈ Max(R) the normalization of Rm is a discrete
valuation domain.

(b) There is at most one m ∈ Max(R) such that Rm is not a Bass
domain

Then R satisfies (FD).

Idea of the proof: If A is a direct summand of
⊕

i∈NMi then Am

has to be a direct sum of Rm-lattices for every m ∈ Max(R). Use
Package deal Theorem od Levy and Odenthal to create
A′ = ⊕i∈NNi where Ni are lattices and Am ≃ A′

m for every
m ∈ Max(R).



Globalization

Lemma
Let R be a noetherian domain of Krull dimension one with module
finite normalization R̃. Let m1, . . . ,mk be the list of maximal
ideals of R such that Rm is a principal ideal domain any maximal
ideal m ̸∈ {m1, . . . ,mk} and let Σ = R \ ∪k

i=1mi . Further let
M ⊆ R̃(ω) be such that MΣ is a direct sum of finitely generated RΣ

modules. Then M is a direct sum of finitely generated modules.

Corollary

The previous theorem holds for an arbitrary commutative
noetherian one-dimensional domain with module-finite
normalization.



Projective modules over Dedekind domains

Let R be a Dedekind domain. Note that all nonzero ideals of R are
in the same genus but the ideal class group of R can be non-trivial.
On the other hand, any projective R-module is either finitely
generated or free.
Hence if I1, I2, . . . and J1, J2, . . . are nonzero ideals of R then⊕

i∈N Ii ≃
⊕

i∈N Ji .



Genus of infinite direct sums

Proposition

Let Λ be a module-finite algebra over a 1-dimensional noetherian
domain R such that Λ0 is simple artinian. If Mi ,Ni ∈ Mod-Λ are
nonzero finitely generated torsion free R-modules and
M =

⊕
i∈NMi , N =

⊕
i∈NNi then M ≃ N ⇔ [M] = [N] .



Weak Krull-Schmidt theorem

Theorem
(Facchini, 1996) Let U1, . . . ,Un, V1, . . . ,Vm be non-zero uniserial
modules over a ring Λ. Then

⊕n
i=1 Ui ≃

⊕m
i=1 Vi if and only if

n = m and there are permutations σ, τ ∈ Sn such that
[Ui ]m = [Vσ(i)]m and [Ui ]e = [Vτ(i)]e for i = 1, 2, . . . , n.

Theorem
Let R be commutative noetherian one dimensional domain with
module finite normalization satisfying (FD) and Ui ,Vi , i ∈ N
non-zero ideals of R and m1, . . . ,mk the list of maximal ideals of R
containing the conductor of R. Then

⊕
i∈N Ui ≃

⊕
i∈N Vi if and

only if there are σ1, . . . , σk ∈ S(N) such that

(Ui )mj ≃ (Vσj (i))mj , i ∈ N, j = 1, . . . , k .



End.

Thank you for your attention.


