Some explicit constructions of skew braces

Lorenzo Stefanello

Categories, Rings and Modules, a conference in honor of Alberto Facchini, 28 January 2023

Overview on skew braces

Definition ([Rump, 2007, Guarnieri and Vendramin, 2017]) A *skew brace* is a triple (G, \cdot, \circ) , where (G, \cdot) , (G, \circ) are groups and

$$g \circ (h \cdot k) = (g \circ h) \cdot g^{-1} \cdot (g \circ k).$$

Here g^{-1} denotes the inverse of g in (G, \cdot) .

Example

- If (G, \cdot) is a group, then (G, \cdot, \cdot) is a trivial skew brace.
- $(\mathbb{Z}, +, \circ)$ is a skew brace, where $a \circ b = a + (-1)^a b$.

Skew braces are connected with

- radical rings;
- set-theoretic solutions of the Yang-Baxter equation;
- regular subgroups of holomorphs of groups;
- Hopf–Galois structures.

Let (G, \cdot) be a group.

Definition

The holomorph of (G, \cdot) is the semidirect product

 $\operatorname{Hol}(G, \cdot) = (G, \cdot) \rtimes \operatorname{Aut}(G, \cdot).$

A subgroup A of Hol(G, \cdot) is *regular* if for all $g \in G$ there exists a unique $(x, \alpha) \in A$ such that $x \cdot \alpha(g) = 1$.

Theorem ([Guarnieri and Vendramin, 2017])

The following data are equivalent:

- a regular subgroup of $Hol(G, \cdot)$;
- an operation \circ such that (G, \cdot, \circ) is a skew brace.

Let L/K be a finite Galois extension with Galois group (G, \cdot) .

Definition

A Hopf–Galois structure on L/K consists of a K-Hopf algebra H acting in a suitable way on L.

Theorem ([Greither and Pareigis, 1987, Bachiller, 2016, Smoktunowicz and Vendramin, 2018, LS and Trappeniers, 2022])

The following data are equivalent:

- a Hopf–Galois structure on L/K;
- an operation \circ such that (G, \circ, \cdot) is a skew brace.

Definition ([Childs, 2019])

A *bi-skew brace* is a skew brace (G, \cdot, \circ) such that also (G, \circ, \cdot) is a skew brace.

Question

Let (G, \cdot) be a group. Can we construct explicit examples of bi-skew braces (G, \cdot, \circ) ?

Explicit constructions of bi-skew braces

Let (G, \cdot) be a group, and let ψ be an *abelian map*, that is, $\psi \in \text{End}(G, \cdot)$ such that $\psi(G)$ is abelian. Define

$$g \circ h = g \cdot \psi(g) \cdot h \cdot \psi(g)^{-1}.$$

Theorem ([Koch, 2021])

 (G, \cdot, \circ) is a bi-skew brace.

A first generalisation

Let (G, \cdot) be a group with centre Z, and let $\psi \in \operatorname{End}(G, \cdot)$. Define

$$\mathsf{g} \circ \mathsf{h} = \mathsf{g} \cdot \psi(\mathsf{g}) \cdot \mathsf{h} \cdot \psi(\mathsf{g})^{-1}.$$

Theorem ([Caranti and LS, 2021])

The following are equivalent:

- (G, \cdot, \circ) is a bi-skew brace.
- $[\psi(G), \psi(G)] \subseteq Z$.

Example

Suppose that (G, \cdot) has nilpotency class two (that is, $[G, G] \subseteq Z$), and let $\psi \in \text{End}(G, \cdot)$. Then (G, \cdot, \circ) is a bi-skew brace, where

$$g \circ h = g \cdot \psi(g) \cdot h \cdot \psi(g)^{-1}.$$

Let (G, \cdot) be a group with centre Z, and let $\psi \colon G \to G/Z$ be a group homomorphism with abelian image. Define

$${old g}\circ {old h}={old g}\cdot\psi^{\uparrow}({old g})\cdot{old h}\cdot(\psi^{\uparrow}({old g}))^{-1},$$

where $\psi^{\uparrow} \colon G \to G$ is any lifting of ψ .

Theorem ([Caranti and LS, 2022, LS and Trappeniers, 2023])

- The operation \circ is well-defined.
- (G, \cdot, \circ) is a bi-skew brace.

Let (G, \cdot) be a group of nilpotency class two with centre Z. Here G/Z is abelian, so every group homomorphism $G \to G/Z$ can be used for the construction. For example, for all $n \in \mathbb{Z}$ the map

$$\psi \colon G \to G/Z, \quad g \mapsto g^n Z$$

is a group homomorphism, so (G,\cdot,\circ) is a bi-skew brace, where

$$g \circ h = g \cdot g^n \cdot h \cdot g^{-n} = g \cdot h \cdot [g, h]^n.$$

As application, in [Caranti and LS, 2023] we constructed skew braces that do not come from Rota–Baxter operators.

Let (G, \cdot) be a group with centre Z, and let N be the *norm* of (G, \cdot) , that is, the intersection of the normalisers of the subgroups of G.

Theorem ([Schenkman, 1960])

The quotient N/Z is abelian.

In particular, every group homomorphism $\psi: G \to N/Z$ (with lifting ψ^{\uparrow}) yields a bi-skew brace (G, \cdot, \circ) , where

$$g \circ h = g \cdot \psi^{\uparrow}(g) \cdot h \cdot (\psi^{\uparrow}(g))^{-1}.$$

Fact ([LS and Trappeniers, 2022])

This construction allows us to obtain Hopf–Galois structures with a desirable but apparently rare property: the Hopf–Galois correspondence is bijective.

🔋 Bachiller, D. (2016).

Counterexample to a conjecture about braces.

- J. Algebra, 453:160–176.
- 📑 Caranti, A. and LS (2021).

From endomorphisms to bi-skew braces, regular subgroups, the Yang–Baxter equation, and Hopf–Galois structures. *J. Algebra*, 587:462–487.

📄 Caranti, A. and LS (2022).

Brace blocks from bilinear maps and liftings of endomorphisms. *J. Algebra*, 610:831–851.

📄 Caranti, A. and LS (2023).

Skew braces from Rota–Baxter operators: a cohomological characterisation and some examples. *Ann. Mat. Pura Appl. (4)*, 202(1):1–13.

Childs, L. N. (2019).

Bi-skew braces and Hopf Galois structures. *New York J. Math.*, 25:574–588.

- Greither, C. and Pareigis, B. (1987).
 Hopf Galois theory for separable field extensions.
 J. Algebra, 106(1):239–258.
- Guarnieri, L. and Vendramin, L. (2017).
 Skew braces and the Yang–Baxter equation.
 Math. Comp., 86(307):2519–2534.

📔 Koch, A. (2021).

Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures. *Proc. Amer. Math. Soc. Ser. B*, 8:189–203. LS and Trappeniers, S. (2022). On the connection between Hopf–Galois structures and skew braces. arXiv:2206.07610. Accepted for publication in the Bulletin of the London Mathematical Society.

LS and Trappeniers, S. (2023).
 On bi-skew braces and brace blocks.
 J. Pure Appl. Algebra, 227(5):Paper No. 107295.

📄 Rump, W. (2007).

Braces, radical rings, and the quantum Yang–Baxter equation. *J. Algebra*, 307(1):153–170.

📄 Schenkman, E. (1960).

On the norm of a group. *Illinois J. Math.*, 4:150–152.

Smoktunowicz, A. and Vendramin, L. (2018).

On skew braces (with an appendix by N. Byott and L. Vendramin).

J. Comb. Algebra, 2(1):47-86.