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Problem (Drinfeld)

Study set-theoretic solutions (to the YBE).

A set-theoretic solution (to the YBE) is a pair (X, r), where X is a
set and r : X ×X → X ×X is a bijective map such that

(r × id)(id× r)(r × id) = (id× r)(r × id)(id× r).

First works: Gateva–Ivanova and Van den Bergh; Etingof, Schedler
and Soloviev; Gateva–Ivanova and Majid.



Examples:

I The flip: r(x, y) = (y, x).

I Let X be a set and σ, τ : X → X be bijections such that
στ = τσ. Then

r(x, y) = (σ(y), τ(x))

is a solution.

I Let X = Z/n. Then

r(x, y) = (2x− y, x) and r(x, y) = (y − 1, x+ 1)

are solutions.



More examples:
If X is a group, then

r(x, y) = (xyx−1, x) and r(x, y) = (xy−1x−1, xy2)

are solutions.



Problem

Construct (finite) set-theoretical solutions.

We deal with non-degenerate solutions, i.e. solutions

r(x, y) = (σx(y), τy(x)),

where all maps σx : X → X and τx : X → X are bijective. By
convention, all our solutions will be non-degenerate.



We can start with involutive solutions. A solution (X, r) is involutive
if r2 = id.

If (X, r) is involutive, then

τy(x) = σ−1σx(y)(x)

for all x, y ∈ X.



How many solutions are there?

The number of involutive solutions.

n 4 5 6 7 8 9 10

sols 23 88 595 3456 34530 321931 4895272

Solutions of size 9 and 10 were computed with Akgün and Mereb
using contraint programming techniques.



Problem

How many involutive solutions (up to isomorphism) of size 11 are
there?



The permutation group of an involutive solution (X, r) is the group

G(X, r) = 〈σx : x ∈ X〉.

This group naturally acts on X.



An involutive solution (X, r) is indecomposable if G(X, r) acts tran-
sitively on X. A solution is decomposable if it is not indecomposable.

Fact:
(X, r) is decomposable if and only if X = Y ∪ Z (disjoint union)
for non-empty subsets Y, Z ⊆ X such that r(Y × Y ) ⊆ Y × Y and
r(Z × Z) ⊆ Z × Z.



Example:
Let X = {1, 2, 3, 4} and r(x, y) = (σx(y), τy(x)) be the solution
given by

σ1 = (12), σ2 = (1324), σ3 = (34), σ4 = (1423),

τ1 = (14), τ2 = (1243), τ3 = (23), τ4 = (1342).

Then G(X, r) ' D8 acts transitively on X. Thus (X, r) is indecom-
posable.



Example:
Let X = {1, 2, 3, 4} and

r(x, y) = (σx(y), τy(x)),

where

σ1 = σ2 = τ1 = τ2 = id, σ3 = τ3 = (34), σ4 = τ4 = (12)(34).

Then (X, r) is decomposable. In fact, X = {1, 2} ∪ {3, 4} is a
decomposition.



Problem

Prove that “almost all” finite involutive solutions are
decomposable.

For example, prove that

lim
n→∞

#decomposable inv. solutions of size n

#inv. solutions of size n
= 1.



Problem

Construct indecomposable involutive solutions (up to isomorphism)
of “small” size.

A concrete instance of the problem is the construction (say, with
computers) of all indecomposable solutions of size ≤ 48.



The diagonal of an involutive solution (X, r), where

r(x, y) = (σx(y), τy(x)),

is the map
T : X → X, T (x) = τ−1x (x).



Remarks:

I Etingof, Schedler and Soloviev proved that T is bijective with
inverse x 7→ σ−1x (x).

I r(T (x), x) = (T (x), x) for all x.

I The cycle structure of T is invariant under isomorphisms.



Theorem (Rump)

Let (X, r) be a finite involutive solution such that T = id. Then
(X, r) is decomposable.

Rump’s theorem proved a conjecture of Gateva-Ivanova.



Theorem (with Raḿırez)

Let (X, r) be a finite involutive solution of size n = |X|. If T is an
n-cycle, then (X, r) is indecomposable.

Problem

Can we construct these solutions?



Theorem (with Raḿırez)

Let (X, r) be a finite involutive solution of size n = |X|. If T is an
(n− 1)-cycle, then (X, r) is decomposable.



Theorem (with Raḿırez)

Let (X, r) be a finite involutive solution of size n = |X|. If T is an
(n− 2)-cycle and n is odd, then (X, r) is decomposable.

Similarly:

Theorem (with Raḿırez)

Let (X, r) be a finite involutive solution of size n = |X|. If T is an
(n− 3)-cycle and 3 - n, then (X, r) is decomposable.



Theorem (Camp-Mora and Sastriques)

Let (X, r) be a finite involutive solution of size n = |X|. If
gcd(|T |, n) = 1, then (X, r) is decomposable.



Ring theory (more precisely, skew braces) will help us to understand
what is going on here.



If R is a ring, the operation

x ◦ y = x+ xy + y

is always associative with neutral element 0. We say that R is a
radical ring if (R, ◦) is a group.

Example of a radical ring:

R =

{
2x

2y + 1
: x, y ∈ Z

}
.



Theorem (Rump)

Let A be a radical ring. Then r : A×A→ A×A,

r(a, b) = (−a+ a ◦ b, (−a+ a ◦ b)′ ◦ a ◦ b)

is an involutive solution.

Here z′ denotes the inverse of the element z with respect to the
circle operation.



Natural questions:

I Do we need radical rings to produce set-theoretic solutions?

I What about non-involutive solutions?



Definition:
A skew brace is a triple (A,+, ◦), where (A,+) and (A, ◦) are groups
such that

a ◦ (b+ c) = a ◦ b− a+ a ◦ c

holds for all a, b, c ∈ A.

Remarks:

1. This definition is motivated by the work on Cedó, Jespers and
Okniński.

2. The map λ : (A, ◦)→ Aut(A,+), a 7→ λa,
λa(b) = −a+ a ◦ b, is a group homomorphism.



Examples:

I Radical rings.

I Trivial skew braces: Any additive group G with g ◦ h = g + h
for all g, h ∈ A.

I An additive exactly factorizable group G (i.e. G = A+B for
disjoint subgroups A and B) is a skew brace with

g ◦ h = a+ h+ b,

where g = a+ b, a ∈ A and b ∈ B.



Skew braces produce solutions:

Theorem (with Guarnieri)

Let A be a skew brace. Then rA : A×A→ A×A,

rA(a, b) = (−a+ a ◦ b, (−a+ a ◦ b)′ ◦ a ◦ b)

is a solution. Moreover,

r2A = idA×A ⇐⇒ (A,+) is abelian.



Skew braces “classify” solutions. We need the structure group of
the solution (first considered by Etingof, Schedler and Soloviev):

G(X, r) = 〈X : xy = uv whenever r(x, y) = (u, v)〉.

Theorem (with Smoktunowicz)

Let (X, r) be a solution. Then there exists a unique skew brace
structure over G(X, r) such that its associated solution rG(X,r)

satisfies
rG(X,r)(ι× ι) = (ι× ι)r,

where ι : X → G(X, r) is the canonical map.

Fact: If (X, r) is involutive, then ι is injective.



Now we know that G(X, r) is a skew brace. Moreover, the permu-
tation group G(X, r) is also a skew brace!



Skew braces have a universal property:

Theorem (with Smoktunowicz)

Let (X, r) be a solution. If B is a skew brace and f : X → B is a
map such that

(f × f)r = rB(f × f),

then there exists a unique homomorphism ϕ : G(X, r)→ B of
skew braces such that

ϕι = f and (ϕ× ϕ)rG(X,r) = rB(ϕ× ϕ).

These results are based on similar results by Etingof, Schedler and
Soloviev, Rump, and Lu, Yan and Zhu.



Skew braces are related to regular subgroups of the holomorph!

Let A be an additive group. The holomorph of A is the semidirect
product Hol(A) = AoAut(A), with operation

(a, f)(b, g) = (a+ f(b), fg).

A subgroup G of Hol(A) acts on A via

(x, f) · a = a+ f(x).

Then G is regular if for any a, b ∈ A there exists a unique element
(x, f) ∈ G such that (x, f) · a = b.



Some facts:

1. If A is a group and G is a regular subgroup of Hol(A), then
the map π : G→ A, (x, f) 7→ x, is bijective.

2. If A is a skew brace, then {(a, λa) : a ∈ A} is a regular
subgroup of Hol(A,+).

3. If A is an additive group and G is a regular subgroup of
Hol(A), then A is a skew brace with

a ◦ b = a+ f(b),

where (π|G)−1(a) = (a, f) ∈ G.

These results are heavily based on ideas of Caranti, Childs and Feath-
erstonhaugh, Catino and Rizzo and Bachiller.



Some remarks:

I These facts were used in collaboration with Guarnieri to
construct a huge database of finite skew braces.

I Bardakov, Neshchadim and Yadav improved the algorithm and
extended the database.

I The connection between skew braces and regular subgroups of
the holomorph yields a connection between skew braces and
Hopf–Galois structures.



Skew braces and skew brace homomorphisms form (a very interest-
ing) category. A concrete description of this fact appears in the
recent work1 of Bourn, Facchini and Pompili.

1D. Bourne, A. Facchini, M. Pompili. Aspects of the category of skew
braces. Communications in Algebra, to appear.



Let us go back to solutions.



Let (X, r) be a finite involutive solution. For k ≥ 1, let

ι(k) : X → G(X, r), x 7→ kx = x+ · · ·+ x︸ ︷︷ ︸
k-times

Theorem (with Lebed and Raḿırez)

The map ι(k) is injective.



From a solution we contruct other solutions by using cabling tech-
niques. Let (X, r) be an involutive solution and k > 0. Then we
extend the map r to rG(X,r) and we push this back using ι(k):

r  rG(X,r)  r(k)

Crucial fact:
The diagonal map of r(k) is T k.



Theorem (with Lebed and Raḿırez)

If (X, r) is involutive, indecomposable and gcd(|X|, k) = 1, then
(X, r(k)) is indecomposable.

The theorem of Camp-Mora and Sastriques now follows from the
previus theorem with k = |T |.



Theorem (with Lebed and Raḿırez)

Let p and q be different prime numbers. Let (X, r) be a finite
involutive indecomposable solution of size pq. In the cycle
decomposition of T , there can be no cycle of length s with
(p− 1)q < s < pq and gcd(s, p) = 1.

Examples:
Let (X, r) be a finite indecomposable solution.

I If |X| = 14, then in T there are no cycles of sizes 9, 11, 13.

I If |X| = 15, then in T there are no cycles of sizes 11, 13, 14.



Our brace-theoretic techniques have other consequences.



Motivated by the theory of Garside groups Dehornoy defined the
class of a finite involutive solution (X, r) as the minimal m such
that

σTm−1(x) · · ·σT (x)σx = id

for all x ∈ X.

Fact:
The Dehornoy class of a solution always exists and is finite.



Theorem (with Lebed and Raḿırez)

The Dehornoy class of a finite involutive solution (X, r) is the least
common multiple of the orders of the σx in the additive group of
the skew brace G(X, r).

Consequence:
If (X, r) is a finite indecomposable solution, then the Dehornoy class
of (X, r) is the additive order of any σx.



Problem

What about non-involutive solutions?



Cabling techniques could be used in the context of skew braces, at
least for skew braces with abelian additive group.

Problem

What about arbitrary skew braces?



Problem

Can we use “cabling techniques” in the context of Hopf–Galois
structures?


