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Timeline

Aristotle discussed how typhoons are formed.

Leonardo da Vinci depicted turbulence in fluids -
even vortices generated by the aortic valve!

René Descartes: ‘“vortex theory of everything” .

Euler: Mathematical formulation of vorticity



Subsequent generations of mathematical
physicists

Helmholtz, Kirchhoff
W. Thomson (Kelvin) + Tait, J.J. Thomson...
Arnold (1966): Euler equations

solid body ~ perfect fluids
Ebin-Marsden (1970): the hard analysis
Marsden-Weinstein (1983):

vorticity is a momentum map!



Vorticitists form a large community

Mathematicians, Physicists
Engineers, Biologists

For mathematicians (I fear forgetting many):

Paul K. Newton

The N-Vortex
Problem
Analytical Techniques

P. Newton, Point vortex dynamics in the post-Aref era

2014 Fluid Dyn. Res. 46 031401



Flow vortices in the aortic root:
in vivo 4D-MRI confirms predictions of Leonardo da Vinci
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Rainbow trout use only their anterior muscles when

swimming between vortices in water flow. The assist

that the fish get from the vortices supports a

hydrodynamic explanation for fish distributions in

schools and in current-swept habitats. — bachlers e
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Observation of Vortex Dipoles in an Oblate
Bose-Einstein Condensate

T. W. Neely, E. C. Samson, A. S. Bradley, M. J.
Davis, and B. P. Anderson

Phys. Rev. Lett. 104, 160401 (2010)
Published April 19, 2010

Viewpoint: Observing the dance of a
vortex—-antivortex pair, step by step

B prpariTastL CraEe paan ol et el of pppeEle e rudyees b kg e Bma-Lraraey coraosrone 10 Fow

We nucleate pairs of vortices of opposite charge (vortex dipoles) by forcing
superfluid flow around a repulsive Gaussian obstacle within the BEC. By controlling
the flow velocity we determine the critical velocity for the nucleation of a single
vortex dipole, with excellent agreement between experimental and numerical
results. We present measurements of vortex dipole dynamics, finding that the
vortex cores of opposite charge can exist for many seconds and that annihilation is

inhibited in our trap geometry.



Streetsformed by two opposite vortices were first studied by von Karman in 1911 and
motivated by a troubled experiment about the wake on flows past a cylinder that was
being done inL. Prandtl's lab.

“What | really contributed to the aerodynamic knowledge of the observed phenomenon
is twofold: | think | was the first to show that the symmetric arrangement of vortices
(upper), which would be an obvious possibility to replace the vortex sheetis unstable.

| found that only the asymmetric arrangement (lower) could be stable, and only fora
certain ratio of the distance between the rows and the distance between two
consecutive vortices of each row. Also, | connected the momentum carried by the vortex
system with the drag and showed how the creation of such a vortex system can
represent the mechanism of the wake drag” (Aerodynamics, von Karman, 1963).



Tribute to Engineers
Prandtl, von Karman (see next)
Bénard, Coanda
Joukowski, Korolev

Taylor, Lighthill



Even a scientist gets time off to meet celebrities.

http://allanellenberger.com/dr-theodore-von-karman-father-of-the-supersonic-age/


http://allanellenberger.com/dr-theodore-von-karman-father-of-the-supersonic-age/

P Meunier et al. / C. R. Physigue 6 (2005} 431450
co-rotating vortices
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Experimental and numerical study of vortex
couples in two-dimensional flows

By Y.COUDER
Groups de Physique des Soludes, Eools Ncrmale Supsricore. 24, rus |homaond .
75231 Parw Cedex 06, France
AND C. BASDEVANT
Labormioire de Mésoroioge [hnamique. Erole Xormale Superiears, 24, roe Lhomond,
551 Paris Cedex 08, France
(Reveived 28 March 1988)

Two-dimensional turbulence is investigated experimentally in thin liquid films. This
study shows the spontaneous formation of couples of opposite-sign vortices in von
Kirmdin wakes. The structure of these couples, their behaviour and their role in
turbulent flows is then studied using both a numerical simulation and laboratory



My fu paper

(topic suggested by Marsden and Aref in my
post-doc, 1982)



Non-Integrability of the 4-Vortex System:
Analytical Proof

Jair Koiller"* and Sonia P. Carvalho®

' Laboratorio National de Computagiio Cientifica, Caixa Postal 56018, 22290 Rio de Janciro, RJ,
Braril
! Instituto de Matematica da UFRJ, Caixa Postal 68530, 21944 Rio de Janeiro, RJ, Brazil

* Departamento de Matematica da UFMG, ICEX, Pampulha, Belo Horizonte, MG, Brazil,
30000

Abstract. An analytical proof is given that the motion of n point vortices in the
plane is non-integrable for n>>3. The basic geometric configuration, which
maodels a situation often found experimentally, consists of two opposite strong
vortices and two advected weak vortices. We use “Melnikov's method,” as
presented by Holmes and Marsden [Commun. Math. Phys. 82, 523-544
(1982)). The Melnikov integral is explicitly evaluated, by residues, in the
limiting situation where one of the weak vortices is very close to one of the
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II. Short review:

Vvortices on Surfaces



Vortices on the sphere

Gromeka (1851-1889, MR0056525), Zermelo (1899)
Bogomolov (1977), Kimura/Okamoto (1987),

Many papers appeared since the 2000’s

Aref, Borisov/Mamaev, Cabral, Newton, Boatto,
Dritschel, Simo, Kidambi, Montaldi, Marsden, Patrick,
Pekarsky, Roberts, Schmidt, Tronin, Naranjo, Garcia-
Azpeitia, ...

(SORRY FOR MANY OMISSIONS!)



EDOs for vortices in a sphere of radius R

| 1 i Ii(xj x x1)

X; = .
47 R e (R2 — Xi -xj)

If the sum )  I; #= 0 there is an uniform counter-vorticity in
the background.

Bogomolov, Dynamics of vorticity at a sphere, 1977

https://link.springer.com/article/10.1007/BF01090320

The Hamiltonian involves the Green function of spherical Laplacian.

10


https://link.springer.com/article/10.1007/BF01090320

Planar vortices in domains with boundary

C.C. Lin (1916-2013)

https://history.aip.org/phn/11603035.html

PhD in Aeronautics, 1944
California Institute of Technology, Pasadena,
under von Karman.
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C.C.Lin' s theorems (PNAS, 1941)

Vortex dynamics in planar regions

TaeorREM 1. For the motion of vortices of strengths wjis = 1, 2, ..., n) ina
general region R bounded by fixed boundaries, there exists a Kirchhoff-Routh
Junction Wiz, w1; %, 3a; ...; T, ¥a) Stch that

dx; _ _ _ oW
Ky = K 3,

(4.3
dJ"l' oW )

:'-I: d‘ 'liri - EI
where Pi(x,, ¥,) (1 = 1, 2, ..., n) are the inslantaneous positions af the vortices.
The function W 1s given by

W= cyelza 7)) + ;E x5 G (x5 ¥ 25 %) + E Gelx, ¥ %, %)
l--l 4 :hﬂ
(4.4)

W = Kirchhoff-Routh function G = Green function
g = desingularization of G P, = external agents



ON THE MOTION OF VORTICES IN TWO DIMENSIONS—II
SOME FURTHER INVESTIGATIONS ON THE KIRCHHOFF-
ROUTH FUNCTION

By C. C. Lin
DEPARTMENT OF APPLIED MATHEMATICS, UNIVvERSITY OF TORONTO
Communicated October 20, 1941

5. Conformal Transformation.—We shall now investigate the behavior
of the Kirchhoff-Routh function (whose existence we have established in
the preceding article) under a conformal transformation of fluid motion.

TurorREM 11 (Generalized Routh's theorem).—Under a conformal trans-
formation

i = f(2) (5.1)
which derives the motion in the E-plane from that in the z-plane, the Kirchhoff -
Routh function for the new motion is given by

" “1 ds

the added term is the log a conformal factor



J. Hally (J. Math. Phys. 21:1, 211-217, 1980)

ds? = h?(z,%)|dz|?

r
k4 iI‘nailn(h(zn,Zn)), n=1. N
Zp

N
h?(zn,Zn) Zn = » —i

Zn — 7Z
kn n k

Hally suggests that for a closed genus zero surface one could
use the stereographic projection, ~ = CU oo = S2.
and the above equations would be still OK.

Caveat: when Y\ T, # 0 there is an extra term, that is
nonlocal: it involves A~'h (JK and Stefanella Boatto).

12



Motivation for vortices on curved surfaces

REVIEWS OF MODERN PHYSICS

Recent  Accepted Authors Referees Search Press About Staff ™

Vortices on curved surfaces

Ari M. Turner, Vincenzo Vitelli, and David R. Nelson
Rev. Mod. Phys. 82,1301 — Published 30 April 2010

N -

ABSTRACT -

Topological defects in thin films coating a deformed substrate interact with the underlying curvature.
This coupling mechanism influences the shape of biological structures and provides a new strategy for
the design of interfaces with prescribed functionality. In this article, 2 mathematical formalism based on
the method of conformal mapping that is presented permits the calculation of the energetics of
disclinations, dislocations, and vortices on rigid substrates of spatially varying Gaussian curvature.
Special emphasis is placed on determining the geometric force exerted on vortices in curved superfluid
films. This force, which attracts (repels) vortices towards regions of negative (positive) Gaussian
curvature, is an illustration of how material shape can influence guantum mechanical degrees of
freedom.

13
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Vortices in Superfluid Films on Curved Surfaces
Asi M. Turmer*!, Vincenzo Vitell' and David R, Nelson®

* Department of Plysics, Harvard Universite.
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Vortices on closed surfaces
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Vortices on compact surfaces > (any genus)

N
1
H = E K}Kng(Sf,Sj)+E EKERS(SE)
1<i<j<N =1
N
-chllcctivc(sle e eSN) — E Ke£2 (SE)
£=1

Gg4(s1,82) = Green function of Laplace-Beltrami operator

Ry(s) =limy_,, G(s/,s) — 5-Ind(s’,s) (Robin function)

(}; = area form of the metric g.

Boatto/Koiller, Vortices on Closed Surfaces, Fields Institute 73, 2015

https://link.springer.com/chapter/10.1007/978-1-4939-2441-7_10

15


https://link.springer.com/chapter/10.1007/978-1-4939-2441-7_10

Metrics related by a conformal factor § = h?g

~

N
Qcollective(sla *t 0 SN) = Z Ky hZ(SK) w(Sf) .
=1

~ 1 X K
H = H(s1,...,8N) — o Y kilog(h(sy)) — = e A (sy)
=1
where

N
K = E Ky.
=1

The last term vanishes when the sum of the vorticities is
zero (which is the case for the vortex pair systems).

16
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Vortices on Closed Surfaces

Stefanella Boatto and Jair Koiller

Dedicaied bo the memory of Jerry Marsden

Abstract 1t was recognized, since the seminal papers of Amold (Ann Inst Grenoble
1t 319-361, 1966) and Ebin-Marsden (Ann Math Ser 2 92(01:102-163, 1970),
that Euler's equations are the nght reduction of the geodesic flow in the
growip of volume preserving diffeomorphisms. In 1983 Marsden and Welnstein
(Physica D T:305-323, 1983) went one step further, pointing out that vorticity
evolves on a coadjoint orbit on the dual of the infinite dimensional Lie algebra
consisting of divergence free vectorfields. Here we pursue a suggestion of that paper,
namely. to present an intrinsic Hamiltenian formulation for a special coadjoint orbit.
which comtains the motion of N point vortices on a closed two dimensional surface
5§ with Riemannian metnic g. Our main resubis reformulate the problem on tse plane,
mainly C.C. Lin" 5 works (Lin, Proc Natl Acad Sci USA 27:570-575; Lin, Proc
Natl Acad Sci USA 27:575-577. 1941) about vortex motion on multiply connected
planar domains. Our main tool is the Green function G (s, 5,) for the Laplace-
Beltrami operator of (8, g), interpreted as the stream function produced by a unit
point vorex ot g, € 5. Since the surface has no boundary, the vorticity distribution as
has to satisfy the global condition [J; @ 2 = 0, where {2 is the area form. Thus the
Green function equation has to include a background of uniform counter-vorticity.
As a consequence, vortex dynamics is affected by global geometry. Our formulation
satisfies Kimum's requirement {Kimura, Proc R Soc Lond A 455:245-259, 1999)
that a vortex dipole describes geodesic motion. A single vortex. drifis on the surface.
with Hamiltonian given by Robin's function, which in the case of topological
spheres is related to the Gaussian curvature (Steiner, Duke Math § 1291 ):63-86,
2005). Resulis on numerical simulations on flat o, the catenoid and in the mmaxial

5. Boatio

Depastamento de Matemdtica Aphicada, Instituto de Matemdtica da UFRJ, C_F 68530,

Cidade Universitiria, 2 1945-970 Rio de Janciro, R, Braril

e-mail: boatio. stefanelly & gmail.com

1. Kodller i)

Instituee Macional de Metrologia, Cualidade ¢ Teeaologia EHHE.THDI]AYH-MH.SMM
Chragan 50, 25250-000 Dusque de Caxias, R, Braril

cemail: gairkoiller @ gmal com

& Springer Schence+ Buskness Media New York H01 5 (hL]
DLE Chang et al. jess. ), Gromeetrs, Mechanics, amd Dveamics, Ficlds Instinte
Communicstions 73, DO 10, /007781 -4030-2441-7_10



C.Ragazzo: single vortex moving on genus > 2

R is not constant for Bolza’s surface

(genus 2 having most discrete symmetries)

C. Ragazzo, The motion of a vortex on a closed surface of constant negative
curvature, Proc. Royal Society A Math. Phys. Eng. Sci. 473(2206):20170447
(2017)

18



The orbits of a single vortex on the Bolza surface restricted to the fundamental domain

C. Grotta Ragazzo Proc. R. Soc. A 2017;473:20170447

---“
© 2017 The Authoris) ﬁﬁ“ill



Experimental project
(being planned by our group 4+ Ragazzo)

Numerical study of vortex pairs on Bolza’s surface.

Motivation: on a compact manifold of constant
negative curvature the geodesic flow is chaotic.

(Anosov flows are not only mixing, they are even
Bernoullian.)

But the vortex pair problem on a compact surface
IS nhever fully chaotic.

What insights could this study produce?
20



Remark: 'Steady’ hydrodynamical metrics
on noncompact surfaces

Given prescribed circulations at its ends there is a
(unigue) metric such that R is constant.

This theorem extends a result by Gustafsson for
planar domains.

C. Ragazzo, H. Viglioni, Hydrodynamic Vortex on Surfaces, J. Nonlinear Sci 27,
1609-1640 (2017)

Gustafsson, B.: On the motion of a vortex in two-dimensional flow of an ideal
fluid in simply and multiply connected domains, (Technical Report, http://www.

math.kth.se/~gbjorn/theorem) (1979)

21
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Hydrodynamic Vortex on Surfaces

Clodoaldo Grotta Ragazzo'( -
Humberto Henrique de Barros Viglioni*

Received: 21 April 2016 / Accepted: 24 March 2017
© Springer Science+Business Media New York 2017

Abstract The equations of motion for a system of point vortices on an oriented Rie-
mannian surface of finite topological type are presented. The equations are obtained
from a Green’s function on the surface. The uniqueness of the Green’s function is
established under hydrodynamic conditions at the surface’s boundaries and ends. The
hydrodynamic force on a point vortex is computed using a new weak formulation of
Euler’s equation adapted to the point vortex context. An analogy between the hydro-
dynamic force on a massive point vortex and the electromagnetic force on a massive
electric charge is presented as well as the equations of motion for massive vortices.
Any noncompact Riemann surface admits a unique Riemannian metric such that a
single vortex in the surface does not move (“Steady Vortex Metric”). Some examples
of surfaces with steady vortex metric isometrically embedded in R* are presented.



(Rescaled) Hamiltonian system for a vortex pair

Qpair = Tiw — Tow
exp(G(s1,52))

vexp(R(s1)) Vexp(R(s2))

F(s1,82) =exp(— H) =

Alternative expression for F

F(s1,82) = d(s1,5s2) exp (B(s1, s2)

logd(s1,s2)] R(s1)+ R(s2)

B(s1,s3) = |G(s1,52) —
(s1,52) (s1,52) o 5

22



Diagonal stability for all time

Suppose that Batman’s function is bounded from
below. When the initial positions of the vortex pair
are taken sufficiently near the diagonal, then the
dynamics stays forever close to the diagonal.

Proof. 1t is immediate. We have d(s1(t), s>(t)) < F, M,, where F,
is the initial value of F' and

M, = maxgxs exp(—B(s1,s2)).

Therefore we can make d(s1(t),s2(t)) < e for all time, by choosing
an initial condition with

0 < F, < €/Mo,.

23



This is not true when S has boundaries.

The simplest example is a vortex pair in the half
plane y > 0 with the euclidian metric.

Approaching the boundary in a symmetric way,
they split apart in opposite directions.

24



Query

The discrete symmetry

(81,82) = (825 51)

reverses time.

One may consider the quotient space

S x S/{(s1,82) = (s2,51)}

Advantage for topological arguments?

25



For differential geometry ’'in the large’
Max F' = ‘hydrodynamical diameter’.
Must Estimate!!!

Observe that F is smooth. Nonsmoothness of d
and B “cancel out” at conjugate (cut) locus.

Critical values of F of are the equilibrium points.
When is ' a Morse function?

F =0 at the diagonal and F > 0 outside of it.

Query: Let 7T = small tubular neighborhood of
diagonal. Compute H*(S x S/T).

26



Query: Morse functions on S x S - diagonal

Let S a closed surface of genus . Poincaré polynomials:

ps =1+ 2kx + x>
Psxs = (1 + 2kx + x*)* = 1 + 4kx + 2(1 + 2x°)x® + 4kz® + 2*

Fc = {F < ¢} = tubular neighborhood of S for small ¢ > 0.

Let M = max F.

H,.(F°¢) = H.(S)for small ¢ >0 , H,(FM)=H.(S x S)

We know the Betti numbers at the minimum and maximum.

Question: Can we infer the possible number and types of
critical points that should occur in between?

27



Question for symplectic field theorists

One would like to re-build S x S starting with 7', the small
tubular neighborhood of the diagonal.

What would be a " minimal” Morse function?
(smallest number of critical points)

For an index j, how a “handle” DJ x D* 7 is going to be
added?
When is F = dexp (B) Morse?

Implications for vortex pair dynamics?

28



Batman function
governs the motion of a vortex pair

log d(s1,s2)] R(s1)+ R(s2)

B(s1,s82) = |G(s1,82) — o 5

e B is well defined in S X S and is symmetric

e B vanishes along the diagonal, as well as dB, the
differential

e Smooth within the injectivity radius

29



B i1s an yet unexplored object
INn geometric function theory.

For a general metric its expansion near the diag-
onal may require tools from elliptic operators a la
Hormander (using a parametrix).

One can reduce the study to constant curvature
metrics.

For genus > 2 and curvature -1:
Anilatmaja Aryasomayajula is computing bounds

for G, R, B, F In terms of injectivity radius and first
eigenvalues of Laplacian.

30



III. Aim of this talk:
We go (slightly) beyond Y. Kimura’s assertion:

"vortex dipoles do geodesics”

31
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In 1999 Yoshifumi Kimura mentioned in his paper Vortex motion on surfaces with constant
curvature |/ /dol.org/10.1098/rspa.1999.0311) that a vortex dipole (two infinitesimally close opposite
vortices) on a curved surface should move along a geodesic: "curvature checker”, as he interestingly
defined.

A proof outline was given in 2008 by Stefanella Boatto and JK (ardiv:0802.4313,

f Mlink.springer.com/book/10.1007/978-1-4939-2441-7). In this talk | present some results of ongoing
work with Umberto Hryniewicz, Alejandro Cabrera and Anilatmaja Aryasomayajula. Regarding vortex
pairs at a small finite distance, we show that close-by pairs can actually be called “topology checkers.

In fact we supgest the idea that, very much like geodesics (perhaps only more so), the study of vortex
pair dynamics could be a gpood way to probe the topology in the large. This is because the Hamiltonian
for vortex dynamics on surfaces involves the Laplace Beltrami operator Green's function and its
regularizations (Robin's function and its partner, Batman).

Time permitting | will briefly review joint work with Adriano K. Rodrigues and Cesar Castilho
(//dol.org/10.1063/1.3146241, doi: 10.3934/5gm. 2018007, http://mi.mathnet.ru/eng/rcd389) on far-
away vortices on a surface with antipodal symmetry. | will also advertise work by Clodoaldo Ragazzo
and Humberto Viglioni (/ /doi.org/10.1098/rspa.2017.0447,
!ink.springer.com/article/10.1007/s00332-017-9380-7) on a the motion of a single vortex.

During the talk we will make some queries for the audience, and research suggestions wiBbe presented
in the end.



Vortex motion on surfaces with constant curvature
Yoshifumi Kimura

Proc. R. Soc. Lond. A 1999 455, 245-259
doi: 10.1098/rspa.1999.0311

We have seen that a vortex pair (or a vortex dipole in the exact sense) moves
on a geodesic on S? and H?. In a sense, the equation of motion for a vortex dipole
coincides with the geodesic equation on either S* or H?. It is interesting to note
that the former is a set of two first-order ODEs while the latter is a set of second-
order ODEs in general. The motion of a vortex dipole comes from the fact that it
moves in the direction perpendicular to the line connecting two vortices or, in other
words, parallel to its axis, which contrasts with electric or magnetic dipoles. It may
generally be conjectured that a vortex dipole moves along a geodesic even on a two-
dimensional surface with non-constant curvature, if that surface can be covered with
the net of orthogonal coordinates. Then a vortex dipole may be used as a geometry
checker on such surfaces.
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Testing Kimura’s conjecture: the catenoid
(for short times)

&L -
g3 & o 2] =
. .

JK and Stefanella Boatto, VVortex pairs on surfaces
AIP Conference Proceedings 1130, 77 (2009)
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Testing Kimura’s conjecture
on the triaxial ellipsoid
(short times)

Ellipsoid a=1, b=6, c = 9.
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Integrability of triaxial ellipsoid geodesics

Letter from Jacobi to Bessel
December 28 1838

“Ich habe vorgestern die geodatische Linie fur ein Ellipsoid mit
drei ungleichen Achsen auf Quadraturen zuruckgefurt. Es sind
die einfachten Formeln von der Welt, Abelsche Integrale,
die ich in die bekannten elliptischen verwandeln, wenn man
2 Achsen gleich setzt.”

The day before yesterday, I reduced to quadrature
the problem of geodesic lines on an ellipsoid with
three unequal axes. They are the simplest formu-
las in the world, Abelian integrals, which become
the well known elliptic integrals if 2 axes are set
equal.”
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Vortex pairs at a distance

Poincaré map. a=1, b=4, c=9, H= —-60
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VORTEX PAIRS ON A TRIAXIAL ELLIPSOID
AND KIMURA'S CONJECTURE
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(Communicated by James Montaldi)

ApsTRACT. We consider the problem of point vortices moving on the surface
of a triaxial ellipsoid. Following Hally's approach, we obtain the equations
of motion by constructing a conformal map from the ellipsoid into the sphere
and composing with stercographic projection. We focus on the case of a pair of
aopposite vortices. Our approach is validated by testing a prediction by Kimura
that a (infinitesimally close) vortex dipole follows the geodesic flow. Poincaré
sections suggest that the global flow & non-integrable.




In another talk ...

some results for vortex pairs on genus zero surfaces
with Cesar Castilho and Adriano R. Rodrigues

Equilibria of vortex pairs: linearization
Antipodal symmetry: an invariant submanifold.
Triaxial ellipsoid ; Double faced elliptical region

Surfaces of revolution
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Vortex Pairs on the Triaxial Ellipsoid:
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Abstract—We consider a pair of opposite vortices moving on the surface of the triaxial
ellipsoid E(a,b,¢) : 22 /a+y*/b+ 2% /e =1, a < b < . The equations of motion are transported
to 52 x §? via a conformal map that combines confocal quadric coordinates for the ellipsoid and
sphero-conical coordinates in the sphere. The antipodal pairs form an invariant submanifold
for the dynamics. We characterize the linear stability of the equilibrium pairs at the three axis
endpoints.



Main result in this talk:
perturbation of dipole geodesic using a blow-up

vs €TH(S) =U(S) , a € (—r,7)
s_ =exp(—aJvs) , s =exp(+ aJvs)
2r = injectivity radius
J = w/2 rotation

M =U(S) x (—r,r) maps to a large neighborhood
of the diagonal of § x S.

It blows up the diagonal, keeping the direction of
approach.
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Theorem 1.

Denote D = Levi-Civita covariant derivative.

$ = vs + a? [(sz(vs) + %K(s)) vs — dmaz(Vi) J’US] + O(a?)

1
D;vs = —a? [dmz(Vg) + A (VK - Jus) + O(a2)] Jus

& = —a® dma(Vz2) + O(a®)

This proves Kimura’s assertion for dipoles:

a=0 implies D;s = 0
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Will explain (in next slides)
Frame Vi, V5, V3 and its dual 64,605,053 (geometry)

Quadratic term ms : U(S) — R (topology)

V; are used customarily in 'tensor tomography’, and is a nice
way to describe the Levi-Civita connection in U(S).

mo IS the leading term in the Batman function expansion.
It captures, in the small (i.e, for closeby vortex pairs) the
influence of the manifold topology.
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Hamiltonian structure in M =U(S) X (—r,r)
(explicit formulae/proofs in extra slides)

Theorem 2. Using the frame Vi, Vo, V3 one can make explicit
the pull back of w(sy) —w(s-) in § X S to the modified phase
space M via

(vs, ) —= (exp ( — aJvs),exp (+ aJvs))

where a € (—r,r) is a dynamic variable (distances to the
diagonal) and 2r is the injectivity radius.

M is a folded symplectic space at a« = 0 (blow up at the diagonal).
Symplectic form involves Jacobi fields along geodesic s_ to s;.
Its expansion in powers of o can be done at any desired order.

The Hamiltonian expands as F = 2a(1 + a’ma(vs) + O(a?)).
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Pull back to T'S together with a dummy scaling «¢

Let v € TS — FE(vs) = (exp( — Jvs),exp(Jvs)) € S x § and
then take the rescaling v; — ev;. Denote g, : TS — T*S the
Legendre transform, and €, = gy, the pullback of the
canonical form of T*S.

Theorem 3. (suited for Hamiltonian perturbation methods)

1
E*Quuir/2€ ~ d ||vs|? (1_61{(8) €?) 02 —I—} =0, + €291 + O(e*)

|US|2
6

1
Qo == |’U3|2 (01 /\93—|—294/\02) 5 Ql = _EK(S) QO—I— (VK J’Us) 02 /\03

F/2e = |vs|exp (B) , B(vs,€) =ma (lv's') lvs|?e? + O(e?)
Vs

For ¢ = 0 we recover the geodesic flow (Qo, |v|).
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The frame V1, V5, V3 in T,(S)

T.(S) ={v eTS| |v|=r}, Ti(S) = U(S)

P, ;) = parallel transport operator along ~.

~

®,(t): rotation of angle t in T,.S: v, — R v
®2(t) = (Yo(t) s ¥o(t)), Yo(t) = exp (vs, t)
( geodesic flow: ,(t) = P, )(vs) )

®;3(t) : parallel transport of v, along geodesic ~; with
initial condition J v,

B3(t) = (N(t), Py (vs))s m(t) = exp (Jus, t).

V; = infinitesimal generators of the ®;(t)

44



Bundle picture: Levi-Civita

Notations change from T. Lefeuvre

xinM becomes sin$

iv becomes Jv

Xand H generate the horizontal
space and correspond to my V,

and V,

V is our V; tangent to the S! fiber
of U(S) =2 S
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Commutation relations

V1 is tangent to the fibers of the principal bundle
St T.(S) = S
Vo and V3 span horizontal spaces, projecting to v; and Ju;.

K{(s)

[‘/17‘/2]:%7 [‘/37‘/1]:‘/27 [‘/27‘[3)]: 2

Vi,

Denoting 01, 02, 03 the dual coframe of Vi, V5, V3

K(s)

7”2

df; = —

02 NO3, dOs = —03N0O;, dOs = —601 N Os.

T. Leveuvre (section 2.4.2 (2.28)-(2.30))

https://thibaultlefeuvre.files.wordpress.com/2016/04/memoire.pdf
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The function ms: quadratic part of B

F = 2|a|exp (B)

B(vs, @) = ma(vs) o + O(a?)

T he influence of the global topology is encoded in
mo : U(S) — R.

and the directional derivatives dm.(V}).
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Examples of ms and validation of the ODEs

e Round sphere (K =1): mo=—1/6
e Hyperbolic half plane (K = —1): my=—1/3

e Half plane with K =0: mo=—=
Yo = from midpoint

Independent of direction vg

We checked the ODEs in U(S) X R with the vortex
pair equations in S x S for validation. See the extra
slides.
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Round cylinder and flat tori

Group symmetry: the pair keeps the same relative positions
in the covering plane.

Cylinder Green function: by elementary functions.

X=(xr,y) eRx S, y=y+2n, V=(a,b), a*+b*=1

Exponential map: X4+ =X t+aJ(a,b) = (z,y) = a(—b,a).
We computed using the Green function:

1
mo = — (b% — a?
2 6( )
Tori: require elliptic functions but the behavior is similar.
There is a steady drift from the instantaneous geodesic.

Curvature is not enough to capture the dynamics.

The cylinder topology matters even in the small.



Conclusions
Vortex pairs divorce approaching boundaries.

On a compact boundaryless surface closeby vortex
pairs remain close for all time.

As predicted by Kimura, dipoles follow geodesics.

However, for vortex pairs at a small distance, the
dynamics drifts as O(distance?).

Even in the small, vortex pairs are topology probers.
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Very much like geodesics, vortex pairs could be a
tool for differential geometry in the large.

Only more so!

Up for grabs:

Vortex pairs on compact surfaces of genus > 2.

Continuation of periodic geodesics for FF = c > 0,
small c.

Applying symplectic field theory methods for global
results.



T hank you!

(many extra slides now follow
please circulate with care: everything to be submitted...
But collaborations are welcomel!l)
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Contents of extra slides
A. Vortex pair in the round cylinder: steady drift from geodesic.
B. Informations on Green and Robin functions.

C. Details on the pull back map F : TS — S x S. See pg. 69 for the
deformation

1 1
2—E:me;r ~d ||lvs]* (1 — EK(S) €) 0z | = Qo+ €2 Q1 + O0(e?)
€

Q, = Qg = g:ﬂcan = |’U$|2 (01 N O3 + 204 N\ 92)

|US|2

6

1
Ql:—EK(S)Qg+ (VK'J’US)Oz/\eg

D. Blow up approach: M = U(S) x (—r,r) and the symplectic form matrix
via Jacobi fields.

E. Examples of computing m,; and Theorem validations in examples.

F. Some papers mentioned in the presentation.

G. Outline of numerical projects.

H. A note on von Karman.
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A. Some details for the round cylinder

Educated guess: the midpoint s(t) does a cylinder geodesic. However, there is
no obligation to do it at right angle with the direction from s_ to s4.

In fact, we will find the angle between the trajectory of the center point s and
the direction of the relative position between the vortices as a function of ¢,

that will be constant.

1
G(X1,X>2) =5 log \/coshz—cose, z=x2—21, 0 =y>2—y1
T

Dropping the 1/27, the ODEs with F = exp(G) = v/cosh z — cosf are

c1 = —8F = —1 sin( ), T = —8F = —1 sin( )
r1 = — = — — , To = — _
1 8y1 2 Yyir — Y2 2 8y2 r Y2 — Y1
oF 1 OF 1
11 = —— = —Sinh — , Yo = ——— = ——sinh —
Y1 92 F (1 —x2) , U2 Y I (2 — 1)

Denote s = (z,y), vs = (a,b) and for 0 < a < T,

(z+,y2) = (z,y) £ aJ(a,b) = (z,y) Ta(-ba), a® +b° = 1,.

Then s = (x,y) satisfies

s=(z,9) = % (sin(2aa),sinh(2ba)) , F = \/cosh(Qba) — cos(2aa).
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Robin function is constant (and we may set to zero) and a quick computation
gives

F =2« (1 + %(62 —a?)a® + O(a4)>

1
mo = 6(b?—aQ) with a? 4+ b2 = 1.

Thus we see that my does not depend on the center point s = (z,y), BUT it
depends on direction vs = (a,b).

Checking the pulled back ODES:

Expanding (sin(2aa),sinh(2ba)/F and neglecting the inocuous factor v/2:

2

§=(z,9)=(1- % (b® — a®) + O(a™)) [(a, b) + %az(—ai b®) + 0(a®)

2
2
§=(d,4) = (1— = (0 = ab?) (a,0) + S0? (=a® b)) + -
Now, we may decompose, since a®+b% =1, (—a3,b3) = (b°—a?)(a,b) +ab(—b,a).

s = (1 + (—% + %) (b2 — a2)oz2> (a,b) + %abaQJ(a, b) + - -



Validations

s = <1 + % (b — az)oz2> (a,b) + %aboz2 J(a,b) + ---

The term with (=2 4+ 2) (b — a?) = 1 (b® — a?) coincides with the predicted 3m>
and moreover,

2 —-1/6 O
gab=2(_b7a) |: 0 / 1/6 :| [ Z } = —dm2(V1),

again as predicted. Also note that the parallel transport for flat metrics is trivial,

SO de(VQ) = dmg(Vg,) = 0.

Historical note

The study of vortex motions on the flat cylinder has a notable history, starting
with von Karman's papers on his vortex pair ‘streets’”. From our calculations
we confirm that the street moves in the y-direction when a = 0 (the parallel
configuration) or aa = w/2 (staggered).

von Karman showed that relative to the moving frame with velocity y, the
former is unstable, but the latter is stable: it an ubiquitous phenomenon in
fluids. Several papers have been published for streets of more than two vortices
(Aref and Stremler).
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Flat tori

Double periodic arrays have also been observed in Nature (see the papers by
Stremler/Aref).

Let T = C/L, where L is the lattice generated by 1 and
T=a+ b, b>0.

Denote ¢ = €™ so |¢g| = e ™ < 1. Up to a constant C(7), the Green function
G(z,w) for the Laplace operator on T is given by

1
G(z,w) = ~5

s

In 1612 — w)| + %(Im(z —w))? + O(r),

where the theta function 61(z; 1) is the exponentially convergent series

01(z,7) = QZ (—1)" ¢t sin((2n 4+ 1)7z) , 2z = x + iy.

n=0

Robin’s functions are constant (Boatto and K.).

. continues
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Place z at the center of a fundamental domain. These Green functions have
always three critical points on w: one of them corresponding to the vertices of
the fundamental domain, and the other two are the half periods.

It was shown shown (Lin-Wang, Ann. of Math. 172:2 (2010), 911-954) that
there are special 1-parameter families in 7 with an extra pair of singular points.

Humberto Viglioni described the structure of these families inside the modular
surface.

We leave as a challenge computing the coefficient ma(a,b; 7) for a pair
s+ = (z,y) + a(-b,a).

One needs to expand G(s4,s-) — log|2a|/27, which requires some expertise in
elliptic functions. As in the case of the cylinder, my does not depend on position
of the midpoint (x,y). The issue is the dependence on .

For the Green function of the “true’ (curved) torus in R3 see J. S. Marshall,
Proc. R. Soc. A 469, (2013) 20120479.
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B. Green function of Laplace-Beltrami operator

S = closed orientable two-dimensional surface (with-
out boundary) with a Riemannian metric g.

w = dS = area form
A = Ag = Laplace-Beltrami operator

d(s, so) = geodesic distance with respect to g.

A G(s, s0) = — 5(s,s0) , | G(p,q)dS =0 ,
(5:50) = — o +0(50) [ Gpa)

G(s,s0) — logd(s,so)/2m bounded, G(s,s0) = G(so,S).
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G (s, s0) smooth outside diagonal. Diverges logarithmically.

G = kernel of the integral operator for Poisson’s equation:

ATf(s) = [ Gls,m)f(r)dS .
S
Declare A—lconstant = 0 by convention, so

/ A1 fdS =0, Vf € L(S).
S

Glsns)= Y o ilor) ilsa) -

A;Espectrum

where {¢;} is a normalized eigenbasis.
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Robin’s function

Ry(so) = sli>r%0 Gg(s,s0) —logdg(s,so)/2m

R is an interesting constant for the round sphere
and flat genus 1 (any modulus).

The fact that R is constant for flat tori requires
some thought, but it is not hard to prove.

J. Steiner, K. OKkikiolu: spectral invariants!

Jean Steiner, A geometrical mass and its extremal properties for metrics on S2.
Duke Math. J. 129(1): 63-86 (2005)
K. Okikiolu, A Negative Mass Theorem for Surfaces of Positive Genus

Communications in Mathematical Physics 290(3):1025-1031 (2009)
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For any metric ¢ on S2, up to constant,

Ry(s) = 5 (851 Ky) (5

For any metric gy = exp(2¢)gcan ON a torus (any
modulus), up to a constant,

Ry(s) = 5 (851 Ky)(s) — A~ exp (20)

More generally, for any genus y, up to a constant,

Ry(s) = 5 (851 Kg)(s) = 5 A" oxp (26) + Rean(s)
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Batman function
governs the motion of a vortex pair

log d(s1,s2)] R(s1)+ R(s2)

B(s1,s82) = |G(s1,82) — o 5

e B is well defined in S X S and is symmetric

e B vanishes along the diagonal, as well as dB, the
differential

e Smooth within the injectivity radius
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B i1s an yet unexplored object in geometric function
theory.

For a general metric its expansion near the diag-
onal may require tools from elliptic operators a la
Hormander (using a parametrix).

One can reduce the study to constant curvature
metrics.

For genus > 2 and curvature -1:

Anilatmaja Aryasomayajula is computing bounds
for G,R,B in terms of injectivity radius and first
eigenvalues of Laplacian.
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C. The map
E:vseTS — (exp(—wvs), exp(vs))

and the pullback of the two form

w(sy) — w(s_)
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A neighborhood of the zero section of 7T'S is mapped
to a neighborhood of the diagonal of S x S via the
centered exponential map

E:vseTS — (exp(—vs), exp(vs)).

Combine with the 7 /2 rotation J : TsS — TsS.

Esymp — FolJ

USETSi>u3:JUSETSE> (s—_,s4) €S XS

s+ =exp (£ us) =exp (£ Jus)
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Kimura’s assertion

Pulled back to 7S, the vortex pair system is

E; o oSpair(= I E*Qpgir) , F = F(exp (— Jvs),exp (Jvs))

symp

Introduce dummy parameter ¢ (no dynamical meaning)

Scaling : vs — €vg

and expand in powers of e:

e Will show (tricky): leading term of the pull back

EY™P = F o J o € scaling
iIs 2e times the canonical 2-form of T*S.
(as seen in T'S via Legendre’s transformation.)
e Easy: leading term of F is: 2¢|vs|.
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Computing next order terms of the deformation

We use a 'magic formula’ by Alejandro Cabrera to compute
the pullback by E* of the 2-form on S x S

symp
e TOo implement the magic formula, use frame V1,15, 13

e Find its commutation relations and rewrite in coframe: 6;

e Expand the magic formula in a scaling cv;

e Make use of Lx = ixd + dix, X = geodesic flow
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The frame V1, V5, V3 in T,(S)

T.(S) ={v eTS| |v|=r}, Ti(S) = U(S)

P, ;) = parallel transport operator along ~.

~

®,(t): rotation of angle t in T,.S: v, — R v
®2(t) = (Yo(t) s ¥o(t)), Yo(t) = exp (vs, t)
( geodesic flow: ,(t) = P, )(vs) )

®;3(t) : parallel transport of v, along geodesic ~; with
initial condition J v,

B3(t) = (N(t), Py (vs))s m(t) = exp (Jus, t).

V; = infinitesimal generators of the ®;(t)
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Bundle picture: Levi-Civita

Notations change from T. Lefeuvre

xinM becomes sin$

iv becomes Jv

Xand H generate the horizontal
space and correspond to my V,

and V,

V is our V; tangent to the S! fiber
of U(S) =2 S
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Commutation relations

V1 is tangent to the fibers of the principal bundle

St T.(8) = S

Vo and V3 span the horizontal spaces, projecting
respectively to vs and Jus.

K(s)

Vi, Vol =V, [V3, V1] =Va, [Va, V3] = —3

Vla

Denoting 61,605,035 the dual coframe of V7, V5, V3

K(s)

r2

do; = —

0> NO3, dBy = —03 N6O1, dO3 = —01 N O5.
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Summary: symplectic form expansion up to ¢

1 1
o BéQpair ~ d ||vs|* (1 — Z K (s) ) 02| =

= ), 1 €2 4 —|—O(e4)

|US|2

1
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Expanding the Hamiltonian: function m»

1
— F = |vs| exp (B)
2€

B(vs, €) = Q2(vs, 'US)€2 + 0(64)

Qo (vs, vs) = m ( Us ) PE
v

T he main influence of the topology is encoded in
mo U(S) — R.

and the directional derivatives dm»(V;).
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D. Blow up approach: M =U(S) X (—r,r)

s+ =exp(*xadJvs) , Vy=0/0c

2r = injectivity radius.

D = Levi-Civita covariant derivative.

K = curvature. V,= vectorfields in U(S)

B(—a,a) = B(exp ( — aJvs),exp (aJvs)) = a? ma(vs) + O(a?)

§ = vs + a? [(3m2(’vs) + %K(s)) vs — dma(V7) JvS] + O(a?)

1
D;v; = —a? |:dm2(‘/3) + EdK(JvS) + O(a2)] Jvg

& = —a® dmz(Vz2) 4+ O(a®)

Will show: this has a folded Hamiltonian structure.
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folded
*

Stepl: sketch the imagesin Sx S via E of the

frame in M

V,, 1<i<A4.

Step2: compute symplectic brackets

0 EIolded%’ E;Z“'olded‘/j)

pair (

These images frame almost all of S x S.
(Out: diagonal and conjugate-cut locus)
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Differentiating exp: Jacobi fields shall appear ...

Y, Z = Jacobi fields along the geodesic connecting s
(starting at s in the direction Jvs) with initial conditions

Y (0) =0, Y'(0) = —ws

Z(0)=wvs, Z'(0)=0
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End result: relative to frame V7, V5, V3, V)

—([Y(a)| + Y (=a)])
—[Y ()| + Y (-]

Qoz = —[Q]zx = |Z(a)| — | Z(~a)]
Qog = —[Qaz = |Z(a)| + | Z(—a)|

O
O

—$213
| 214 €224 0 O

0 Qi3 Q14
0 Q223 Q204
—Qs3 0 O

Y(0) =0, Y'(0) = —vs, Z(0)=ws, Z'(0) =0.
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Using the expansions of the norm of Jacobi fields

Q13 = ~2a+ S K(s)a> + 0(a®)
Q14 = O(a®)

Q3 = —2 (VK - Jus) o + 0(a®)
Qos =2 — K(s)a® + 0(a*)
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Summary of the blow up approach:

M =U(S) x (—r,r) is folded symplectic

E*Qppir = 202 Nda — 20001 N O3 — o K(s)0s A da +
+ a3/3 [K(s) 01 A O3 — (VK - Jus)bs A 03] + O(a™)

E*Qpa,ir = dwps + 0(044)

wry = 2(—a+ %K(s)a?’) 0>

F = 2a exp(B(—a, @) = 2a (1 4+ mo(vs)a? + 0(a®))



Maybe a bit more: an educated guess
E*Qpaz'r = d(w + O(O‘4))
1 3
w=2(—a+ EK(s)a ) 0>

We posit that E*2,,;, is exact, namely

E*Qpai?“ — d[f('Us, Oé) 92]7

with a f(vs,) in M that can be expressed in terms of
multiindices derivatives in Jus.
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Details of symplectomorphism approach

A neighborhood of the zero section of 7'S is mapped
to a neighborhood of the diagonal of S x S via the
centered exponential map

E:vseTS — (exp(—vs), exp(vs)).

Combine with the 7 /2 rotation J : TsS — TsS.

Esymp — EOJ

'UseTS#uS:J'UséTSE) (S_,S+)ESXS

s+ =exp( =+ us) =exp (x Jvs)
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Two Bundle isomorphisms 7T*S =TS

Ocqn = the canonical 1 — form in T*S

gb : TS - T*S, v— v’ = g(v,:) (Legendre)
W TS — T*S, v+~ v!? = g(Jv,-).

Hg — (gb)*gcan ’ Qg = (gb)*ﬂcan = d99
0, = (wb)*ecan , Qo = (wb)*ﬂcan = db,

Recall J is compatible with Riemannian metric g,

w(vy,v2) = g(Jvy,v2) .
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Alejandro’s magic formula

P=TS5—-0g, ®: PxR — P thegeodesic flow.

E¢(vs) = (exp(—tvs), exp(tvs)).

t 4
B iy = /_t O Qu du = d /_ Pl du

O = (Wb)*ecan ) Q= (wb)*Qcan = db,

Proof. Alejandro says is just the fundamental theorem
of Calculus. But it is kind of tricky!!! L]
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e-expansion

With X = generator of geodesic flow,

Ee(vs) = (exp ( — €vs),exp ( — €vs)).

Proof. Lie bracket expansion of flows. [ ]
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Kimura’s assertion

We can show that for e =0

Qg — d@g, FO — |U3|

We can go further:
How to compute the L5%6, ?

Answer in next slides: we can write, Iin principle,
the e-expansion for the symplectic form and of the
vortex pair Hamiltonian to any desired order.
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The moving frame V1,V5, V3 in T,(S)

T,(S)={v € TS| |v| =7}, Ti(S) =U(S)
P7(t) = parallel transport operator along ~.

P, : vs > R;vs, rotation of angle t in T;.S.
P2 (t) = (Yo(t) , Y¥o(t)), Yo(t) = exp (vs,t)
( geodesic flow: A,(t) = P%(t)(vs) )

$5 : parallel transport of wvs for time ¢ along
geodesic v; with initial condition J vs

B3(t) = (71(t), Py, (1) (0s))s 71(t) = exp (Jus, ).

The V,,: = 1,2,3 are the infinitesimal generators.
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Commutation relations

V1 is tangent to the fibers of the principal bundle

St T.(8) = S

Vo and V3 span the horizontal spaces, projecting
respectively to vs and Jus.

K(s)

Vi, Vol =V, [V3, V1] =Va, [Va, V3] = —3

Vla

Denoting 61,605,035 the dual coframe of V7, V5, V3

K(s)

r2

do; = —

0> NO3, dBy = —03 N6O1, dO3 = —01 N O5.
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Proof. See T. Leveuvre (section 2.4.2 (2.28)-(2.30))
https://thibaultlefeuvre.files.wordpress.com/2016/04/

memoire.pdf
Computations are done in conformal coordinates.

Actually his derivation was done just for U(S). For the
general situation consider the scaled metric g = g/r2
that has the same Euler-Lagrange equations - thus the
same parametrized geodesics and same flows P;.

Then 1545 = UzS in the rescaled metric. Therefore
we can apply the same formulas, replacing K(s) by

K(s)/r?. N
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Completing the frame with V,

Va=V]%%on M =U(S)xR, V3 =V ¥Pon P=TS-0g.

V4f0lded(’l)3,0é) — 8/80& : ijmp(vs) = vs.

In the latter, used in the symplectomorphism approach,
VY is the infinitesimal generator of ®4(vs,t) = el vs.

In both cases the Lie bracket with the V;,z = 1,2,3
vanishes. If we correspond M with P via their images
in S xS, we may write, with some abuse of language,

VEYME = Jpg| VIO gl = o> 0.

Coframe: {6;}, 1 <i<4add:dfs = 0.
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Outline of derivations

Use Cartan’s LX = ’LXd—I-d’LX in
0g = |vs|* 62

and the structure equations for the 6,,: = 1,2, 3, 4.

Take into account also:
Je(V1) =V1, Jk(Vo) = V3, Jx(V3) =Vo, Ju(Va) =Va
JH(01) =01, J(02) = =03, Jx(03) =02, J«(04) = 04 .
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Standard notations

We will denote the projections by

qg:TQ — Q and w:T*Q — Q

0.q0n, = the canonical 1 — form in T*S

gb TS = T*S, v’ = g(v,-) (Legendre)
W’ TS — T*S, v vl? = g(Jv,-).

99 — (gb)*ecan ) S29 — (gb)*Qccm — deg
0, = (wb)*ecan ) Q= (wb)*Qcan = db,
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Symplectic forms via the coframe 6,,: =1,2,3,4
(Here we are working in P =TS — 0g)

QQ(VUS) — g('US; Q*Vvs) fOI’ V’Us € TUS(TS)

Og(Va(vs)) = |vs|?

Infact: 64 = |vs|? 6

d|’U3| — |'Us| 64

Qg = d(Jvs|?02) = |vs|? (601 A O3 + 204 A 62)
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Proof. The first is just trivial abstract nonsense from
the definitions.

For the second note that the values of the 1-form 6,
on V7 and V4 vanish because the flows do not move the
base point. Since m«(V3) = Jus, it follows that §; must
also annihilate V3.

Third: The three directional derivatives 1 = 1,2,3 of
vs Vanish because the flows of the V,,7 = 1,2,3, do not
change norms in P. It is easy to see that for V, = V¥

V4|'U8| — |'U3| hence d|'U5| — |'Us| 94

Finally d(|vs|?62) = |vs|2 01 A 63 + d|vs|? A 6o. []
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Kimura’s assertion

ASs ¢ — 0, the time rescaled vortex system tends to
the geodesic system. More precisely, for e =0

Qg =dOg, Fo = |vs|. Its generator is

Vs.

2|vg]

Proof. Factors (2¢)~1 in front of the expansions of F
and J*EZ$2,,;, mutually cancel. To leading order

dF' ~ d|vsl — |'Us|04 .
Claim: the leading term of the symplectic form is

J*d0y, = Qg = |vs|? (01 A O3 + 204 A 62)

Why?
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Why:

J*d(|v|? 03) = J*(2|vs|?0a A 03) + [v2|T*(02 A 07)
We claim that this equals to ....
Qg = |vs|? (01 A 03 + 204 A 65)

An useful observation:

J«(V1) =V, (Vo) = =V3, Ju(V3) = Vo, Ju(Va) = V4
JH(01) =01, J(02) = =03, Jx(03) =02, Ju(04) = 04 .

Proof. Simply by doing mental pictures of the corresponding vectorfields along
geodesic curves in S with initial conditions vs or Jvs. For instance we compute
J«(V3) mentally: we keep the base curve (the geodesic in the direction of Juvy)
and rotate the vectorfield along the curve, (which is the parallel transport of
v2) by w/2. Hence obtaining the geodesic field determined by Jus, ie.,

(S ), (V3 (us)) = Va(Jvs).
[
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Computation of the Lie derivatives

Lie derivatives can be computed to any desired order.
The starting point is: 6, = |vs|?63. Let us compute the
e2 term (Ly)? (|v3|203) with X = V5.

Lx(Jvs|203) = (ixd)(Jvs|203) + diy(Jvst?03) =
= ix (2vs{204 A 03) +ix(Jvs|? 02 A 61) = |vs]? 61

Differentiating once more,

(Lx)? (lvs|?03) = Lx(Jvs?01) = —|vs|? K (s) 03

Since J*03 = 05, we get finally ...

04



Symplectic form expansion up to ¢

1 1
o BéQpair ~ d ||vs|* (1 — Z K (s) ) 02| =

= ), 1 €2 4 —|—O(e4)

|US|2

1
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Educated guess for the 1-form

The expansion of the pulled back 1-form is

(1 — éK(s) e + 0(64)) 05, 05 = |vs|? 0

Claim that inside the parenthesis one gets higher order
multi-index derivatives of K(s) in the direction of Jug
for all even powers of e.

Thus we are quite sure that we will get a function in T'S
multiplying 6>. None of the forms 64, 603, 64 will appear.
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Another approach: working in M =U(S) x (—r,r)

Etolded : (Vss ) — (exp ( — awvs, avs), |vs| =1

V;, i =1,2,3 Levi Civita frame in U(S), V4 = 0/0«.
0;, 1 = 1,2,3 are now restricted to U(S), 64 = da.
0 < |a| <r, 2r = the injectivity radius

F=2aexp(B), B(vs,a)=ma(vs)a®+O0(a?)

E%o1ded pair = 1301 A O3 + 214601 A 04+
+ Q9303 N\ O3 + Q9405 N Oy

Next: the coefficients €2;;(vs,): Jacobi fields!!!

o7



For a = 0 the only nonzero is 2o4 =2

folded symplectic
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Notations in M =U(S) x (—r,r)

0 < |a| < r, 2r = the injectivity radius

Etolded : (vs, o) — (exp ( — aws), exp (avs)), |vs| = 1.

V;, 1=1,2,3 the Levi Civita frame on U (S)
V4 — 8/8a

Let Y, Z the Jacobi fields with initial conditions

Y (0)=0,Y’(0) = —vs, Z(0)=ws, Z'(0) =0

(along the geodesic v with initial condition Juvg
connecting si.)
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Folded symplectic: M =U(S) x (—r,r)

Qi3 = —231 = —([Y ()| + [Y(~a)])
Qg = =241 = —|Y ()| + |Y(—0a)|

Qoz = —[Q]zx = |Z(a)| — [Z(—0a)]

Qog = —[R2]a2 = |Z(a)| + | Z(—)|
0 0 Qi3 Q14 |

Q] = 0 0 203 224

—$213 —S223 0 O
| —14 —$224 O 0

Y(0) =0, Y'(0) = —vs, Z(0)=ws, Z'(0) =0.
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Using the expansions of the norm of Jacobi fields

Q13 = ~2a+ S K(s)a> + 0(a®)
Q14 = O(a®)

Q3 = —2 (VK - Jus) o + 0(a®)
Qos =2 — K(s)a® + 0(a*)
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E*Qpuir = 202 Ada — 2a.01 A 03 — a® K(5)0 A da+
+a3/3 [K(s) 01 A O3 — (VK - Jus)bs A 03] + O(a)

E*Qpuir = dw + O(a®)

w=2(—a-+ éK(s)oﬁ) 0>
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Educated guess

E*Qpair = d(w + O(a4))
w=2(—a+ éK(s)a?’) 0>

We posit that E*€2,,;, is exact, namely

E*me'r = d[f(vs, @) O5],

with a f(vs, ) in M that can be expressed in terms of
multiindices derivatives in Jus.
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Summary: Vortex pair equations to leading orders

§ = vs + a? [(sz(fvs) + %K(s)) vs — dmo(V}) va] + O(a?)

1
D;vs = —a? [dmz(V3) + ‘ (VK - Jvus) + O(az)] Jvs
& = —a® dmy(V2) + O(c®)

D = Levi-Civita covariant derivative.
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E. Computation of m»>: some simple examples

a) Half plane {(x,y)|y > 0} with euclidian metric

1
G(Zl,ZQ) = Z (Iog(|z1 — 22| — Iog(|z1 — §2|)

R() = — log(2y)

4m B(z1, 22) = 10g(4y1y2) — log((z1 — x2)* + (y1 + 2)°) .
Substituting

T12 =To X acCoSl , y12 =y, tasinb

we get
1
47B = —log(1+a® cos®0/y;)+1og(1—a’sin0/y) = —— a®4+0(a*).
1 . . .
mo = —— (independent of direction).
Yo
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As the pair approaches the boundary in an inclined way it shall perform a
sharp turn, similar to a billiard. But when the pair approaches the boundary
in the perpendicular direction, they split in two opposite directions, while heir
geometric center comes to a halt asymptotically. One way to interpret this
phenomenon is as follows: in the full plane, the image pair comes along from
the negative side. The two pairs swap partners and change directions by 90
degrees.

The same behavior will occur for a vortex pair inside the unit disk D : |z| < 1,
for which the Green function is

1
G(z1,22) = 5~ (109 |21 — 22 —10g(Jz1 — 25|22]) 25 = z2/|22f?.

Similar computations give analogous results. In the case of the unit disk, sup-
pose that the pair approaches the boundary with symmetric positions relative
to a diameter. The geometric center stops and then reverses direction, while
the pair splits apart, running close to the boundary but in opposite ways. They
reunite on the other side: a perennial cycle of “love and hate".

In conclusion: B blows up as one approaches the boundary, due to the mirror
vortex pair coming from the other side. B contains contributions from this,
as we saw explicitly in the case of the upper half plane. For surfaces one can
do this formally using the Schottky double (we thank Bjorn Gustafsson for this

observation).
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b) The round sphere: my, = —1/6

G(x,y) =log|X — Y|
where one takes the euclidian distance between X,Y.

Their midpoint is well defined when they are not antipodal. Denote
0 < a < w/2 the angle between each of vectors X,Y with s.

ds:(xz,y) = 2a, G(X,Y) = log(2sina).

Sin «

B(X,Y) =log|X-Y|—-logds:(X,Y) = log(2sina)—log(2a) = log( ),

(8
since Robin’s function vanishes identically. We can expand
1

B(X,Y)=Iog(1—%a2—|—---)=—ga2—|—--- , SO
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Validating the results using the round sphere

When we put K =1, mp = —1/6, e1 = ez = e3 = 0, then
3ma+ K/2 =0.
Hence the central geodesic does not sense any perturbation.
Let us verify again with the full vortex equations.
H = —log(2sina)
without rescaling, or
F =exp(—H) =2sina

after rescaling. The vorticities are Kk = +1.
Without loss of generality we may take the initial conditions

so = (1,0,0), v, = (0,1,0) so that Jv, = s, X v, = (0,0, 1).

st(a) = exp(s,, £aJv,) = (COSa,0,£sina), 0 < a < 7w/2.
The Jacobi fields are tangent to the parallels, with norm

Y(£a)| =sina , |Z(xa)| = cosa.
. continues
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The symplectic matrix is

0 0 sina O i
. 0 0 0 COoS
=21 _sina o 0 0
| O —cosa O o) i

The differential of the rescaled Hamiltonian is
[dF'] = (0,0,0,2cos o)

Solving for Xp in Q(Xp,e) = —dF we get, as expected, the well
known fact: the centerpoint s runs the equator, and the vortices
s+ the parallels with latitude o = const.

In this rescaling the period of all orbits is constant, Tyese = 2m. If
we go to the original time, the period is obtained multiplying 2«
by sina. The motion is infinitely fast for dipoles, and the velocity
slows down to zero at the poles.
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c) Hyperbolic half plane (K = —1): mo = -1/3

ds? = |dz|?/y* in H:y > 0.

- 2
cosh dy (21, 20) = 1 + 22— 727
2y192
1 P 1 coshp—1
G(z1, = —log(tanh(=)) = —log ———.
(21,22) 21 a( (2)) 41 gCOShp—I—l
Initial conditions z_- = -8 +1, 24 = (0 +«.

The trajectories stay symmetric with respect to the y—axis, which is a geodesic.
The vortex z4(t) traces the line

r=pPy,y>0
with constant distances p = d(z—(t),24(t)) given by coshp =1+ 2432,

In first order, p ~ sinhp ~ 28. The geodesic joining z+(t) is an arc of the
semicircle centered at the origin and radius

r(t) = |4 (0] = Va2 () + v2(1) = V1+ 82 y(0).
Thus the mid point of s_(¢) and sy (¢) is (0,r(t)), and

T

y
r Y

. continues
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y is governed by the differential equation

where we take the rescaled Hamiltonian (dropping the 1/2x factor)

coshp—1

_ =tanh(£).
coshp—+1 2

F =exp(—H) = exp(G) = \/
A quick computation gives at the symmetric pair:

o= coshp+1 (coshp),
* "\ coshp—1 (coshp+ 1)2

where (cosh p), = 2x/y?. Thus

y _ Jcoshp+1 2z /y?
y2  \/ coshp—1 (coshp—+1)2"’

Simplifying, we get
T Y Vo
p — — = — = y o — 1/2.
TR Ty T areypr Y

Adjusting the vorticity k we can assume v, = 1.

coshp =14 282, 2 = By.
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As expected, that the velocity v, of the midpoint (same as the vertical compo-
nent of the vortices) is constant, when measured in the hyperbolic metric.

But the velocity depends on the separation parameter 5.

When B8 — oo then v, — 0, which is what one expects: they do not see each
other. For small g the Taylor expansion starts as

3
UT:UO(l__/82+"')
2
where v, is the velocity of the dipole (infinitesimal separation) in the time scale

of the Hamiltonian F = exp(G).

Claim: mpo = —1/3. This gives rise to the coefficient -3/2 above as predicted,
by adding

3ms+ K/2 =3(—1/3) — 1/2.

We use the Poincaré disk model just to do a double check. The Green function
for the metric

dw|?
ds2 = 4 | inD: <1
is given by
1 lwy — wol 1 0 1 coshp—1
G(wi,22) = — log ————- = —log(tanh(%)) = —log —————
(0122 = 5 109 s — 1] — 2 9NN = 109 o
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where the hyperbolic distance is
p=dp(wi,wy) = 2tanh™! (w1 — w2)/(wiwa — 1)|.

Robin function is constant. We expand

_ 1 P22+ pt M+ _
¢ = 47rlog<2—|—p2/2-|—p4/4!—|—--- -
_ 1 1 1/2+p?/4' + - -
= o Iogp+47rlog <2+p2/2+p4/4!+_”)
o g, L I RN
B—G—Zlogp—wlog[(1+12+---)(1 4+---)]— -1t

Replacing p = 2a, where « is the distance to the midpont, and neglecting the
1/27 we get indeed

mo = —1/3




d) Surfaces of Revolution

For surfaces of revolution one can construct a global coordinate system (z,y)
with metric of the form

ds? = h?(z) (dx® + dy?) , y=y+ 2m.

Both the geodesic system and the vortex pair are completely integrable, with
momentum maps of the S symmetry given by

Dy — th(x)y
for the geodesic problem and

T1
J = / h2(z) dx
2

for the vortex pair problem in S x S.

Project: comparative study in the catenoid. The natural parametrization is
already conformal,

X(z,9) = (cos¢coshzx,sing coshz,x) ,
Metric g : ds® = cosh?(z)(d¢? + dz?) .

with x running linearly along the surface-axis, and with h = cosh(z) equal to
the radius of circles forming the parallels. The geodesics were described using
elliptic functions.
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Topologically, the catenoid is a cylinder, with underlying Green function for the
constant curvature metric given by (). The vortex pair problem can be reduced
to quadratures (see appendix B), with

1
J = Z [(Sinh(2x2) + 2:62) — (Sinh(2$1) + 2$1)]
The reduction will involve the transcendental equation
1 1
x + > sinh(2z) = a, where a =2J + x1 + > sinh(2x1)
so the development of the project needs to be a mix analytical/numerical.
A question we would be particularly interested: for nearby vortices, how the

center point motion drifts from the initial geodesic given by the initial condi-

tions?



e) Round cylinder and flat tori: topology matters

As discussed in extra slides (A). The Green function of the cylinder is given
just by elementary functions. The Green functions for flat tori require elliptic
functions. Since the feature we want to show is similar in both, we only did the
vortex pair problem on the cylinder.

There are two symmetry groups of translations. For the cylinder: coordinates
X = (z,y) € Rx S, y =y + 27. The groups are the real line itself in the z
direction, and S? itself for in the slot y. It is trivial to find the conserved (group
valued) momenta, although

me'r = dxo> N dy> — dx1 N dys

is exact only in the x coordinate.

In a flat torus, on identifies points in the plane that differ by integer multiples
of two generators. The groups of translations are generated by infinitesimal
motions in the direction of the generators. The momenta in both cases are the
coordinate differences, the 27w ambiguities are irrelevant.

Momentum conservation entails:

The pair moves keeping fixed the relative position vector.
This implies also a = 0.
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ABSTRACT. We consider the problem of point vortices moving on the surface
of a triaxial ellipsoid. Following Hally’s approach, we obtain the equations
of motion by constructing a conformal map from the ellipsoid into the sphere
and composing with stereographic projection. We focus on the case of a pair of
opposite vortices. Our approach is validated by testing a prediction by Kimura
that a (infinitesimally close) vortex dipole follows the geodesic flow. Poincaré
sections suggest that the global flow is non-integrable.

1. Introduction. The equations describing the motion of N-point vortices on an
ideal planar fluid were introduced in 1867 by Helmholtz [15] and described as an
Hamiltonian system in 1876 by Kirchhoff [24]. Equations for point vortices on
the two dimensional sphere were derived independently by I. Gromeka [13] and
by E. Zermelo [37] and rediscovered in 1977 by Bogomolov [2]. In 1999 Kimura
[23] studied all complete surfaces with constant curvature. Kimura conjectured that
on any surface a pair of infinitesimally close opposite vortices would move along a
geodesic. For the hyperbolic plane a recent study was carried out by Montaldi [27].

In 1980 D. Hally [14] wrote the equations for the point vortex dynamics on
a simply connected compact surface (i.e, surfaces diffeomorphic to spheres) using
isothermal coordinates. For such a surface with metric ds?> = h?(z,%)|dz|?> where
z € CUoo represents stereographic coordinates on the sphere, Hally’s equations are

N
Zn = h"%(2n,Z0) Z —f— 4+ iFn% In(h(zn,%0)) |, n=1,2,...,N; (1)
k#n
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* Corresponding author.


http://dx.doi.org/10.3934/xx.xx.xx.xx

2 ADRIANO REGIS RODRIGUES, CESAR CASTILHO AND JAIR KOILLER

where I';, represents the k-th vortex intensity and zj its coordinates. The notation
(z,%) should be familiar to the reader, meaning Rez = (2+4%)/2,Imz = (2 —%)/(2i).
The topological constraint of the surface being compact imposes

N
ZFFO' (2)

Bounded domains inside curved surfaces, simply or multiply connected, can
be studied on its planar image via Theorem 2 of C.C.Lin’s classical paper [19].
Presently, there are powerful methods to produce conformal mappings to the unit
circle or the unit circle with circular holes [10].

Recent work. The case of a compact Riemann surface S of any genus endowed
with an arbitrary metric was addressed by Boatto and Koiller [1]. The constraint (2)
can be relaxed. In fact, for compact surfaces, the Green function G(s1,ss2) of the
Laplace-Beltrami operator governing the vortex-vortex interactions, also encodes
a background counter-vorticity, uniformly distributed with respect to the metric.
The Robin function (desingularization of G) accounts for the self interactions. For
vortices in the round sphere there is a sizeable literature (for a fairly complete
list see [1]). We now review some work on vortices moving on surfaces with non-
constant curvature. In 2008 Castilho and Machado [7] wrote Hally’s equations as
an Hamiltonian system, with Hamiltonian function

H = Tyl In(h(z, Z6) (20, Zn) |2k — 20 ) (3)
k<n
and symplectic form
N
Q= Tph*(2n,Zn)dz, A dZp. (4)
n=1

Using perturbation theory they obtained first order approximations for Hally’s
equations for an ellipsoid of revolution 1%22 + Iy% + ﬁzﬂ) = 1, for small values of e.
The ellipsoid’s symmetry was used to reduce the dimension of the problem. In 2010
Kim [21] obtained the full equations for any ellipsoid of revolution. Several other
surfaces of revolution were considered in [8]. Kimura’s conjecture for vortex pairs
(T = —T'y) was first tested in [25]. As for numerical methods: San Miguel [32], used
least-squares fitting to obtain discretized conformal mappings between ovaloids and
the sphere. He integrated the vortex pair equations using the Gaussian collocation
method. The first study on a genus 2 surface was done by C. Ragazzo [30]. Based
on a relation between the Laplace-Beltrami Green function and the heat kernel, an
algorithm is presented to determine the motion of a single vortex which is governed
by Robin’s function. The method is applied to compute the motion of a vortex on
the Bolza surface, namely a constant curvature genus 2 surface whose fundamental

domain is a regular octagon.

Summary of the paper. We study the motion of a vortex pair on the triaxial

ellipsoid
2?2y 2
E2(a,b,c): —4+ >+ =1 5
(a,b,c) el s (5)
with 0 < a < b < ¢. In section 2 we review Jacobi’s confocal conics coordinates

A1, A2, with @ < A < b < Ay < ¢ that parametrize one octant of the ellipsoid.
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Jacobi also derived a system of conformal coordinates, but they become singular
at the four umbilical points that belong to the ellipse with semiaxis a,c (y = 0),
corresponding to A1 = Ay = b. In section 3 we recall the sphero-conical coordinates
i1, po for the unit sphere S?,

& +n*+¢*=1, (6)
that depends on three affine parameters I7 < Is < I3, with I1 < p; < Is < po < I3.

In section 4 we construct a conformal map between the two surfaces, with the
help of a simple, but useful lemma 4.1. The sphero-conical parameters I; are chosen
in such a way that one octant of the ellipsoid is mapped exactly into one octant of
the sphere under a common isothermal parametrization. There are two relations
between the affine triples a,b,c and I7, I5, I3, given in terms of complete elliptic
integrals. Moreover, each ); is an elliptic function of their corresponding pu;, i = 1, 2.
Dupin’s lines of curvature of the ellipsoid is mapped into a topologically equivalent
system of curves in the sphere. The umbilics A\; = Ao = b map to pu; = ps = Is.
The conformal factor is (Ay — A1)/(u2 — p1), which is 0/0 at the umbilical points.
We computed the limit in §5: it is equal to [(b — a)(c — b)]/[b(Is — I1)(I5 — I2)].

In section 6 we write the vortex pair equations on the ellipsoid and present our
methodology to numerically integrate them. Composing the ellipsoid to sphere map
with the stereographic projection from the sphere into the z-complex plane we get
the conformal factor h(z, Z) required for Hally’s equation.

In section 7 our approach is validated by verifying Kimura’s conjecture [23] about
the relation between the dipole dynamics and the geodesic flow. We also compute
exploratory Poincaré maps for the flow suggesting that it is chaotic. Directions for
future research are presented in section 8. In Appendix A (following [1]) two proofs
of Kimura’s conjecture are outlined. Appendix B outlines Carlson’s method for
numerically computing elliptic integrals [6].

2. Confocal quadrics coordinates (A1, A2) on the triaxial ellipsoid. Consider
the equation

72 y? 22
af)\+bf)\+cf)\_1' (™)
For P = (x,y,z) € E? the above equation has three solutions A3 = 0 and \;, Ao
(called Jacobi’s confocal coordinates [18], [28]) such that a < Ay < b < Ay < c.
They satisfy
L ala=A)(a— )
(a=bd)(a—c) '
)2 = b(b—A1)(b— N2) ’ ®)
(b—a)(b—c)

2 clc—A)(c—Na)
(c—a)(c—b)
Each (closed) octant of E? is parametrized by (A1, A\2) € [a,b] x [b,c]. See Fig. 2.
Clearly, the semiaxis extremes correspond to:

)\1:b, A =c = (\/&, 0, O)
M=a, do=c = (o, Vo, o) 9)
AM=a, =b = (0, 0, \/E)
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There are four umbilical points located in the middle ellipse (y = 0):

(=022 a

corresponding to Ay = Ay = b. The following result is classical:

Proposition 1. (Jacobi, [18]) The metric ds*> induced by the embedding of the
ellipsoid in R? is of Liouville type ([4])

22— h Ap dX2 Ag dX2 }

4 [()\1 —a)A —b) (M —c) (A2 —a)(A2 —D)(A2 —¢)

(note that the second term is positive).

(11)

In a famous paper Jacobi showed that the geodesics on the triaxial ellipsoid
are integrable ([17],1839). In §28 of his Vorlesungen ([18], 1866), he presented
a derivation using the (now called) Hamilton-Jacobi PDE, that separates using
confocal quadrics coordinates'. In §28 Jacobi also constructed a local conformal
map from the triaxial ellipsoid to the plane (pp. 215-217 of second edition). Jacobi’s
map was implemented recently in [29] and [20]. Isothermal coordinates (u,v) on an
octant of E2 can be constructed using elliptic integrals of the third kind IT (see [5])

¢ do
(¢, k,n) = . 12
(@ k,m) /0 (1 —nsin®0)v/1 — k2sin 0 12

We define the functions u = P(A;) (increasing) and v = Q(\2) (decreasing) by

M t 2a
u:P()\l):/a \/(t—a)(t—b)(t—c) dt:mﬂ(gb,k,n) (13)
with
o b\ —a) _ Jelb—a) _a—b
¢ = arcsin m, k= be—a) andn—T, (14)
¢ —t 2c
’l):Q()\Q):/)\2 \/(ta)(tb)(tc) dt:mn(¢7k7n) (15)
with

B ) blc— A2) _ Jalc—10) _c—b
¢ = arcsin Nle—b)’ k_”b(c—a) and n = T (16)

Proposition 2. The metric (11) in the ellipsoid (5) induced by its embedding in
the euclidian space has, in the first octant, the isothermal coordinates (u,v) in the
rectangle [0, K] X [0, K3]. Here u = P(\1), v = Q(X2) are given by (13) and (15),
with K1 = P(b) and K2 = Q(b). Moreover,

)\2(1}) — )\1(’11,) )
4

The conformal map becomes singular (because the conformal factor vanishes) when
A2(v) = A (u) which occurs only for uw = K, v = Ko, precisely the umbilical point.

ds? = h?(u,v)(du?® + dv?), with h*(u,v) = (17)
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FIGURE 1. Lines of curvature of the triaxial ellipsoid. Cuts along
the top and bottom segments joining the umbilical points results
(topologically) on an open cylinder. One could as well make the
cuts sidewise.

The lines of curvature (of both families) in Fig.1 cannot be given a consistent
direction along the middle ellipse®. In Fig.2, the top panel shows the transformation
from confocal coordinates (A1, A2) to Jacobi’s (u,v) on every octant. The following
Proposition explains the middle and bottom panels. An underlined letter means
that in the planar map the region appears flipped by 180° but overlap perfectly
in the ellipsoid. This observation certainly has not escaped to Jacobi, to whom it
must have appeared so trivial that he did not even bothered to put in print.

Proposition 3. The real elliptic functions
)\1 = )\1(’&) and )\2 = )\2(1))7 (18)

obtained by inverting respectivelly (13) and (15), give rise to a double (branched)
covering of the ellipsoid by a flat torus. The lattice has fundamental domains of
sizes 4K and 4Ks. Each of the 16 rectangles of sizes K1 x Ks in the plane (u,v)
corresponds to an octant: the ellipsoid is covered twice.

For the numerical work will not need to use their explicit formulas. Instead, we
will be only computing elliptic integrals. Four rectangles in the plane surrounding
a point marked U cover twice the sector formed by two octants with a common
umbilical point. Rectangles with vertices corresponding to the umbilical points
+U;, £U; with centers B (or —B) are mapped to sides y > 0 or y < 0 of the
ellipsoid (5). In the next sections we will remedy the defect at the umbilical points.

Remark 1. In contradistinction with geodesics,which depends on the local metric,
vortex motion depends on non local effects, which are encoded in the Green function
of the Laplace-Beltrami operator of the metric [1]. An early attempt to use Jacobi’s
coordinates (u,v) in our numerical experiments for the vortex pair problem on the
triaxial ellipsoid was not satisfactory. However, for initial conditions where the
distance between the vortices was small, we found in §6 that the dynamics tends
to move along a geodesic of the ellipsoid, as predicted by Kimura’s conjecture.
Therefore, in order to study point vortices on the full triaxial ellipsoid a global map
from the ellipsoid to the sphere is needed.

IThe triaxial ellipsoid geodesics problem also separates in sphero-conical coordinates in §3
applied to ¢ = z/+/a, n = y/vb, { = z/+/¢, but we preferred to use Jacobi’s confocal coordinates).
2Source https://en.wikipedia.org/wiki/Umbilical_point
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FIGURE 2. Scheme for the double branched covering of the torus
over the ellipsoid. See Proposition 3.
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Our construction of a conformal map from the ellipsoid to the sphere makes use
of confocal coordinates in E and sphero-conical coordinates in S2, that has four
“fake” singular points. The distribution of coordinate lines on the two surfaces
correspond: in the ellipsoid they are the principal curvature lines, that have the
umbilical points as singularities. The umbilics on the ellipsoid are mapped into the
singular points of the sphero-conical coordinates. Hence the map will be global.

3. Sphero-conical coordinates (u1, 12) on the sphere S? [3]. This coordinate

system depends on three arbitrary parameters I; < Iy < I3, that will be chosen

so that one octant of the ellipsoid (5) gets mapped exactly into one octant of the

sphere (6). This will permit to extend the conformal transformation between the

whole surfaces, in such as way that the coordinate lines distributions correspond.
The parametrization of (y1,7v2,73) € S? is

2= (It — p1)(Iy — po2)
Y (L - )L - 1s) ]

2= (Ia — p1) (2 — p2)
2T (L-h)(Iy— 1)

22 = (I3 — p1) (I3 — p2)
T (Is—N)(Is— L)

with (u1,p2) € [I1, I2] X [I2,I3]. Taking py = pe = I one gets four distinguished

points in the sphere
I -1 \/I?, — I
+ + 2
< \/13—[1707 I; -1 (20)

that will be paired with the ellipsoid umbilics (10) in the conformal transformation
between the surfaces.

A quick derivation of this coordinate system on an octant of the sphere comes
indirecly from the following problem (see [26]). Let A = diag([y, I, I3). Diagonalize
(Ax,z), = € R3 restricted to the subset (x,7) = 0; that is, find extremals of
(Ax,z) constrained to||z||> = 1 and to (x,7v) = 0. The extremals can be located by
considering the function f(z) = 1(Ax,x), constrained to the subset of S? defined

by »71(0,0) where
p(z) = af =1, z7).
Let p and k be Lagrange multipliers. We look for solutions of

Vi) = EVei(@) + kVpa(a).

(19)

That is 5,

o=k i—123. (21)

R

2

Considering that Y 2% =1 and ) 2;v; = 0, we obtain k* = 1/[2 (ij#)z} and

3. o2
) (22)

oLhi-w

For each choice of value p, equation (22) represents an elliptical cone in the
Euclidian space of the (71,72,73). The intersection of these cones with the sphere
(v,7) = 1, are curves that represent an orthogonal system of coordinates, since the
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extremal vectors (21), are extremals of the quadratic form (Ax,z), and are also
parallel to the gradient of (22). Equation (22) has two roots

L <pa(y, I, 1o, I3) < Ip , Io < pa(y, 11, Iz, I3) < I3

that are explicitly obtained from a quadratic equation. Conversely, equations (19)
for (y1,72,73) can be obtained by solving the linear system

AV v %)= 0 0)

with
1 1 1
A= (h=m)™" (o—p)™" (Is—m)™!
(I —p2)™ (Ip—p2)™ ! (Ip— p2)™!

For future reference we observe that

Oy :1( gl V2 3 ) (23)
Opi 2 \pi — I s — I g — I

Proposition 4. The standard metric ds®> of S? can be written in terms of the
sphero-conical coordinates (19) with parameters (I1, I, I3) as

_ M2 .

ds? -
4 [H?_l (1 — 1) H?:l (2 — I;)

2 2

For a derivation, see [3]. The coordinates Iy < p1 < Iz < p2 < I3 cover each
octant of the sphere in a similar fashion as the confocal quadric coordinates do for
the triaxial ellipsoid.

4. Constructing the conformal map from E?(a,b,c) to the unit sphere.
Two conformal maps from a closed simply connected surface to the sphere differ by
Moebius transformations in S?. For the triaxial ellipsoid we found two references:
Schering [34] in 1857 and Craig [9] in 1880. Both are quite intricate analytically,
so we opted do to an ab initio construction, that may have its own interest due to
its simplicity. Our map is equivalent to theirs. As this paper was being revised,
we found a post in a cartography forum with a similar idea, combining Jacobi’s
projection of the y > 0 side of the ellipsoid, with a projection due to Goyou of half
the sphere on a common rectangle in the plane®. Such a map will also makes explicit
the (unique) complex structure in E2(a, b, ¢), via the global isothermic coordinates
z, Z obtained by stereographic projection of the sphere over the complex plane.

3Karney, in http://lists.maptools.org/pipermail/proj/2015-January/006959.html.
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4.1. A simple lemma. The following is immediate:

Lemma 4.1. Let (uy, p1p) € T = [a1, by] X [az, bo] and (A1, X2) € T = [ay, by] x [az, bs)]

local coordinates on surfaces S and S, respectively. Assume that the respective
metrics can be written as

ds®(pi, p2) = f(pr, p2) (g7 (pa)dpd + g5 (p2)dps3) (25)
d5° (A1, A2) = f(A1, A2) [91(A1)dAT + G5 (A2)dA3] (26)
and that
by by b2 ba
/ g1(p)dps = [ g1(A1)dAi (= 71), / ga(p2)dpa = [ Ga(A2)dA2(= 12).
1 ai a2 a2 (27)

Then the correspondence
(b1, p2) = (Ar(pn), Aa(p2)),
defined implicitly through

B A1 K2 A2
/ o (B)dt = / ()t (= &), / ga(t)dt = / Ga(D)dt (= &) (28)

ay al az az

defines a conformal map between the surfaces

d3*(p1, p2) = h*(pa, p2) ds®(pa, piz) (29)

with conformal factor h given by

B2 = JQali) Aa ()

30

f(:ul, H2) ( )

In other words, we use the coordinate patch (£1,&) € R = [0,71] X [0,72] as
common isothermal parameters for the two surfaces,

ds® = f [d&} +d€3], d5° = f [dE} + dé3] (31)

We apply this Lemma using S = S? with the sphero-conical coordinates (u1, 2)
and S = E2 with Jacobi confocal coordinates (A1, A2) with the corresponding metrics
given by (24) and (11). It is VERY important that given a < b < ¢ we chose
I) < Iy < I3 such that condition (27) holds. On both coordinate systems and in
each octant the coordinate curves meet the great circles perpendicularly, except at
the point corresponding to the umbilic points at the ellipsoid.

Theorem 4.2. The conformal factor between the metric on the ellipsoid to the
metric on the sphere is

p2 = A2lu) = M)
H2 — H1
The functions Az(us2), A1(i1) defining the conformal map are derived from the
the metric expressions (11) and (24).

: (32)

Identifying the corresponding points of the two surfaces on the double coverings
by the lattice in the complex plane w = u + v, a global map from E2 to S? results.
w, W are common isothermal coordinates. The umbilical points in the ellipsoid (and
the special points in the sphere) are ramification points of order 1/2.
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4.2. Technical details. Computing each function A;(y;),i = 1,2 requires one
elliptic integral and one elliptic integrals inversion. Computing the parameters
Iy, 15, I3 of the sphero-conical coordinates involves a nonlinear system involving
two complete elliptic integrals of the first kind. Recall that the standard metric on
S? written in the sphero-conical coordinates is given by (24),

f2 (G1(m) dpf + Go(p2) du3)

ds® =
5 1

where

1 —1
Gi(p1) =

(1 — L) — L) (py — I3) Calua) = (2 — ) (p2 — I2) (2 — I3)

Define the functions

H1 1 2
SW”:AI¢u—nm—gm—aﬁ”:¢&—h”¢h) 3

with
¢ = arcsin ? — ? ; (35)
3—I
fs -1 2
fe) AQV@—hwa»u—h>t VLT, 0k (30
with

. I3 — I3 -1
qbzarcsm\/;’_/;j, kz:”;’—]j (37)

Here F is the elliptic integral of the first kind [5]

¢ do
F(¢7k):/0 m (38)

Let P and @ as (13) and (15) respectively. The relations (28) become

[ P(\) = S(1), Q) =T(us) | (39)

We must impose the condition (27) in Lemma 4.1 that assures that one octant
of the sphere is mapped exactly over an octant of the ellipsoid. This amounts to

| P(b) = S(h), Q(b) =T(I) | (40)

Given a, b and ¢, finding I, I, and I3 satisfying (40). Note that both
triples (a,b,c¢) and (I1, I, I3) can be considered as projective quantities. Let

K (k) = F (3, k) (41)
be the complete integral of the first type. From (34) and (36) it follows that
VI =1 VI =1
K (ki) = =5 P(b) , K(ko) = =5 Q(b) (42)
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Observing that k; and ko are complementary, we get

K(k) _P(®) 5 2
= , ki +ks=1. 43
K(ka) Q) T 1)
After solving this system for k1, ko, the parameters I;, I and I3 are obtained from
2K (k1)) * 2
Is—1 = I -1 =(s—1)ki. 44
v-n=(Tppl) L Reh= (- 49

5. Conformality at the umbilical points. The conformal factor is given by (32),
with the coordinates implicitly related by (39). Umbilics correspond to Ay = Ay = b,
and at the sphere we have py = s = Iz in view of (40). Therefore we get a 0/0
indeterminacy. Let o, 8 > 0, with a« + § = 1, and take

p1 = I — ae + O(€?), pg = I + Be + O(€?), € > 0.
Let’s examine the limit
lim (Q'T(I> + Be) — P'S(I — ae)) /e (45)

e—0+
Using I’'Hopital, we should investigate the two limits in the combination
d d
lim — P~'S lim — Q'T 46
of lim i (p2)) + B[ lim 0 @ (h2)] (46)

We will now show that both are equal to [(b — a)(c — b)]/[b(I2 — I1)(I3 — I2)]. We
do it for the first:

L= lim d/dum[P~'S(u)] (47)
p1—1I2
d __ dp—1! dsS 1 ds
dpi du |u=S(m) dpm N dp

where dP/d)\; is computed at A\; = P~1S(uy). Therefore

Pt = | 1 (s = ) (I = ) (I3 — ) r”
dp P=1S(pa)/ (P=1S(p) — a)(b— P18 (1)) (e — P~1S (1))
Let’s now try to compute this limit as p; — Iz. Recall that P~1S(I3) = b. Pulling
out (if we may) the factors that have a direct limit we get

= [t ] i, () 1 (5P

p1—1I2

The limit in the right is, by a stroke of luck, v/L. The second limit is computed
analogously and gives, seemingly by another stroke of luck, the same result, but his
is indeed what we expect to happen by Riemann surfaces theory.

In passing, we have also shown that for p; < Is < u9, both close to Is, we have

M =b—7(I— ) +O((I2 — p1)?), Ao =b+~(uz — I2) + O((p2 — I2)*)  (49)

with ( \( )
b—a)(c—b
= him ilic — 50
¥ Pnite = 57, 1) (7~ 1) 0
where a,b,c and Iy, I5, I5 are related by (44).
We defined a global map from E? to S? by identifying the corresponding points
on the two surfaces (ellipsoid and the sphere) on their double coverings by the same

lattice in the complex w-plane (w = u + 4v). Summarizing:
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Proposition 5. Global isothermal coordinates (z,Z) on E? (except for the point
corresponding to z = 00) are obtained by stereographic projection from the ~y-sphere
to the complex z-plane, namely:

w=u+iv— (peE?) < (y€S?) = z2€C.
Moreover, z = z(w) is a (complex) elliptic function with quarter periods Ki,iKs.
6. The vortex pair on the triaxial ellipsoid E2. The case of a vortex pair is

given when N = 2 and I'y = —I's = I in Hally’s equations (1). The symplectic
form and Hamiltonian function are respectively

Q=T [h*(21,71)dz1 A dZ1 — B (22, Z2)d2ze A dZs)] (51)
H=-1? ln(h(zljl)h(zgjg)\zl — 22|2). (52)

Hamilton’s equations are

?1 = ’L'Fh72(21,21) |:
z

(53)
1 0

Z1 — 29 82’2

?2 = Z.Fhiz(ZQ,EQ) |:

Let us now discuss how to do the actual computations. Let (z,Z) denote the
stereographic coordinates through the south pole S on S? \ {S}.

S\ {S} = C, (54)
£+

y1,6) = 2= . 55
€m0 == 7 (55)

The standard (round) S? metric is conformal to the Euclidean

4
ds® = ——|dz|? 56
= e (56)
The inverse transformation is
z+z —i(z—7) . 1—2Z

S T R (57)

Recall that the sphero-conical coordinates (u1, p2) on S?, are obtained from (22)
and (57) via

52 n2 C2

+ =0.
L—p L—-—p I3—p
In other words p1 and po are the roots of
PP —ap+pB=0, (58)

where

a(2,2) = (I + I3)€(2,2) + (I + Is)n*(2,2) + (I + [)¢P(2,7),

B(2,%) = LIs& (2,2) — I I3n*(2,%) + 11:¢%(2,7) .
The ellipsoid metric in stereographic coordinates is given by
4(hy — Ap)

(2 — )1+ 22 (59)

ds* = h?|dz)?, h%(z,%) =
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To simplify notation we define
L(2,2) = M\a(2,2) — M(2,2), M(2,2) = p2(2,2) — p1(2,z) and r(2,2) =1 + 2Z.
(60)
We also write \;(2,Z) = A\i(ui(2,%)), @ = 1,2. Therefore, we get
Proposition 6. The conformal factor of the ellipsoid over the z-complex plane is

given by
4L

20, %) —
h*(z,%z) = M2’ (61)
0 _ 10 4L MrL, — LrM, —2MLZ
5 In(h(z,2)) = 555 In <M7"2> = ST M . (62)
These determine equations (53). L, and M., are given by

9z \ Nips = 1) (pi — L) (i — I3) 92

Op; Oy — Jo . .
—=—" i=12
0z 2 — «

N \/ i —a) N — b)Y\ —¢) O

that are obtained through implicit diferentiation of (39).
The numerical integration of the dipole problem on E? (53) is done as follows:
1) Use (58) to obtain the sphero-conical coordinates (u1(z;,%;), pa2(2i,%:)), i = 1, 2.

2) Compute the confocal coordinates (A1 (z1,%1), A2(21,%1)) and (A1 (z2,Z2), A2(22,Z2))
using (28) (inverting P and @ defined in (13) and (15), respectively);

3) Using (61) and (62) compute the conformal factors (59) h?(z1,%1), h?(22,%2) and
its partial derivatives

0 _ 0 _
97 In(h(z1,%1)) and 9% In(h(z2,%2)),

4) The Hamiltonian ODEs are numerically integrated using a Runge-Kutta 4(5)
with adaptative time-step.

7. Numerical experiments. We check Kimura’s conjecture by integrating Hally’s
equations [14] in isothermal coordinates (u,v) given by (17).

s i 4Ty, Ay (vp) — 1IN (un)
"2 T e m )= Gt
In fact,
0 _ 10 _ 1 0 _
%ln(h(z,z)) = ialn(hZ(z,z)) = Q—}R%(hZ(z,z))

1N+ iX()
4 )\Q(U) — )\1(’LL) '
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On the other hand, the geodesic equations in local coordinates (u,v) are given
by
i + T, 42 4 2T 500 + T3,02 = 0

(64)
¥+ 2,02 + 2I3,00 + 13,92 = 0
The first fundamental form coefficients are
A -
E=G=h= M F=0
and we obtain the Christoffel symbols
20 (u _
P%l = F%2 = _F%2 = _Az(v)l,()\l)(u) =C1,
(65)
225 (v _
[t =-Tih=-T3= —W(,\z(u) =co.
Hence, the geodesic equations are
u=p, v=q, p=c1(¢®—p*) +2c2pq, §=c2(¢* —p*) —2c1pq.  (66)

The numerical integration was performed as follows. Let v(0) and ¢(0) be initial
conditions for some geodesic. If y(t) is its projection over the ellipsoid, integrating
numerically determine p; = 7(¢/2) and pa = y(—€¢/2). ¢1 and g2 are the initial
conditions for the vortex dipole. The geodesics initial conditions are ¢(0) and ©(0)
where (0) is a 7/2 positive rotation of v(0) suitably normalized. In the figures the
dashed lines represent the geodesics and solid lines represent the vortices. In the
top figures u is the horizontal axis and v is the vertical axis.

Exploratory Poincaré Sections for H = H (u1, v1, u2, v2) were computed at v1 =0
using Henon’s method [16]. We depicted the stroboscopic positions of one of the
vortices.

8. Final comments. In this paper we make a first study about point vortices
moving on the surface of a triaxial ellipsoid. We focused on the case of a pair of
opposite vortices. Our methodology was validated by testing Kimura’s conjecture
on close by pairs. The numerical experiments we presented on global behavior are
exploratory, and we plan to make a more thorough study in a sequel paper.

1. Domains (simply or multiply connected) in the ellipsoid are mapped in topo-
logically equivalent domains in the plane. Theorem 2 of [19] as geometrized
in [1] allow to study confined vortex motion in the planar image.

2. Equilibria and their stability. It is geometrically evident that vortex pairs
placed at the ends of the principal axis should remain in equilibrium. Which
of the three configurations are stable?

3. One of the referees suggested superposing Poincaré sections of the ellipsoid
geodesics system with the sections of the vortex pair. Can the vortex pair
system be regarded as a KAM perturbation of the integrable geodesic system
on the triaxial ellipsoid when the vortices are sufficiently close? For a surface
S, a numerical construction for the symplectomorphism S x S — diagonal =
T*S — zerosection is needed (see [1]) but this is not a trivial task.

4. What would be the behavior of a vortex pair placed initially around a point
from a geodesic passing through an umbilical point? It is known that the
geodesic path will pass successively through the opposite umbilical point, ap-
proaching the middle ellipse as t — +o00. For the geodesic problem the middle
ellipse is a periodic orbit with coinciding stable and unstable manifolds. Can
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FI1GURE 3. Nearly spherical example a =1, b = 1.01, ¢ = 1.02

9.

FicURE 4. Ellipsoid a=1, b=6, ¢
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FIGURE 5. Poincaré map. Prolate, nearly symmetrical a =1, b =
1.1, c=9, H=-40

FIGURE 6. Poincaré map. Prolate a =1, b=2, ¢=9, H = —36.

transversality be shown for the vortex pair system regarded as a perturbation
of the geodesic system? How about vortex pairs placed at opposite umbilical
points? We conjecture that they will traverse a periodic orbit passing through

the other pair.

5. We plan to pursue a more thorough investigation of Poincaré sections in the
future. One of the referees suggests to make parameters move away from
circular symmetry (two equal axis). Chaotic regions should became more and

more visible (e.g. take a=1, ¢=9, b=1, 1.1, 1.2,1.3, ...).
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FIGURE 7. Poincaré map. Prolate a =1, b=4, ¢ =9, H = —60.

6. The one point vortex problem on a compact surface S of genus zero or 1 (with
uniform countervorticity) has the Robin function R as Hamiltonian [1],

) 1
R(s,) = Slgrglg G(s,50) — o Ind(s, s,) (67)
where G is the Green function and d is the distance function of the metric.
The symplectic 2-form is the area (normalized by vorticity). A remarkable
result is (see [35])

1
AR = 27rK (68)
where K is the Gaussian curvature function of the surface and A the Laplace-
Beltrami operator of the metric. It should be possible to solve this Poisson
equation using the confocal coordinates.

7. Three point vortices on the sphere are integrable due to the SO(3) symmetry
and were studied in [22] and [33]. How is the motion of three vortices affected
on a nearly spherical oblate or prolate ellipsoid with two equal axis?

8. We used a Runge-Kutta method in the simulations. A symplectic integrator
would be more adequate for very long times. Indeed, one could attempt to
apply a symplectic integrator directly on the vortex system in the triaxial
ellipsoid. A new numerical method for point vortices in the sphere was pro-
posed in [36]. Can this method be extended to spheroids? Other numerical
methods for point vortices on surfaces are in order using discrete differential
geometry, implementing numerical conformal maps and Green functions of a
discretized Laplacian [12].

Acknowledgements. We thank the three referees for their criticisms and sugges-
tions. This paper contains some of the results from A. Regis’ doctoral thesis [31],
who wants to thank Prof. Maria Luiza Soares Leite for introducing him to differ-
ential geometry. This work was supported by Capes-CNPq Ciéncia sem Fronteiras
grants PV011-2012 and PV089-2013.
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Appendix A. Kimura’s conjecture. In [1] two proofs were outlined. One of
them is based in the following way to rewrite of the vortex pair Hamiltonian:

H = —W + B(s1, 52) (69)
where
B(sy, 5) = w - (G(SI,SQ) - W)] (70)

Here R is the Robin function and its companion B was called the Batman function.
If initially d(s1(0),52(0)) = O(e) then B = O(e?). Suppose the vorticities +I" are
weak, of order O(e). Then to first order the contribution of B can be neglected,
and we get the truncated system

$1 = €SGrad,, Ind(sy, s2), $2 = eSGrady, Ind(sq, s2)

with initially 1/d(s1(0),s2(0)) = O(e~!). Here SGrad is the symplectic gradient,
which is the gradient rotated by pi/2 in the tangent plane. Now the proof ends by
writing the EDOs in terms of Gauss coordinates around a central geodesic.

The other proof would have a potential for further developments. It relies on
pulling back the symplectic form Q of S x S (the phase space of the vortex pair sys-
tem) to T*S, the phase space of the geodesic system. (2 is the difference of the area
forms (take the vorticity=1). A map ps € T*S — (s_,s4+) € S x S is constructed
using the exponential map of the metric: using the inverse Legendre transform,
write ps = (vs, ), take the rotation us = J(vs), and define s1 = exp(Feus). This
map depends on a parameter € that gives the order of proximity of the pair. It is
easy to show that the leading term of the expansion of the pullback is precisely the
canonical symplectic form of T*S, while the Hamiltonian has as leading term the
norm of the cometric, |ps|, up to a scaling. This proves Kimura’s conjecture, at
least formally. The task is to compute the next order terms in € of the symplectic
form and of the Hamiltonian.

Appendix B. Evaluation of elliptic integrals, following [6]. In the numerical
implementations, we computed the elliptical integrals (13), (15), (34) and (36) using

dt

1 o0
Rp(z,y,2) = = / 71
l )=3 o VJEFa)t+y)(t+2) (7)
e dt
RJ z,Y,z,p) = 7/ ) 72
( )=3 o (t+p)/E+2)(t+y)(t+2) 72)
When p is equal to any of the coordinates z,y and z R; degenerates into
RD(I7yaZ> = RJ(%%Z’Z)- (73)
The Legendre elliptical integrals [11] can be expressed in terms of Rp , Ry and Rp:
F(¢,k) = sin(¢) Rr(cos?(¢), 1 — k?sin?(¢), 1),
E((bv k) = Sll’l((b) Rp (COS2 (¢)7 1—k? Sin2 (¢)7 1)_

1% sin®(¢) Rp(cos?(¢), 1 — k?sin®(¢), 1),

(¢, k,n) = sin(¢) Rp(cos?(¢),1 — k%sin?(¢),1)—
22 sin®(¢)Ry(cos?(¢p), 1 — k2 sin?(¢), 1,1 + nsin®(¢)) .

Algorithms for its fast evaluation can be found in [6].
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Abstract—We consider a 2pauir of opposite vortices moving on the surface of the triaxial
ellipsoid E(a, b,¢) : #2/a+y?/b+ 2?/c =1, a < b < c. The equations of motion are transported

to S% x S? via a conformal map that combines confocal quadric coordinates for the ellipsoid and
sphero-conical coordinates in the sphere. The antipodal pairs form an invariant submanifold
for the dynamics. We characterize the linear stability of the equilibrium pairs at the three axis
endpoints.
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INTRODUCTION

In 1999 Yoshifumi Kimura conjectured that a pair of opposite vortices moving on a two-
dimensional surface ¥, endowed with a Riemannian metric g, when placed close together, would
stay close, bordering the geodesic path in between them [18].

In [26] we presented a numerical study to verify Kimura’s conjecture, taking the triaxial ellipsoid
Y =E(a,b,c) : 2?/a+y?/b+2?/c =1, a < b < c as the test surface. One observes indeed that near
the diagonal D = {(0,0) € ¥ x £} the vortex system looks like a KAM perturbation of Jacobi’s
geodesic problem on the ellipsoid.

In this paper we focus on the other extreme situation, vortices placed near an antipodal
configuration. For surfaces with antipodal symmetry, such as the triaxial ellipsoid, if a pair of
opposite vortices is placed ezactly in an antipodal configuration, the motion will remain antipodal
for all time. In other words, antipodal pairs form an invariant submanifold for the dynamics. In
fact, we show that the center manifold dynamics is governed by the conformal factor of a conformal
map ¥ — S? that preserves “antipodicity”. This map is unique up to Moebius transformations of
the sphere.

We present here a study on the stability of the pair configurations at the three axis endpoints.
We reach the (not very surprising) conclusion that the minimum and maximum axis endpoints are
of center-center type, while the middle axis is a saddle-center.

This paper is organized as follows. We review in Section 1 some results from [5]. Our new results
are presented in Section 2. The formulas for the stability analysis are given in Theorem 3 in terms of
the ellipsoid parameters a, b, ¢ and associated sphero-conical parameters I3, I5, I3 (that are functions
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of a,b,c). These relations are found in Section 3. Sections 4 and 5 contain calculations leading to
the proof of Theorem 3. Some final comments are presented in Section 6. For completeness, confocal
quadrics and sphero-conical coordinate systems are reviewed in Appendix A. In Appendix B we
present a simple proof of the main theorem (Theorem 2) from Section 1. Appendix C outlines some
of the steps required for the numerical work.

The conformal map. The key is a “master equation” K(\/l — k?)/K (k) = n(a,b,c) in Section 3,
see (3.25). The K’s are complementary complete elliptic integrals of the first kindY. The ratio on

the left-hand side comes from the sphero-conical coordinates [6, 7] for the round metric in the
sphere

= - D) - R~ Is) (w2 — D)z — I) iz — T)

Likewise, the right-hand side n(a,b,c) is the ratio of two complete elliptic integrals of the third
kind, coming from the ellipsoid metric in confocal coordinates

s Aa— N [ Ay dA2 . — Ay dA2 }
N 4 ()\1 — a)(>\1 — b)()\l — C) ()\2 — a)(>\2 - b)()\Q - C)

2 _ H2— [ dyid dpi3 }

ds

Together with (3.27), the master equation solution for x yields the parameters I, I, I3 of the
sphero-conical coordinates in terms of the ellipsoid parameters a, b, c. This construction ensures that
the four artificial singular points of the sphero-conical coordinates correspond to the four umbilical
points of the ellipsoid. The coordinate lines in both systems have the same topology, going around
the singular points in the same fashion. Riemann surface theory shows that the construction is well
defined at these branch points upon composition to produce a conformal map from the ellipsoid

to the sphere. The conformal factor is simply h? = (A2 — A\1)/(ua — p1). This is the key for our
analysis.

1. THE VORTEX PAIR SYSTEM

We normalize vorticities to £1. The phase space for a vortex pair on a surface ¥ with metric g
is ¥ x ¥ — D, the symplectic form is

Qpair = Q(01) — Q(02), (1.1)
where Q(0) is the area form of (X, g). The Hamiltonian is

H =Gy, 00) + ; (Ry(o1) + Ry(02)), (1.2)

where G is the Green function of the Laplace - Beltrami operator A, on X, and Ry, called Robin’s
function, is its regularization at the diagonal D,

Ry(0,) = li_)m G(o,0,) —logd(o,0,)/2m, (1.3)

where d is the distance function of the metric g. The Green function satisfies
1

By Glo,00) = _Area(E)

+ 0(0,0,),
G(o,0,) —logd(o,0,)/2m bounded, (1.4)
/2 G(o,0,)Qo) =0, G(o,0,) = G(0,,0).

More information about vortices on closed surfaces can be found in [5], building up on D. Hally’s
seminal work [13].

Y1n elliptic function theory, the ratio of the K’s on the left-hand side is the so-called nome function.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 1 2019
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1.1. Kimura’s Assertion

Let us assume ¥ is a compact surface without boundary. The manifold ¥ x ¥ — D can be re-
compactified: one glues 7' (where the geodesic motion takes place) to the diagonal, keeping track
of the direction that the two points o1, 09 approach each other. This is a well-known construction
(Axelrod — Singer [1] and Fulton - MacPherson [11]).

The Hamiltonian (1.2) can be rewritten as

1
H= ~or log d(o1,02) + B(o1,02). (1.5)
The function B, which was called Batman’s function, is given by
1
B(oy,09) = 5 (R(01) + R(02)) — (G(o1,02) — logd(oy,02)/2T). (1.6)

It seems to be still an unexplored object in geometric function theory. Since B = O(d(o1,02)?,
near the diagonal the dominant term is —logd(oy,02). Introduce a small parameter e. Energy
conservation guarantees that, if d(s1, s2) is initially O(e), it remains so for all time. A map from a
neighborhood of the zero section of 77 (X) to a neighborhood of the diagonal of ¥ x ¥ is defined by

Pe ET'Y v, € TYE = w, = J(v5/2) — (01,02) = (exp(—ewy), exp(ew,)) . (1.7)
~ ~~ - ~ ~ - ~ ~~ -
Legendre transform rotate by /2 exponential map

The vector v, is perpendicular to the geodesic between o1 and o9 at the midpoint o. Thus, it is
the direction of the proposed geodesic line.

The vortex problem in 3 x > — D has a symplectic form Qyyy which is the area form in the
first factor minus the area form in the second. T*3 has a canonical 2-form Qp+y that is intrinsically
defined (no metric needed). What is the relation between them? Using local coordinates, one easily
shows that the pull back of (1.7) is

= € Qs + 0(64). (1.8)
Moreover, to leading order, the vortex problem is governed by the Hamiltonian
—Ind(s1,s2) = —In|2ev,]|. (1.9)

Therefore, under a suitable time scale reparametrization, the geodesic system is the blow-up of the
vortex pair problem at the diagonal. Obtaining the perturbation terms is in order.

1.2. Genus-0 Sufaces: Transporting the Vortex Problem to the Sphere

From now on we will confine ourselves with genus zero surfaces. One learns in basic courses that
two-dimensional ideal hydrodynamics behaves nicely under conformal mappings. So we are led to

consider a conformal map o € ¥ — s € S2. Two such maps differ by a Moebius transformation
of the target sphere. A metric on the sphere S? is obtained by pushing forward the metric in ¥,
expressed as g = h?(s) go, where g, denotes the constant curvature metric in S2. h? is the conformal
factor. The equations for point vortices moving in ¥ will be transported to corresponding virtual
points moving in S2.

Conversely, for any arbitrarily chosen positive (C° or analytic) function h?(s) one can consider
the abstract metric g = h?(s) g, in the Riemann sphere?.

The symplectic form in S? x S? is given by

Qpair = h*(51)Q(51) — h* (52) Q0 (s2), (1.10)

2)Although such a general metric cannot always be realized as an embedded surface ¥ C R?, it can be done in R®
(Gromov, [14]). For us this does not matter: in a “Platonic” perspective, ideal two-dimensional hydrodynamics
takes place on an abstract Riemann surface with a Riemannian metric g.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 1 2019
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where , is the area form of the round sphere. The Hamiltonian is given by (for the derivation of
the change of Hamiltonian under a conformal map, see [5])

H =~ ) In (h(st)h(sa)]s1 — 52f)

. ) (1.11)
=— <ln |s1 — s9| + ) Inh(sy)+ ) lnh(82)> ,
where | | is the Euclidian distance. The equations of motion become imbedded in R3 x R3:
. 1 S1 X S9 1
= - dh h 1.12
0= 1 (o~ e = o5t < B .
. 1 S1 X S9 1
= dh h . 1.13
7 h2(s,) <\81 — 59/ gz e (s2)/ (82)> (1.13)

Studying the dynamics in the “virtual” sphere S? is very convenient. For instance, we can
consider antipodal pairs in S? even if ¥ does not have the antipodal (or other) symmetries.

The following facts are not hard to prove (we will present them in detail in a separate publication
focused on surfaces of revolution).

i) The system (1.12), (1.13) is well defined, meaning that it behaves invariantly under a Moebius
transformation in the target sphere. This is a six-dimensional group.

ii) Any equilibrium pair (o1,092) € ¥ x 3, if one applies a conveniently chosen Moebius transfor-
mation, can be represented by an antipodal pair (s, —s) € S x S2.

iii) An antipodal pair (s, —s) € S% x S? is in equilibrium if and only if the gradient of h vanishes
at both s and —s.

iv) When a surface ¥ has the antipodal symmetry ¢ — —o, then there is a conformal map
preserving the antipodicity, so that grad h(—s) = —grad h(s), s € S2.

For such surfaces iv), a key observation is the following:

Theorem 1. For surfaces with antipodal symmetry, the antipodal pairs (either seen in X or

equivalently in S?) form an invariant two-dimensional submanifold for the dynamics San: =
{(s,—s) € 5% x S?}.

Proof. The proof is very simple. In S,y the first terms of the two Egs. (1.12), (1.13) disappear.
The second equation becomes

S =y (s mrad hisa) ()
(

= gna(sy) ((751) x [awad h(s)/h(s1)]) (1.14)

and reproduces the first equation. O

A remark should be added to the first item i). By suitably repositioning the target sphere, any
Moebius transformation can be seen as a SO(3) rotation [30]. Hence we may assume, by performing
a SO(3) rotation, that an antipodal pair in ¥ which is an equilibrium pair for the system, becomes
the north-south pair sj 5 = (0,0,+1).

Take for coordinate systems the tangent planes x,y at the points sj, s5. Then (1.12), (1.13) can
be rewritten as a system of four ODEs for x1,y1, 22, y2.

Linearization. All we need are the quadratic expansions of the conformal factors at sj 5. There
are five parameters: the two pairs of coefficients of the quadratic forms and the angle # between
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the principal axis of the second quadratic form and the principal axis of the first. We impose no
restrictions on the parameters of the quadratic forms, since we have no special concerns about
Gromov’s embedding problem. Clearly, it is possible to construct a Morse function h on the sphere
with arbitrary quadratic expansions at two chosen critical points (we will provide the linearization
in this general case in another publication).

Here we focus on surfaces with antipodal symmetry. The quadratic expansions at the poles are
the same, of the form

H(z,y) =h*+ (1/2)px® + (1/2) qy°, h* > 0. (1.15)

Theorem 2. Denote p’ = p/h*, ¢' = q/h*. The characteristic polynomial for the linearized system
factors as

(N +4p'q] [N +401 - )1 - 4)]. (1.16)

The first factor corresponds to the invariant submanifold Syn:. If p',q' have the same sign, we have
a center on the restriction of the system to the invariant submanifold Sqn:. If p', ¢’ have opposite
signs, we have a saddle. For the transverse subspace: if (1 —p’)(1 —¢') > 0, we have linear stability;
if (1—=p)(1—¢) <0, we have a saddle.

Remark 1. Note the undefined situations when p or ¢ are =0 or 1.

Remark 2. For surfaces of revolution in R? with equatorial symmetry (spheroids, with p = ¢), we
can also show that —oo < p < 1/2. The case p = ¢ = 0 corresponds to the sphere.

The proof of Theorem 2 is given in Appendix B.

2. MAIN RESULT: COEFFICIENTS OF THE QUADRATIC EXPANSIONS

We now present the formulae for the coefficients of the quadratic expansions (1.15) at the axis
endpoints (A, —A), (B,—B), (C,—C). Together with Theorem 2 they determine the stability of
the vortex pair problem of the triaxial ellipsoid at the axis equilibria.

The quantities I, I, I3 (we will normalize I; = 0) below are functions of a, b, ¢ that are computed
via the master Eqs. (3.25), (3.27) presented in the next section (Section 3), which gives an explicit
conformal map from the ellipsoid to the sphere. The quadratic expansion is derived in Section 5
using the partial derivatives obtained in Section 4. Mixed terms in the quadratic expansion are
ruled out simply by symmetry considerations.

Theorem 3. In the notation of (1.15) we have

(. c—b
hA_\/I?,—Iz

patti=, |7 )] )

1 c—a
hy = Is— 1) — .
=g Ly =00

( c—a
hy =
B \/—73—11
1

i = (22)

pB/hp = .

1
I3 — I

qB/hp =

(12—11)—b;a].
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(. b—a
hc_\/fz—fl
1 c—a
hi = Is — 1) — 2.3
N (R T (23
. 1 c—b
{ qo/hc = I2 _[1 |: b — ([3—[2):| .

The results of the numerical implementation are presented in Tables 1 and 2. Without loss of
generality we fix ¢ = 1,11 = 0 so we omit them in the tables. We took a,b varying in units of 0.1.
We believe to have covered a sufficient range of a < b < 1 values.

Observing Table 1 we reach the following conclusions.

i) The minor axis antipodal equilibrium (A, —A) is center-center, since
0<py<dy<l
The conformal factor has a minimum.
ii) The middle axis antipodal equilibrium (B, —B) is a saddle for the invariant submanifold, and
a center in the transverse direction. We observe that
0<pg <1, gy<0.
The conformal factor has a saddle at B, —B.

iii) The major axis antipodal equilibrium (C, —C') is a center-center, since

pe < g < 0.
The conformal factor has a maximum.

Table 2 compares the values of
B = c—b s _ Cc—a 2 _ b—a 5 _ (b—a)(c—0b) .
L—I, "B I3—1I’ L—1 Y " by — )3 — )

The last expression is derived in Section 4. As expected, all along the table hy < hp < he. It is
interesting to compare hp and hy;, the value at the umbilical points. We observe that the difference

h%] — hQB can have both signs, meaning:

i) When h%] < h%, then in the invariant submanifold there are two periodic orbits passing through
the opposite umbilical points at which the antipodal pair orbits around the points A and —A.

ii) When h2U > hQB, the antipodal pair orbits around the points C' and —C.

iii) In the special situations where h?J = th, the separatrix emanating from (B, —B) passes
through the umbilical points.

3. CONFORMAL MAP OF THE TRIAXIAL ELLIPSOID TO THE SPHERE

In his 1839 note about the integrability of the geodesic problem on the triaxial ellipsoid [16],
and especially in [17], Jacobi used confocal quadrics coordinates to write the Riemannian metric
in E2(a, b, c), induced by the Euclidian metric in the ambient space R3:

A2 — A1

ds? =
S]E 4

[J(A1)dA] — J(A2)dA3] (3.1)

with
A

V=0 o

(3.2)
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VORTEX PAIRS ON THE TRIAXIAL ELLIPSOID

Table 1. Stability of axis pairs (c=1, I} =

I3

0.0163 5.7206

0.0581
0.0425
0.1257
0.1078
0.0634
0.2163
0.1922
0.1435
0.0780
0.3262
0.2923
0.2369
0.1673
0.0875
0.4522
0.4053
0.3411
0.2658
0.1826
0.0936
0.5914
0.5288
0.4539
0.3715
0.2838
0.1920
0.0972
0.7413
0.6608
0.5740
0.4833
0.3898
0.2944
0.1974
0.0992

4.0752
3.0214
3.0724
2.3748
1.8846
2.3980
1.9150
1.5535
1.2567
1.9165
1.5724
1.2996
1.0662
0.8578
1.5586
1.3090
1.0998
0.9135
0.7423
0.5816
1.2847
1.1015
0.9392
0.7890
0.6470
0.5107
0.3787
1.0705
0.9353
0.8082
0.6861
0.5673
0.4509
0.3363
0.2231

Py
0.0848
0.1515
0.0976
0.2119
0.1730
0.1024
0.2676
0.2367
0.1819
0.1035
0.3189
0.2924
0.2476
0.1847
0.1027
0.3660
0.3419
0.3036
0.2513
0.1842
0.1010
0.4091
0.3863
0.3525
0.3077
0.2512
0.1819
0.0987
0.4483
0.4262
0.3956
0.3563
0.3077
0.2488
0.1787
0.0961

T
0.8451
0.7904
0.7457
0.7372
0.6947
0.6505
0.6866
0.6472
0.6053
0.5571
0.6392
0.6034
0.5642
0.5186
0.4645
0.5953
0.5632
0.5269
0.4840
0.4329
0.3721
0.5549
0.5264
0.4930
0.4528
0.4046
0.3473
0.2795
0.5179
0.4929
0.4621
0.4245
0.3792
0.3252
0.2614
0.1867

P
0.8573
0.8140
0.7543
0.7638
0.7020
0.6480
0.7013
0.6385
0.5857
0.5401
0.6211
0.5597
0.5099
0.4679
0.4316
0.5174
0.4612
0.4171
0.3807
0.3498
0.3232
0.3840
0.3384
0.3037
0.2757
0.2523
0.2323
0.2151
0.2141
0.1865
0.1661
0.1498
0.1365
0.1253
0.1157
0.1073

a5
—0.1720
—0.4765
—0.1514
—0.9355
—0.3757
—0.1432
~1.5778
—0.6829
—0.3368
—0.1369
—2.4387
—1.0860
—0.5872
—0.3120
—0.1311
—3.5594
—1.6003
—0.9023
—0.5301
—0.2928
—0.1256
—4.9883
—2.2434
—1.2912
—0.7965
—0.4888
—0.2767
—0.1205
—6.7807
—3.0357
—1.7643
~1.1175
—0.7230
—0.4560
—0.2626
—0.1156

0).

e
—200.6683
—84.7257
—23.0377
—47.1513
~15.0739

—7.0727
—30.5278
—10.8461

—5.4338

~3.1203
—21.7141

—8.3037

—4.3632

~2.5925

—1.6243
—16.4552

—6.6396

—3.6169

—2.2067

14111

—0.9091
—13.0462

—5.4817

—3.0711

—1.9136

—1.2441

—0.8124

—0.5132
—10.6968

—4.6378

—2.6569

—1.6841

~1.1100

—0.7330

—0.4674

—0.2708

ac
—104.2811
—28.9658
—15.1976
~11.5078
—7.1144
—5.0615
—5.4646
—3.7596
—2.8562
—2.2917
—2.8314
—2.0982
—1.6717
—1.3876
—1.1836
—1.4989
~1.1722
—0.9680
—0.8248
—0.7180
—0.6347
—0.7497
—0.6105
—0.5183
—0.4509
—0.3989
—0.3574
—0.3234
—0.2942
—0.2471
—0.2145
—0.1897
—0.1701
—0.1541
—0.1408
—0.1294
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Table 2. Values of the conformal factor at the distinguished points (¢ = 1, I; = 0).
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0.5
0.5
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0.6
0.6
0.6
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

Iy

0.0163
0.0581
0.0425
0.1257
0.1078
0.0634
0.2163
0.1922
0.1435
0.078
0.3262
0.2923
0.2369
0.1673
0.0875
0.4522
0.4053
0.3411
0.2658
0.1826
0.0936
0.5914
0.5288
0.4539
0.3715
0.2838
0.192
0.0972
0.7413
0.6608
0.574
0.4833
0.3898
0.2944
0.1974
0.0992

I3
5.7206
4.0752
3.0214
3.0724
2.3748
1.8846
2.398
1.915
1.5535
1.2567
1.9165
1.5724
1.2996
1.0662
0.8578
1.5586
1.309
1.0998
0.9135
0.7423
0.5816
1.2847
1.1015
0.9392
0.789
0.647
0.5107
0.3787
1.0705
0.9353
0.8082
0.6861
0.5673
0.4509
0.3363
0.2231

W
0.140245078
0.17425506
0.234986069
0.203617606
0.264666961
0.329453108
0.229179081
0.290225215
0.354609929
0.424196148
0.25152487
0.312475588
0.376399737
0.444988319
0.519278203
0.271149675
0.331968574
0.395413207
0.463177397
0.536001429
0.614754098
0.288475407
0.349222979
0.412116217
0.479041916
0.550660793
0.62754942
0.710479574
0.303766707
0.364298725
0.426985482
0.493096647
0.563380282
0.638977636
0.719942405
0.807102502

h?B
0.157326155
0.220848057
0.264777918
0.292930608
0.336870473
0.371431604
0.375312761
0.417754569

0.45059543
0.477440917
0.469606053
0.508776393

0.53862727
0.562746201
0.582886454
0.577441293
0.611153552

0.63647936

0.65681445

0.67358211
0.687757909
0.700552658
0.726282342
0.745315162
0.760456274
0.772797527
0.783238692
0.792183787
0.840728631
0.855340532
0.866122247
0.874508089
0.881367883

0.88711466

0.89206066
0.896458987

hé

6.134969325
3.442340792
2.352941176
2.386634845
1.85528757
1.577287066
1.849283403
1.560874089
1.282051282
1.282051282
1.532801962
1.368457065
1.266357113
1.195457262
1.142857143
1.326846528
1.233654083
1.172676634
1.128668172
1.095290252
1.068376068
1.18363206
1.134644478
1.101564221
1.076716016
1.057082452
1.041666667
1.028806584
1.079185215
1.059322034
1.045296167
1.034554107
1.026167265
1.019021739
1.013171226
1.008064516

Ity
4.301996266
1.999484333

1.84302799
1.214902185
1.227583306
1.299105315
0.84763414
0.906010036
1.087682432
1.087682432
0.642563022
0.712682376
0.794427473
0.88660753
0.98910134
0.513962863
0.585049123
0.662416898
0.746819408
0.838681629
0.938269381
0.426810926
0.495304906
0.567465599
0.644740129
0.727617327
0.81712164
0.913682579
0.364245044
0.428788518
0.495918098
0.566816846
0.642358226
0.723480113
0.810472143
0.904012659

Wty — i
4.144670111
1.778636276
1.578250072
0.921971577
0.890712833
0.927673711
0.472321379
0.488255467
0.537864303
0.610241515
0.17295697
0.203905983
0.255800203
0.323861328
0.406214886
—0.06347843

—0.026104429
0.025937538
0.090004958
0.16509952
0.250511472
—0.273741732
—0.230977437
—0.177849563
—0.115716144
—0.0451802
0.033882948
0.121498793
—0.476483588
—0.426552014
—0.370204149
—0.307691243
—0.239009657
—0.163634547
—0.081588517
0.007553672
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Jacobi also mentioned that these coordinates can be used to produce a conformal map of the
ellipsoid to the plane, the conformal factor becoming singular at the umbilical points. The umbilical
points are branch points from the complex analysis viewpoint.

Can one produce a map from the sphere to the plane having the same singular behavior? Upon
composition, the divergences would “cancel each other”. We claim that this can be achieved by
writing the standard Euclidian metric in the sphere in sphero-conical coordinates (see [6, 7])

M2 — p1
dsfo = "7 7 [TGu) dpsf — I(p2) dp3] (33)
with
1

T = - D) 1)

(3.4)

We now give some details on the conformal map, following our previous work [26].

3.1. Matching the Coordinate Lines

One can combine the two systems of coordinates in order to produce a conformal map between
the two surfaces. Both metrics can be put in Liouville form [6] and the topologies of the coordinate
lines correspond (for the triaxial ellipsoid the coordinate lines are given explicitly in [2]).

Theorem 4. The conformal map from the triaxial ellipsoid to the unit sphere is defined by two
independent functions that relate separately the coordinate lines, u; = pi(\;), i = 1,2. Each one is
constructed by combining one real incomplete elliptic integral of the third kind on A\; followed by a
real Jacobi sn (inversion on an elliptic integral of the first kind on u;). The parameters Iy, Is, I3
are chosen so that the ellipsoid umbilical points (A1 = Ay =b) map to the singular points of the
sphero-conical coordinates (1 = po = Is). Thus, the two systems of coordinate lines on the surfaces
correspond. The conformal factor between the ellipsoid and the sphere is

-\

h? = .
H2 — p1

(3.5)

The master equation (Theorem 5) shows how to obtain I, I, I3 as functions of a, b, c.

Technical details. We consider a # 0. We will consider elsewhere the case a = 0 (double faced
elliptical region) for which the expression (3.2) simplifies. Let F' be the incomplete Legendre elliptic
integral of the first kind

¢ do ¢ dt
F($,k :/ :/ , 3.6
(k) 0 \/1—k281n29 o V1—12y/1— k22 (36)

where t = sin ¢ and II is the incomplete elliptical integral of the third kind

H(¢£n)—/¢ 4 (3.7)
o 0 (1+nsin29)\/1—€2sin29. '
The relations between A; and u;, ¢ = 1,2 are given by

P(A1) = S(p1), Q(A2) = T(u2) (3.8)

where P, @, S, T are defined by
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(i)
Pow= [ \/ a0 ™ T e g Tt (39
with
¢1 = arcsin \/ Z;(lA(z - Zi (3.10)
0 = \/1:8;2 (0<fi<1) and —1<n =—1+a/b<0. (3.11)
(i)
Q(\s) = /A2 \/(t ) a)(t—_tb)(t = wi@_ T2 2m2) (3.12)
with
¢ = arcsin \/ l;\ic(c__kg (3.13)
0y = \/82)) :i (0<tly<1) and ng=c/b—1> 0. (3.14)
(iid)
st = [ \/<t -1 ™ iy FOR) (349)
¢1 = arcsin \/’;21 B 21 ky = \/2 - 2 (3.16)
(iv)
= \/<t R me— T o TR B0
¢ = arcsin \/2 - ’;22 ko = \/2 - ﬁ (3.18)

It is important to note that both ki, ko and ¢4, ¢s are complementary:

B +k2=1, 2+03=1. (3.19)

3.2. Master Equation: the Relation Between (a,b,c) and (11, I2,I3)
We denote, as it is traditional, by

w /2 do
K(k) = F( ,k):/ L 0<k<1 (3.20)
2 01— k2sin26

the complete elliptic integral of the first type. K (k) is an increasing function of k with K (0) =
/2, K(1) = oo diverging logarithmically.
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We now enforce the requirement that the umbilical points of the ellipsoid do correspond to the
artificial singular points in the sphere. This insures that the correspondence between E?(a,b,c)
and S? is well defined. As we showed in [26], this amounts to the equalities

Is—1 I3 — 1
K(ky) = v 32 Y P), K(ky) = v 32 L Q), (3.21)
where we have the complete integrals of the third kind

2a
P(b) = (7 /2, (1, 3.22
D= e gy /2 00m) (3:22)

2c
Qb) = I(7/2,42,n2), (3.23)

Vb(c —a)

where we changed the notation for (3.7) to
dt

II(z,4,n) = /0 (14 nt2) /(1 — £2)(1 — 2¢2) x = sin ¢. (3.24)

Observing that k; and ko are complementary, i.e., k% + k2 = 1 , we get

Theorem 5 (Master Equation). The modulus ky is the solution of

K (\/1 - k%)
K (k) =n(a,b,c), (3.25)

where

Q) ¢ Il(m/2,02,n2)
"= Pb)  al(r/2,01,n1) (3.26)

After getting ki, the parameters I, Iy and I3 are obtained from

2 2
() [ ()]
IQ — Il = (13 — Il) k‘%, (13 — 12 = (13 — Il) k‘% is redundant) .

No harm is done by setting Iy = 0 for simplicity.

The left-hand side of (3.25) decreases from oo to 0 as k; runs from 0 to 1. Thus, there is an unique
solution to this equation.

Remark 3. Interestingly, the “fake” singular points in the sphere corresponding to the umbilics
of the ellipsoid are

(£ky, 0, +ks).

3.3. About the Equation K (\/1 - kz) /K (k) = /r

The solution k = A(r) of this equation is called the elliptic lambda function ([28, Section 4]),
and can be obtained via Jacobi theta functions (see, e.g., [27, Sections 7.8-7.10]).

92<0,qr)} i
k= 3.28
|:93(07 q?") ( )
where ¢, = exp(—7/4/r) is called the nome and the theta functions are

b0.0)= > "V s0.00= D0 0™ (3.29)
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4. PRELIMINARY CALCULATIONS FOR THE MAIN THEOREM

It is immediate that c—b
h2(A) =
Is— 1o
9 _c—a
h*(B) = L1 (4.1)
b—a
2 _
h*(C) = L1,
We now show that b .
)= G-ale=b) (4.2)

b(Io — 1) (I3 — I2)
and derive the coefficients of the quadratic expansion of h at A, B, C in the next section.

First we compute the partial derivatives d\a/dpua, d)\1/du; at the special values 11, I, I3. By the
chain rule we get

(A — a)(b — )= A1) ]1/2
(1 — 1) ({2 — p1) (I3 — p1) ’

A2 —a)Ae —b)(c—rg) Y2
No(piz — 1) (p2 — Io) (I3 — Mz)] : (4.4)

dxfdpy = [ N (43)

d)\Q/d,UQ = |:

We presented the following trick in [26]:

dAs (I) = lim [
d/.Ll w1—1I1 a

(>\1 —a)(b—a)(c—a) ]1/2
L) (I — )13 - )

(1
e ] [

IQ—[l (Ig—Il pw1—1I1 —Il
b—a)lc—a 1/2 d\ 1/2
:[ (b=a)c—a) ] x[ 1(11)} , (4.5)
a(Ig—Il)(Ig—Il) d,ul
hence
d\ (b—a)(c—a)
1) = . 4.6
d,ul( 1) CL(IQ—Il)(Ig—Il) ( )
In a similar fashion we get
d\g (c—a)(c—0)
I3) = , 4.7
d/LQ( 3) C(Ig — Il)(Ig — 12) ( )
and moreover,
d)\l d)\g (b — a)(c — b)
I I . 4.8
dul( 2) = dpis (I2) = b(I, — I)(I3 — L) (48)
It follows that
Ao —b
RA2(U) = i = dXo/dps (I
() P A 2/dpa(I2)
) b— M\
= lim =d\ /dus (I
p o Io — pg 1/dua (1)
(b—a)(c—0b) (4.9)

T - L) - b))

Remark 4. One may wonder if the gradient of h could vanish at U for some special values of
a,b,c, but our tables and further theoretical calculations indicate that it does not happen.
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5. PROOF OF THE MAIN THEOREM 3

We want to obtain the quadratic expansion of h at the axis endpoints A, B,C. It is more

convenient to expand h? instead of h,

73

h? = [h*+§x2+ gy2+... ’ = h? + phea® + qghoy® + ... (5.1)
We now show that ]
pahly = (136:2)2 b; — (2 — 11)] (5.2)
pphp = (I;__z)z :(13 —1I) - b} (5.3)
155 = uf-_iv :(12 “h, ] ‘
pelio = 0 [d- 1= (5.4)
qohts = ufiip :c R 12)} .

Proof. The derivations use the partial derivatives in the previous section (Section 4). We present
only the calculation for point C. The formulas for A and B are obtained in a similar fashion.

i) Moving from C' towards A in the x; direction (see Appendix A) we have

pe =TI, p =1 + 21(I3 — 1),
therefore
b— ML+ 2313 - 1)
Iy — (I + 22(I3 — 1))
1 b— (a—i—az%(Ig,—Il)d)\l/dul(fl)+...)

h%«(l‘l, 0) =

- IQ —Il 1 —l‘%([g —Il)/(IQ —Il)
b—a [ o I
=1 _1— z? Z Y dny Jdpa (1) + ]
X [14—%‘%([3—]1)/ 12—11)—|— ]
_ b—a _1_ o Is—11  (b—a)(c —a) N
L—1 | Vo= a(l, - I)(Us—1)
X [1+$%(Ig—[1)/([2 —Il)-l-...]
b—a | 5 1 c—a
_12_11 _1—|—l‘1]2_]1 <Ig—[1— a >—|—:| (55)

ii) From C moving towards B in the zy direction we have

M1 = -[17 H2 = -[2 + ‘T%(I?) - I2)7

therefore,
Ao (I + 22(13 — 1)) —
(0,09 = 22 T~ L)
Iy +x5(13 — 1) — I
_ 1 b—a+ x%(Ig — Iy)dXo/dpusa(l2) +
Ig—Il 1+$%(Ig—[2)/([2—[1)
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ii)

ii)

iii)

iv)

3)
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b—a I
1+ 22 3 dA2/du2(I2)
Ig—[l

— 513 — 12)/(12 n))

b—a L4 ols—T3 (b—7)(c—b) n >
b—h 2 hq bl - L)1)
—a5(Is — 1) /(I — I))
b—a c—b
LI [14—:52[2_ ( b —13+12>+..}. (5.6)

6. FINAL COMMENTS
6.1. Historical Notes

Jacobi and Riemann were the first to study iK’'/K. According to [27], Riemann regarded this
ratio as a complex function of k2 with branch points 0, 1, 00, and “as early as 1828, Jacobi was
aware that k2 was a modular function of iK’/K with respect to the subgroup I'(2) of the full

modular group”. The study was pursued further by Dedekind, Hermite, Schwarz, Picard and
other contemporaries.

Triaxial ellipsoids are emblematic. The theory of integrable Hamiltonian systems got started
at Konigsberg, on Wednesday, December 26, 1838. In a letter to Bessel, dated two days later,
Jacobi wrote:

“Ich habe vorgestern die geodatische Linie fiir ein Ellipsoid mit drei ungleichen Achsen
auf Quadraturen zuriickgefiihrt. Es sind die einfachsten Formeln von der Welt, Abelsche
Integrale, die sich in die bekannten elliptischen verwandeln, wenn man 2 Achsen gleich

setzt” ([15], p. 385)%).

6.2. Some Directions for Further Research

As regards Section 1.1, it would be interesting to obtain the next order term in the deformation
of the canonical symplectic form in T*¥ and of the perturbation of the Hamiltonian geodesic
system, both arising from the pullback of the vortex pair problem near the diagonal to a
neighborhood of the zero section of T*X

Floquet analysis of the periodic orbits that fill the invariant submanifold S,y given by
Theorem 1. For that purpose several symplectic integrators on products of spheres are available,
such as [21-23, 31]. Appendix C outlines some steps of the procedure.

There is a sizeable amount of literature about center-saddle equilibria [3, 12, 19, 20, 24, 25]. Tt
would be interesting to apply it around (B, —B) as a first step to understand the transversal
structure to the global center manifold S,y;.

Hamiltonians in products of spheres also appear in spin systems, so it is interesting to find
integrable Hamiltonians in (S2) with weighted symplectic forms (positive or negative). In
the case of vortex pairs with opposite vorticities, we believe that, unfortunately, there are no
integrable cases, except surfaces of revolution. This is because (in view of Kimura’s assertion)
the candidates can only be the surfaces whose metrics yield integrable geodesic systems. Those
are classified (see, e.g., [6-8, 29]). It would be the matter of numerically simulating them to
exhibit chaotic behavior as we did in [26], or to apply some of the traditional theoretical
methods (Melnikov, Ziglin, Morales — Ramis, etc.).

The day before yesterday, I reduced to quadrature the problem of geodesic lines on an ellipsoid with three unequal
axes. They are the simplest formulas in the world, Abelian integrals, which become the well-known elliptic integrals
if 2 axes are set equal. (Translation in https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid.)
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v) In the opposite direction are surfaces with negative curvature. Their geodesics play a key
role in the interplay of differential geometry and other branches of pure mathematics. Trace
formulas relate the distribution of eigenvalues of the Laplacian to the distribution of lengths of
closed geodesics. Those techniques are one of the tools used in studies related to the Riemann
hypothesis [4]. Could vortex pairs be used as well?

APPENDIX A. COORDINATES ON THE ELLIPSOID AND ON THE SPHERE
Confocal Quadrics Coordinates (A1, \a)
The ellipsoid

2 2 2
E2(a,bc): © +% +7 =1, a<b<e (A.1)
a b c
corresponds to the root A\, = 0 of the cubic equation
2 2 2
x z
+ Yo+ —1

The other two roots
MA=0,,a< A <b< )X <ec

define two confocal hyperboloids (of one and two sheets) forming a triorthogonal family. These
coordinates (A1, \2) € [a,b] x [b, ] parametrize each octant of the ellipsoid by

22 ala — A1)(a— A2)
(a—"0b)(a—rc)

)

(A.2)

Sphero-conical Coordinates (u1, 12)
Similarly, each octant of the sphere

St v i ai=1 (A.3)
is parametrized by (1, u2) € [I1, I2] X [I2, I3] via

g2 = =) (= p2)
Y 12)(11 13) ’
Iy — 1) (12 — pi2)
B ) 1) (4-4)
g2 =) (s — p2)
P (a-I)(I3— L)

The sphero-conical coordinates are defined by a triorthogonal system of cones and spheres, with
parameters I1 < Iy < I3:

X? X2 X2
+ +
L—p Io—p I3—p
Equations (A.4) for the x; = X;/r solve the matrix system

=0, X{+ X5+ X3 =12 (A.5)

1 1 1 z? 1
V(=) Y(Ta=m) Y(Iz—m) | | a3 | =]0|: (A-6)
/(I —p2) 1/(I2 —p2) 1/(I3 — p2) a3 0
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Given (z1,z9,12) € 52, the sphero-conical coordinates I; < w1 < 1o < po < I3 satisfy the
quadratic equation

= (@3 (T2 + I3) + 25(I + I3) + 23(1 + )] o

(A.7)
+ (2213 4 231 I3 + 231, 1) = 0.
The coordinates are the same on all concentric spheres, and we can make r = 1.
Ten Special Points
The semiaxis endpoints of the ellipsoid correspond to
(A, =A): My =b, Aa=c = (i\/a, 0, 0) )
(B,~B): Mi=a, o =c = (o, +Vb, o) , (A.8)
(C,-C): M =a, =b = (0, 0, :l:\/c).
The four umbilical points, with A1 = Ay = b, are located in the middle ellipse:
b— —-b
(U++7 U+—7 U—+7 U——) : (i\/a( a)a 07 i\/C(C )> : (Ag)
c—a c—a
We have the corresponding points on the main equators of the sphere
p =1, po=1I3 = (£1,0,0),
H1 = Il7 H2 = I3 = (07 :l:lv 0)7 (AlO)
1= Il7 M2 = I2 = (07 07 :tl)
There are four special points located in the equator (zg = 0) with
Ih—1 I3—1
(Vos, Ve Ve V) ¢ (Fky, 0, £ko), ki = \/ 2 k= \/ B2 (A.11)
Is— 1 Is— 1

As a — b, the triaxial ellipsoid tends to a prolate ellipsoid of revolution around the z-axis.
The umbilical points Uy, U_ merge with C, Uy_, U__ with —C. In the image sphere we have
k1 — 0. Likewise, when b — ¢, the triaxial ellipsoid tends to an oblate ellipsoid of revolution around
the z-axis, with k1 — 1. As a — 0, the triaxial ellipsoid tends to a double faced planar elliptical
region.

Formulas for the Sphero-conical Cordinates Along the Main Equators

The expressions for juq, j19 in terms of (1, x9, x3) are very simple along the principal great circles,
with a slight twist on x9 = 0. From (A.7),

i) Equator 3 = 0. Here pg = I3. The other solution is given by

p1 = a3ly + 23, o+l =1 (A.12)
ii) Equator x1 = 0. Here puy = I;. The other solution is given by

po = 230y + 2303, 25+ 23 = 1. (A.13)

iii) The equator x9 = 0 (corresponding to the middle ellipse y = 0) is especially important. u = I
is likewise one solution, and the other is
pr=atly+ a3, a3 a5 =1 (A.14)
But here from (1,0,0) to Vi we have uy = Iy, ps = p*, and from Vi to (0,0,1) we have
o = Is, up = p* . Recall that p; = po = I> at the V's.
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APPENDIX B. PROOF OF THEOREM 2
For surfaces with antipodal symmetry, since Sy, is invariant under the flow, we know that the
linearization matrix at an antipodal pair in equilibrium (we may assume at the north and south
poles of the sphere) will have an invariant subspace Wi C R* generated by v; = (1,0, —1,0), vy =
(0,1,0,—1). A quick computation shows that the linearization matrix A is given by

0O v 0 -1
Ao 60 1 0 (B.1)
0 -1 0 ~
|10 46 0
where
v=-14+2q/h, 6 =1-2p/h. (B.2)
where the conformal factor expands as (1.15)
H(z,y) =h+ (1/2)pa® + (1/2) qy*, h > 0.
Matrix A has indeed two invariant subspaces of dimension 2:
i) V spanned by v; = (1,0,—1,0), vo = (0,1,0,—1). We have
Avy = (0 — 1)vg = (—2p/h) va, Ave = (1 +v)v1 = (29/h)v1; (B.3)
ii) W spanned by w; = (1,0,1,0), we = (0,1,0,1) . We have
Awy = (0 + Dwsy, Aws = (7 — 1)wy. (B.4)
The first subspace V' is tangent to the center manifold (s; = —s2), while W is transverse to it. On
the subspace V' = span{vy, vy}, the eigenvalues satisfy
M= (6 —1)(1+7) = —4pq/h?, (B.5)
and on the subspace W = span{wj,ws}, the eigenvalues satisfy
N =(y=1)(0+1) = —4(1 = p/h)(1 — q/h). (B.6)

APPENDIX C. OUTLINE FOR NUMERICAL SIMULATIONS

One first solves the master equation to obtain Iy, Is, I3 in terms of a,b,c. At each time step
of the symplectic integrator for (1.12), (1.13), one applies the following sequence of mappings to
compute the conformal factor.

1) Solve the quadratic equation (A.7) obtaining pi, pe in terms of x1, zo, 3. This is a bit of a
nuisance algebraically because of the + outside the square roots, but numerically it is nice
and easy: the discriminant is always positive. us receives the 4+ square root.

2) Compute the functions A;(u;), i = 1,2, each given by one elliptic integral and one inversion.
Fast and reliable codes are available for that purpose [9, 10].

3) In order to solve the EDOS (1.12), (1.13) in S? x S%, only the conformal factor given by
h = /(A2 — A\1)/(u2 — p11) is needed. The sphere representation provides the octants where
the two vortices are located.

4) If one desires to plot the curves in the “physical ellipsoid” E(a,b,c), then one computes
(z,y,2) via the parametrization (A.2), keeping track of the octant one is traversing in the
representing sphere S? (signs of the corresponding coordinates are the same).
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On the stability of vortex pairs
moving on Riemann surfaces of genus zero
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Abstract

This paper is a continuation of [7], that focused on vortex pairs motion
on surfaces with antipodal symmetry such as the triaxial ellipsoid. We
present the (linear) stability analysis of an equilibrium for an arbitrary
genus zero surface. In particular, we present an easy way to compute
on the pair of poles on a surface of revolution of genus zero (an ovoid).
It is expected that this pair is linearly stable - however, we observe
that two of the eigenvalues can vanish exceptionally. Calculations for
the double faced elliptical region are also presented, a limit case of the
triaxial ellipsoid.
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1 Introduction

Motivation for the study of point vortices on curved surfaces comes mainly
from two dimensional condensed matter physics: liquid crystals, superfluids,
Bose Einstein condensates and soft materials. Soon it may be experimentally
possible to produce fluids of cold atoms on a prescribed surface [1], [2].

Vortex pairs, with opposite vorticities have been observed experimentally
in BE condensates since at least 2010 [3]. Their dissociation are manifes-
tations of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition'. For
a mathematician the interest on vortex pairs on a surface ¥ with metric g
comes from the fact that a closeby pair shadows the geodesic perpendicular
to the midpoint. This was predicted by [4], and verified numerically for the
catenoid and the triaxial-ellipsoid [5], [6].

This is a sequel of our previous paper [7] about the motion of vortex pairs
on surfaces with antipodal symmetry. A special feature of those surfaces is
that the antipodal pairs form an invariant submanifold 3., = {(o,—0)}.
We analyzed the stability of equilibria of the pairs in the three symmetry
axis of the triaxial ellipsoid.

Here we present some additional examples and also discuss other aspects,
including surfaces of revolution. For those, we show that the pair at the poles
is always linearly stable, except for the possibility of a degenerate case when
one of the frequencies vanishes.

1.1 Equations of motion

We developed in [7] the idea of representing a genus zero surface ¥ with
metric g conformally over the sphere S? C R? with constant curvature
metric g,, so that h = h%(s) go, s € S? where h is the conformal factor. While
the ‘true’ physical object is Y, transporting the dynamics to the ‘virtual’
sphere S? proves to be very convenient. The Hamiltonian description goes
as follows. Let | | the euclidian distance between s, s5 € S C R3.

Proposition 1. The symplectic form in S? x S? is given by
Qpair = h*(51)2(51) — h*(52)Q0(52) (1)

where ), is the area form of the round sphere, and the Hamiltonian is

H=—In (\/h(sl)h(@) sy — 52|) . (2)

'Kosterlitz was one of the 2016 Physics Nobel prize laureates.



The equations of motion are therefore

. 1 S1 X S9 1
- - dh
1= Ry <|sl—82|2 TC R “”)

. 1 S1 X 82 1
— dh
72 h?(s2) (!81 — 5o - 2h(sy) 27 B <82)>

All the required information is contained in the conformal factor h.
The sphere (h = 1) is highly degenerate in the sense that all antipodal

pairs are in equilibrium. In [8] it was shown that for generic h there are
finitely many equilibria and infinitely many periodic orbits. Together with

|s1| = |s2| = 1, the equilibrium configurations will satisfy six equations for
51,82, Q, B
S2 grad h(sy) s1 grad h(s2) 5 (4)
- =as , — =[fsa.
’81 — 82‘2 2h<31) ‘81 — 82‘2 2h(82)

1.2 Invariance under Moebius transformations

In [7] we mentioned the following basic properties:
Proposition 2.

i) The EDOs (3) transform invariantly under Moebius transformations on
the extended complex plane CU oo = S? .

i1) An antipodal pair (s,—s) is an equilibrium if and only if the gradient of
the conformal factor vanishes at both s and —s.

iii) For the purpose of linearization, under a Moebius transformation, any
pair at equilibrium can be represented by the poles (0,0,+1). Moreover
the Moebius transformation can be chosen to produce equal conformal
factors at the poles.

Point i) reflects the fact that Proposition 1 must be intrinsic. Two conformal
maps from ¥ to S? (extended complex plane C U o) differ by a Moebius
transformation. One can avoid doing the algebra by a geometric reason-
ing. Moebius transformations correspond to a SO(3) rotation on a suitably
translated sphere S? C 3, composed with one stereographic transforma-
tions and one inverses [9]. Points ii) and iii) clearly show the usefulness of
the representation (3).



In [7] we explored the following observation:

Proposition 3. For conformal metrics whose factor h(s) has the antipodal
symmetry, the set of antipodal points Sgne = {(s,—s)|s € S?} form an
mwvariant submanifold, governed by

1
s1 x grad h(sy) = —msl x grad log h(s1) (s2 = —s1) (5)

Trajectories of s1 are on the level curves of h. Equilibria coincide with the
critical points of h.

8'1:—

1
h3(s1)

2 Linearization of Equilibria.

We just saw that for genus zero surfaces, with the help of the conformal fac-
tor, we can represent the dynamics in the sphere S2. Moreover, in making
general reasonings about stability, we may assume that a given equilibrium
solution pair for the system (4) is antipodal, and we will in fact take them
as the north and south poles.

Note that the original surface ¥ may not have symmetries at all!

We will now discuss the linear stability of an antipodal equilibrium in
terms of the quadratic expansions of the conformal factors. Finding h? is a
global problem, but interestingly, for surfaces of revolution, the equilibrium
of the pair at the poles is always linearly stable, except for a degenerate case
when one of the frequencies vanishes.

The study will extend the one we presented in [7]. As we did there, we
start by taking for the antipodal pair in S? the poles

519 =(0,0,£1).

We take for coordinate systems the corresponding tangent planes. Then
eliminating the z coordinates, (3) yields a system of four ODEs on the
cartesian coordinates x1,y1, Z2,y2. All we will need for the linear analysis
are the quadratic expansions H of the conformal factor

h(x, Y, Z), with z = :|:(1 22— y2)1/2

at s7 5. In general there will be two (different) pairs of quadratic coefficients
and a rotation of an angle 6 of the principal axis of the second quadratic
form with respect to the principal axis of the first. This is encoded in:



Data needed for the linearization

1

Hi(z1,y1) = hi+ 3 (prai + qu7) (6)
1

Hy(wz,y0) = ha+ 5 (p2(#)° + a2 (43)°) (7)

with A1, ho > 0 and where

xh = wycosf — yosinf

(8)

yh = T2 8in6 + yy cos b .

We stress emphatically that there are global informations hidden in these
local expansions. They must be interdependent.

For instance, on a surface of revolution, choose a parallel -, and let D, the
cap surrounding the south pole bounded by «y. Due to the rotational sym-
metry, there is a unique conformal map from D, to the unit disk D in the
complex plane sending meridians to rays.

It extends to a unique global conformal map from ¥ to the extended com-
plex plane R Uoco = S2. So the expansion at z = oo is tied to the expansion
at z = 0.

We will see shortly that a Moebius transformation on the sphere preserving
the poles can be chosen so that the conformal factors by and ho can be made
equal.

For a general surface ¥ without symmetries, imagine a domain D., bounded
by a simple closed curve v C ¥. Let D, the geodesic disk of radius r, around
say, the south pole of the sphere. There is a conformal map from D, to D,,
providing a local expansion like (6). But that conformal map will not extend
(except for a stroke of luck) to a global map from ¥ to S2.



2.1 The linearized Hamiltonian system

Theorem 1. When we substitute in (3)

§1 = <$17y17 \/ 1 _x% _y]2_>
S92 = (I25y27_\/ 1 —IL’% _y%>

and retain only the linear terms we get the Hamiltonian

1
—H.
iy 2(z2,2)  (9)

H=—[(z1+x2)*+ (y1 + 12)%] — Hi(z1, 1) —

L
Al

ool =

and symplectic form
Q = h2dxy Ady; + h3dxy A dys (10)

where the quadratic expansions Hy, Hy are given by (6, 7).

The linearized system is therefore

.. 2
4ht (#1,91) = (—y1—y2, 21 +x2) + I (0H, /0y1, —OH, /dx1)
(11)
.. 2
4h3 (d2,72) = (—y1 — Y2, T1 + T2) + T (0H2/0y2, —0H2/0x2)

Note that the plus sign in the symplectic form even though the vortices are
opposite. This is due to the fact that the expansions are done in antipodals
(0,0,+£1). The factor 4 results form the distance between the poles being 2.

We will show that we may assume h; = hg = hin (6, 7). Then the linearized
system (11) will be written in matrix form as

4h2X =AX y X = (x17y17x27y2)T . (12)

The factor 4h? is irrelevant for the analysis. It can be made equal to one
by a linear change of time scale. From now on we will neglect this factor on
the eigenvalue formulas.



Theorem 2.

Assuming hy = ho = h the matriz of the system is

whose characteristic polynomial is (as expected) a biquadratic,

p(A) =X —2p0% + &

1
p = 5(a2+bc+’y1(51) —1

k = 1+ (a®4bc)yd —y1b— by .

The coefficients (depending on the data h,pi1,q1,p2,qe,0) are:

1 =-142(q/h)

0 = 1-2 (pl/h)
a= 2sinfcosf[(q2/h) — (p2/h)]

b= —1+2 [(g2/h)cos® 6 + (p2/h)sin’ 6]

c= 1-2[(p2/h) cos? 0 + (ga/h) sin 6]
One verifies a simplification valid for arbitrary 6:
CL2 + bc = ’}/2(52

where
y2 = —1+4+2(q2/h) ,

8y = +1—2(pa/h) .

(13)

(18)

(19)
(20)



Example. When there is no twist between the principal axis, ie., # = 0 the
characteristic polynomial has a more symmetric form

PA) = A+ (2= dim — Ga72) A% + (1 — 6182) (1 — 1172) (21)
The discriminant of this biquadratic is
A = (0171 = 0272)* + 4(61 = 72) (82 — ™) - (22)
For instance, with these (more or less randomly chosen) values
p1=0.1, ¢ = 11/30, po = 0.6, g2 = 0.2
we get lozodromic eigenvalues, since A = —(3.2)(14/15) < 0.

In the conclusions we present some questions related to the ranges of
(15, 16) in (14).

The following Lemma shows that without loss of generality we could (as
we did) assume h; = hg = h in Theorem 2.

Lemma 1. The conformal factor can be adjusted in order to make
h(0,0,—1) = h(0,0,1) . (23)
More precisely, we can replace hy, ha by a common factor h given by
h=Mmp=hs/B, B=(haf)"*. (24)

and replace the parameters in (13) via

nY = Bm
5?6’[1} — ,82(51
B = (1/8%) 72 (25)

5 = (1/8%) 6

where
vi = —14+2q/h;i , 0i=1—2p;/h;.

The proof of Lemma 1 will be done next.



The adjustment parameter (5
Consider the conformal map from the unit sphere to itself
98+ (€, y,2) = (£,7, 2)

that fixes the poles, but shifts parallels up or down, corresponding to a
homothety in the equatorial complex plane C, given by

r=p0r.
A short calculation yields

R+ -(0-2)
B2+ +(1-3)

z (26)

where z = sing, z = sin are the heights of the corresponding parallels
given by ¢, ¢. The conformal factor from the (z,y, z) sphere (called ‘old’ for
short) to the (Z, 7, Z) sphere (called new’) is

_cosp  V1—22 2
old/new = COS& T /1o 2 (62 —_ 1)24_(52_’_1)

Substituting z = +1 gives

hold/new(_l) =B, hold/new(l) =1/p (28)

which in hindsight is what one should expect.

Since conformal factors multiply composition, we can choose a suitable 3
so that, upon composition of the original map from ¥ to S? with 9s S?2 —
52, the conformal factors at the poles become equal. In fact, the common
factor h satisfies

h (27)

h=hiB=hy/B, B=(ha/h1)"/?. (29)

We call 5 the adjustment parameter.

Recalculating the local expansions via

Initially (6, 7) were given, with hy # hs in general. Concomitantly to their
equalization, in order to write down the matrix (13), we must recalculate
the coefficients of the quadratic forms. Substituting in (27)

2 2
p=+ 1—x2—y2~i<1—x J;y)>

10



we get, after a short calculation, the local expansions of gg

2 _
h(south) = p <1 - B 4 1(:’62 +Z/2))

(30)
1 ’-1
ot = 5 (1= 25502 407,
Hence
2 _

HP = B+ (1/2)praf + (1/2) quyi) {1 - ﬁ(“’”?“ﬁ)}

(31)
new 1 9 2 /82 -1 2 2
Hpew = 3 [he + (1/2) p2 a5 + (1/2) qoy3] [1— 132 (“"2+y2)}

The new p’s and ¢'s follow by collecting terms. The end result is nice:

S = 41— 20 /h = B (+1 - 2p1/h1) (= 5% 1)
,y?ew — _1+2q7116w/h:52 (—1—1—2(]1/h1) (: 62’71)
05 = 41— 2p5™h = (1/B°) (+1 = 2pa/ha) (= 62/B%)
W = 14205 = (1/6%) (<14 2g2/ha) (= 12/6%)
This concludes the proof of Lemma 1. [

We now revisit some derivations from [7], for the case of surfaces with
antipodal symmetry.

11



2.2 Surfaces with antipodal symmetry

In this case
PL=p2=Dp, @1 =q2 =, (32)

and matrix A simplifies to

0 v 0 -1
6 0 1 0
A= 0 -1 0 +~ (33)
10 6 0
where
v=-142q/h , §=+1—-2p/h. (34)

Matrix A has two invariant subspaces of dimension 2:

e V spanned by v; = (1,0,—1,0), v = (0,1,0,—1). We have
_ _ p _ _ 54
Avy = (0 — 1)ve = —2E va, Ava = (1+v)v; = 2E vy (35)
e W spanned by w; = (1,0,1,0), we = (0,1,0,1) . We have
Aw; = (6 + D)wa , Awa = (7 — Dun (36)

The first subspace V' is tangent to the center manifold (s; = —s2) while W
is transverse to it.

Theorem 3. (Surfaces with antipodal symmetry [7])

On the subspace V' = span{vy, vy}, the eigenvalues satisfy
N =(0—=1)(1+7) = —4pa/h* . (37)
and on the subspace W = span{w,ws}, the eigenvalues satisfy

N=(y =1 +1) =41 —p/h)(L —q/h) . (38)

12



Conclusions for surfaces with antipodal symmetry:

i) On the system restricted to the invariant submanifold S, if p,q have
the same (resp. opposite) sign, then one has a center (resp. saddle.) The
eigenvalues satisfy

AN+ dpg/h? = 0.

ii) For the transverse subspace: if (1 —p/h)(1 — q/h) is positive (resp. neg-
ative) one has a center (resp. saddle). The eigenvalues satisfy

A 4 4(1 —p/h)(1 —q/h) = 0.
iii) The loxodromic case is ruled out.

Undefined situations occur when p or ¢ are equal to 0 or to h.

Remark 1. When p = q the pair is always linearly stable, except for the
undefined situations above. Nonetheless, we will show that for embedded
spheroids in R> then p/h < 1/2, so the only undefined case is when p = 0.

Remark 2. Along the invariant submanifold Sun: the result is consistent
with that one expects from quadratic hamiltonians in a two dimensional
phase space. In the transverse plane W spanned by w1, we both stable or
unstable behavior can also happen.

13



3 Surfaces of revolution
Here we have
P1=q1, P2 = G2 (39)

so the (interconnected) local expansions will be of the form

Hi=h+2 @+ )] Ho=ho+ 2 @3+ (40)

We will see in Proposition 6 how these coefficients can be related to the local
profiles at the poles, and just one global information, simplifying substan-
tially the work. When the surface is convex with

p1/h1 # pa/hs
it is called an ovoid, like the Matryoshka dolls>. When p;/h = pa/h we
called it an spheroid.
3.1 Eigenvalues of the pair at the poles

Theorem 4. (Surfaces of revolution: the poles are always center-center)

Assume that the adjustments on the quadratic expansions at the poles were
done, so hy = hy = h. Let

Y=-01=-14+2pi/h , 72 =—02=—-1+2ps/h. (41)

The eigenvalues are Ltiwy , *iw_, with frequencies

2 2 2 212 1/271/2
_l’_ —
(1 + ’yl 5 72) + <(’71 72) + (’71 +72)2> ] (42)

w4 =

4

The expression inside the [ ] is always non-negative.

NOTA BENE: degenerate situations may occur. The sphere is the simplest
example, where v = —1, so one frequency is w = 2 and the other vanishes.

2A Marylin Monroe Matryoshka should not be convex.

14



Proof. Put v; = —d1, 72 = —d2 in (21). The characteristic polynomial is
p=M 42002+ & (43)

with

2 2

k= (1-7172)">0.

We have

M=—pt/p2—r, p>0. (44)

A short calculation gives the discriminant

(V2 —73)?

224?20 (45)

Apey = P2 — k=
so we see that A% is nonpositive for both signs in the right hand side of (44).
O

3.2 Example: the circular vortex billiard

The double faced unit disk is the limit of an oblate ellipsoid of revolution
when the minor axis shrinks to zero. One should not confuse vortex motion
in this boundaryless surface with the well known vortex motion inside a
planar circular domain.

In order to apply or methodology, we map this surface over the round
sphere. This is done via the inverses of the stereographic projections from
the north and south poles. In this way we “inflate” the double face unit disk
to the sphere S2. A point in the top side of the disk is sent to a point in
the northern hemisphere by a ray emanating from the south pole. Likewise,
a point in the bottom side of the disk is sent to a point in the southern
hemisphere by a ray emanating from the north pole.

15



Let (r,0), r < 1, polar coordinates in the unit disk, and let (¢,6) be
respectively the latitude (measured from the equator z = 0) and longitude
in the unit sphere in (X,Y, Z) space. It is readily seen

cos ¢ 1—|Z]
r=—-—--- = s
1+ |sin ¢| 1+1Z|

/2 < ¢ <m/2 (46)

The conformal factor from the planar (euclidian) metric to the sphere (round)
metric at a point (X,Y,Z) € S? is

1

h(X,Y, Z) - T‘Z‘

(47)
It is maximum along the equator (with A = 1) and minimum at the poles
(with h = 1/2). If ¢ > 0, the corresponding vortex is in the down face of
the disk, and when ¢ < 0 it is in the up face. This loss of differentiability of
the double disk metric at the turning edge (the equator z = 0 of the sphere)
corresponds to the fact that the curvature is concentrated there.

Note the lack of differentiability when Z = 0. For simulations of (3) in
the representing S? x S?, with

—sign(Z)

—sign(Z) b o),
1+ 2] (0,0.1)

grad h =

it is useful to use a symplectic integrator. The event discontinuities at z = 0
can be handled with specialized ODEs codes [10], [11], [12]. It would be
interesting to have them adapted to symplectic integrators.

Expansion of i at the center of the disk
The centers of faces of the double disk correspond to Z = +1.

Proposition 4. The expansion of the conformal factor h from the doubled
disk P : (r,0) to the sphere S* at the poles Z = +1, corresponding the center
of the (doubled) disk, is given by

11
hD/Sz(X,Y,Z):§+§(X2+Y2)+... (48)

Proof. From (9) then

1
1—(X2+v?2) 1+1-(X24Y2)/2

16



where XY are moved from the plane Z = 0 to the tangent planes at the
poles Z = +1. In the notation of (6),
1 1

5 P=4= (49)

We obtain without need to do further computations:

Proposition 5. The linearization of the vortex pair system of the double
edged unit disk at the pair located at x = y = 0,z = +1 is of center-center
kind, with eigenvalues +1 both along the tangent space of the center manifold,
and in the transverse subspace. The frequencies are in 1:1 resonance.

Proof. We can either use Proposition 3 or Proposition 4. In the former,
we compute 4pg/h? = 4(1 — p/h)(1 — q/h) = 1. In the latter, we see that
v1 =2 = 0, so (41) yields again the quadruplet +i, +i. Both ways coincide.

O

We will show in section 4.4 that the frequencies stay in 1:1 relation for all
elliptic vortex billiards.

Reduction of the S' symmetry

We outline the reduction procedure. This seemingly peaceful problem be-
comes quite involved, actually. Using spherical coordinates as above with
longitude 8 and latitude ¢, measured from the equator, so z = sin ¢,

h(¢) = 1/(1 +[sing|),

coSs @1
Qpair = ———————doy Ndby —
P 1+ ]sm<f>1| ¢1 !

and the Hamiltonian is H = —log F' where

Cos ¢

— "2 gy Adb
1+ | sin ¢o| ¢2 b

1 — cos ¢ cos ¢g cos(f) — O2) — sin ¢ sin Py
[(1+ [ sin ¢ |)(1 + | sin ¢o|)]1/2

F=2 (50)

The momentum map for the Hamiltonian action of S* on (5% x 52, Qpair)
(which is the translation along parallels in simultaneous fashion) is

J = m(¢1) —m(gs) (51)

where log( 5 5 )
| +log(l+sing), 0< ¢ <m/2
m(¢) = { —log(l —sing), —7/2<¢ <0 (52)

17



Note that the maximum and minimum values of J occur when
J ==+2log?2.

It corresponds to the vortices being at the center of the disk in opposite
faces. J = 0 corresponds to vortices having opposite (in general varying)
values of ¢. To implement the reduction, one fixes the hypersurface 65 = 0,
so the reduced symplectic form is

cos ¢
= —————d¢p1db .
red 1+ |sin¢1\ ¢1 1
The reduced Hamiltonian is H,.q = — log F}q where

Fred = Fred(¢1701; J)
is obtained replacing sin ¢ and cos ¢2 in (50) by solving for ¢, (see (51)) ,

m(¢2) = m(¢1) — J.

Due to the switching in (52) at ¢ = 0, two cases occur: either the vortices
on the same or opposite faces. At the transition at least one of the vortices,
say s1, is at the rim. The product s; X k is tangent to the equator at s;.

So if there is a switching, the velocity $; gets an instantaneous push
along the rim. Let us look at the other contribution to $;, coming from the
term with s; X s3. We can take without loss of generality, s; = (1,0,0), and
an arbitrary so = (2,2, 22). This other contribution is ygl% — 297. Hence,
depending on the sign of y5, vortex s; will move either to the upper or lower
hemispheres, irrespective of whichever of the hemispheres s,.

We stop the study here with this task: depict the level curves
H,cq(p1,01; J) = h = const

in the allowed region (¢1,6;) inside S2, for various choices of J, in order
to obtain a qualitative understanding. Quantitatively, one finds the time
dependence 0;(t), ¢1(t) on the motion of the first vortex by solving

cos ¢ cos ¢1
1+ sin¢y 1+ sin ¢y
Reconstructing the motion of the second vortex comes from substituting
$1(t) in (51) to obtain ¢9(t) and a quadrature of the ODE for 6 after
inserting ¢1(t), 61(t), p2(t). Clearly, this is easier to say than to do.

él = *BHred/ael y ‘91 = 8Hred/a¢l

ADRIANO: NUMERICAL EXPERIMENTS?
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3.3 Conformal expansion at the poles

In this section we present a rather simple method to compute the quadratic
expansions H of the conformal factors at the poles. It depends only on the
local profiles of the surface of revolutions and just a single integral along the
meridian. This allows to readily compute the frequencies.

We visualize the surface of revolution ¥ sitting vertically over the (physical)
z,y plane P with the south pole at the origin. We assume that the profile
of the surface at one each of the poles is quadratic. Say, at the south pole,
the meridian y = 0 is

I (53)

2«

We will also consider another plane II with polar coordinates r, 6 superposed
over P, where r accounts for stretchings/compressions along the meridians
0 = const. so that the map > — II is conformal. Our task is to relate the arc
length s € [0, L] along the meridian with the radial coordinate r on II. For
this purpose, it is convenient to describe the profile of the meridian y = 0

of ¥ by a function x = z(s), such that
z(0) =x(L) =0, and z(s) >0, |dx/ds| <1, s€ (0,L) (a).

We do not require z(s) to have just one critical value, the surface does not
need to be convex. The other coordinate z(s) of the meridian can be recov-
ered from the arc length condition (dx/ds)? + (dz/ds)? = 1.

We assume that the surface is smooth at the poles, and (53) is equivalent to
(dz/ds)> =1for s=0and s = L (b).

Then for small  for which z(s) is monotone, (53) yields

s(a:):/ow vl—l—(dz/da:)zdchc—i-éx?’—i---- (54)

Gauss already called the attention that a conformal map to the plane obeys
a very nice separable ODE

ds
x(s)

= ? (with ds/dr = x/r = h) (55)
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Local conformal map: an indeterminate p combines with «

Recall, we are assuming that the profile of the surface ¥ in z,y, z space at
one of the poles, say, the south pole, is of the form z = (1/2a)z% + --- so
that for small x

v 1
= V1+ (dy/dz)2de ~x + —5x3 + - -
s(x) /0 + (dy/dx)? dx :E+6a2:n +
Lemma 2.
r(z) =px (1+2°/40” + O(x4)) . (56)
(the undetermined p corresponds to homotheties in the plane.)

Proof. Insert (56) in the ODE (55). The left hand side of
ds/dr =z /r (= hsm)
gives

ds ds/dx 1+ 22/2a? 1 9, 9
hsm = = = - = S (1-22/40?) .
S T Gde T ot saRar) L/

The right hand side is

T 1 1
>/ r p(1+$2/40é2) p( Z / Q ) ( )
]
We summarize:
Proposition 6. Let
z=(1/2a) 2 + - -- (58)

be the profile of a surface of revolution at one of the poles.

The conformal factor of ¥ — 11 at that pole expands as

1 r2

hZ/H:;(l—W‘F"') (59)

where 1 is the radial parameter in the plane I1. It is related to x (or s) via

r(z)= px (1+2%/40® + O(z*)) = ps (1 + s%/4a® + O(s"))
s(z) = x+x3/6a2 +O(x5). (60)
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Proposition 7. The conformal factor of the map ¥ — S? from the surface
Y to the unit sphere X2 +Y? + Z? = 1 expands at the corresponding pole
(Z =+1) as

h2

1 2 2
by =h |14+ 71— 5)(X2+Y) | |

1

=3 (61)

where X,Y are transported to the tangent plane of S* at the pole.

Important: the choice of p on one pole determines forcibly the value of the
corresponding at the other pole.

Proofs. For the plane we insert z ~ r/p from (56) in (57). For the sphere,
we may fix the meridian # = 0. We need to multiply the conformal factor

1 2
L
p 4p2042

from the surface to the plane II by the conformal factor

1 1
1 Zx?
2 + 8
from the plane II to the sphere given in (48). For this, we need to relate r

with X. We claim that to first order
r~ X/2,

so the result for the sphere will follow by this substitution and the above
mentioned multiplication. This claim that » ~ X/2 is proved now.

Lemma 3. The point in the equatorial plane 11 with radial coordinate r
corresponds to the point (X,0,7) € S? via the stereographic projection from
the north pole, with Z near -1, satisfiesr ~ X /2. ( Moreover around Z = —1
the infinitesimal Tatio of areas from the projection in the equatorial plane to
the corresponding spherical region is 1/4, hence the factor h =1/2 ).

Proof. The stereographic projection from the north pole (0,0,1) to the
equatorial plane is given by

For X << 1, then near the south pole,
2

Z:—\/l—XZN—l—f—X?.
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Hence

2 1+ (—1+X2/2)
1+1-X2/2

Also using spherical coordinates, Z = sin ¢, then

~ X?/4 for |X| << 1.

1+sing cos ¢ An rdr 1
2 _ " F dr = ———7 = =
" 1—sing e (1 —sing)? ¢ Age  cospdp (1 —sing)?
(62)
which gives 1/4 when ¢ = —7 /2. O

Spheroids. Here p1 = p2 = ¢1 = ¢2(= p) and there will be just one
parameter in matrix (13), namely v = —142p/h. From (42), the frequencies
are

2|p|/h (relative to invariant submanifold)

wr = [1E7]= { 2|1 —p/h| (transverse subspace) (63)

Moreover, the local expansion above (see (61)) gives

h? 1
y=——-5<0, h=—

a? 2p

h2
21—p/h) =1+ — > 1.

where o comes from the local profile, but p is still unknown, and needs to
be determined from global considerations. A simple procedure for this will
be presented in the next section.

It is important to notice that an indefinite case occurs in the invariant
subspace, when v = —1, i.e, when

2pa =1 (64)
Ellipsoids of revolution (preview)

E(Lle): 2 +y*+22 /=1

The profile meridian of a for small |z|is z = ¢v1 — 22 ~ ¢ (1 —2?/2), hence
the parameter a in z ~ 22/(2a) is

a=1/c. (65)
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For the sphere, ¢ = 1, so @ = 1. Moreover, in view of (61), the value of p
must be

1
p= 57
since the conformal factor is constant. This is coherent with v = —1, p = 0.

Note that formula (61) gives h = 1/4, instead of 1/2. This is merely an
inocous artifact, coming from the fact that the original sphere is on top of
plane P while the representative unit sphere has its equator in the plane II,
justifying this extra 1/2 factor.

For ¢ = 1/a # 1, we need to compute p = p(c) in order to get the parameter
v = 7(c) explicitly. We will do it in section 4.2. We expect that when
a — oo (i.e, ¢ = 0, the double faced disk), we will still get paw — oo, so that
p/h — 1/4 as we saw in (48).

Global conformal maps

Let us now explore more fully the EDO (55), governing the conformal map
from the surface to the plane sending meridians to rays.

d d
G (with ds/dr = z/r = h)

P

Likewise, conformality of the surface ¥ to a sphere S preserving meridians
means in spherical coordinates that

ds® + x(s)* d0* = h*(s) (d¢? + cos® ¢ d6?)
so that a separable ODE relating s and ¢ results,
ds do

0]~ o5 5 (withds/d¢ = h) . (66)

Proposition 8.

i) Let the parallel corresponding to a value s, map over the circle of radius
o in the plane. Then we have from (55)

r(s) = ry exp (/ ;é;) sc0,Ll. (67)

it) We have r = 0 at the south pole and r = 0o at the north pole. Moreover,
r = r(s) monotone in s € [0, L].
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iii) Take the unit sphere with its equator on plane I1. If the parallel s = s,
in the surface is made to correspond to the parallel ¢ = ¢, in the sphere,
then

ds
x(s)

iv) The left hand side r = sec ¢+tan ¢ in (08) is the stereographic projection
from the north pole of the sphere to the equatorial plane.

sec ¢ + tan ¢ = Kk exp </ > , K =sec ¢, + tan g, . (68)

Proof. Our assumptions (a) and (b) imply logarithmical divergence of the
improper integral at s = 0 and s = L. Indeed, at these points z(s) ~ s. In
fact, near the poles we can write

ds _ V14 (dz/dz)* dx _dz N 1+ (dz/dz)? —1 .
T

T T X

The first integrand takes care of the logarithmic divergences. The second
term, that we call m(x), can be rationalized:

miz) = V14 (dz/dx)? —1

X

(/I @)~ )(/T5 @l +1)
o(V/1 T ([d=]dn)? + 1) - (69)
B (dz/dx)?)x
RIS
Now we assumed that the surface is smooth at the poles, meaning that at
s=0and s = L, where z = 0, we have z = O(2?). Thus (dz/dx)?/z = O(x).

For the proof of iii) and iv) is obvious, just recall the stereographic
projection formula

cos¢p  1+sing

1—sing¢ cos ¢ sec +tang

r

O]

Let us assume in addition to (a), (b) in section 3.3 that z(s) increases from
2 = 0 in the south pole to a maximum parallel with radius x(c), for s € [0, ¢)
and then decreases to 0 at the north pole for s € (¢, L]. We do not require,
however, the surface to be convex. It can ‘wiggle’ in the z-direction.
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This assumption is just for clarity. If the surface wiggles in the x-direction,
it will become clear from the computations below that more switches in (71)
would be done, at the end of each monotone interval.

In order to add some more flexibility, we use any parameter ¢ € [a, b], with
t = a corresponding to the south pole, t = b to the north pole, and t = ¢,
corresponding to s = ¢. The circle with radius r, = 1 in the target plane II,
will correspond to the parallel t = ¢, in the surface X, with radius z, = x(t,):

r(t) = roexp (/tt Wdt)

This function r(t) is increasing, with r(a) = 0, r(b) = co. We split the
integrand into two parts as

VETE | (\/j:2+z'2 - ]m'|>

X X X

We change variables in (69), now denoting the second term by m(t).

-2 29 _ . 2
Vit + 22— |i] . z(w >0 (70)
x V2 4 22 + |4

Note that & > 0 in (a,t,) and it is < 0 in (¢,,b) and this reflects in the
combination of exp and log integration of the first term. The result is

m(t) =

Proposition 9. (Conformal map to the plane)

ﬁA(t), a<t<t,
Zo

r(t) = (71)

t

A(t) = exp (- /t “ t) dt) B :eXp< m(t) dt) (72)

A(t) increases from A, to 1 in [a,t,] ; B(t) increases from 1 to B, in [t,,b].
Since A(t,) = B(t,) =1 then r, = 1.

to
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Theorem 5. (Conformal expansion at the poles)

i) When the parallel corresponding to t = t, is sent to the equator of S? then

z,B,
2

Lo

24,

hss2(south) =

, hyys2(north) =

where

b

Ao = A(a) = exp <— /ato m(#) dt) <1, By=B(b) =exp ( m(t) dt) >1

to
it) The adjustment [3 is

b

- hs/s2(N) /Iy 52(S) = BoAo, = exp [ m(t)dt — / ’ m(t)dt]

to

i11) The adjusted quadratic expansions of the conformal factors at the poles
have coefficients (see Proposition /)

h2

s = (=1+2ps/h)=——,
g
h2

W = (=1+42pn/h)=—— (73)
N

22 b
h? = ZOeM, M= [ m(t)dt

a

Proof. i) Near the poles,

A Bz,
r~ —-x (south), r~ Z%o (north) .
To x

The conformal factor from the surface to the plane is hys = x(t)/r(t) , so

To z,B
hsm(south) = psoutn = e hsn(north) = prortn ~

We then compose with the inverse of the stereographic projection of the unit
sphere X2 4 Y24 Z? = 1 to its equatorial plane Z = 0, from the north pole.
Along Y = 0 this map is given by

2r
1+ 172

X =
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so the conformal factor from the plane to the sphere is

L o _1—}—1"2
H/52_|X|_ 92

Just multiply, and compute at r = 0 and r = co.
ii) We apply Lemma 1: 3% = hsy g2 (north)/hs g2 (south).
iii) B/A gives the exp of the total integral. O]

Summary: the procedure to obtain the frequencies

e From the surface equation, find the coefficients agoyin, Qportn Of the
local profiles z ~ x2/2a.

e Find the belt size x,.
e Compute M = ff m(t)dt and exponentiate.
e Insert in (73)

e Apply Proposition 4, using (42) to compute the frequencies.

A nice feature is that this bypasses computing the adjustment parameter 3.
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4 Examples

4.1 Matryoshkas

Our idealized matryoshka has two parameters b and 0, with 0 < 6 < 7/2.
The largest cap is the south, and without loss of generality we may assume
its radius a = 1; the north cap has radius b < 1. Here 6 is the angle between
the generating line of the conical part and the axis of symmetry.

The meridian profile is formed by three parts. In the first, take the arc
—m/2 <t < 6 in the circle (cost,sint), starting in the south pole S = (0, —a)
with ¢ = —7/2, to the point P = (cos#,sinf) corresponding to ¢ = 6.

The transition from # > 0 to £ < 0 ocurs at t, = 0, at the intermediate
point I = (1,0). The second stretch is a segment of length ¢ = (1 — b) cot 6.
The third is the north cap, with opening 7/2 — 6 from the vertical. We add
the possibility of b = 1, ¢ arbitrary, where the surface becomes a spheroid.

We simply ignore the issue that the profile is only C*.

Let us compute the integral M = M(b,0). It will have three pieces

(z(t), 2(t)) for the integrand (V42 + 22 — |&|)/z
i) (cost, sint), t € [—7/2,0]
ii) (cosf,sin@) +¢ ¢, £ =(1-0b)cotf(—sinb, cosb), te|0,1]
)

iii) (bcost,bsint), t € [0, 7/2] + vert
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The vertical translation in the third piece is irrelevant. The corresponding
integrands are

[ ]
1 — |sint|
W’t € [-m/2,0]
* 1 in 6 1
— sin
1-— 1
(1-1) sin 0 (1—t(1—b))’t€[0’]
[ ]

1 — |sint]|

Interestingly, the parameter b appears both numerator and denominator of
the third integrand, so their integrals merge into the same,

w/2 1 — si w/2 1 — si w/2
/ sin [¢] dt:2/ Smtdt:2/ cost — 91og?2
0 0

—xj2  cost cost 14sint

The integral in the middle

1 _
/ 1 g — logb
o (1—t(1-0)) 1-5

14
M:210g2—logbﬂ

SO
h2 = b(l—sin@)/sin& <1

sinf ’

Now, the profile coefficients are
ag=1, ay=>b
Proposition 10.
i) The coefficients in (42) to compute the Matryoshka frequencies are

b(lfsin 0)/sin6
b2

(1—sin@)/sin @

vs = —b , IN = — (74)

it) One of the Maryoshka frequencies vanishes when 6 = /6, independently
of the parameter b.

i11) We also add the exceptional case b = 1, ¢ arbitrary, where formally
Ys=n=1.
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Proof. Apply (73) with
ag=1, ay=hb.

An interesting case is when a pair of eigenvalues vanishes; we saw that this
happens when vsyy = 1. Applying (74) we must have

(1 —sinf)/sinf = 1.
O

Remark 3. One can use this methodology for smooth oval profiles of one’s
preference. However, we think that the Matryoshka example captures the
phenomenon that we were looking for, exceptional cases where one of the
eigenvalue pairs vanish®.

4.2 Ellipsoid of revolution
For the ellipsoid 22 + 32 + 22/c? = 1, the profiles are z ~ 2%/2a 4 --- so
asgn =1/c
(see (65)) and the width is 2, = 1. With the usual parametrization
x =cost, z=csint, t € [-7/2,7/2],

the procedure gives

4 w/2
c cost
YN =75 =(c) = vy exp | 2 — ; (75)
0 +/sin2t + 2 cos?t +sint

which we may insert in (63).

Although the integral can be obtained by elementary methods, the end
result split in the two cases ¢ >< 1, and the formulas are a bit cumbersome.

3The reader can amuse himself or herself by looking at these web pages:
https://mathcurve.com/surfaces.gb/ovoid/ovoid.shtml
http://www.mathematische-basteleien.de/eggcurves.htm
http://nyjp07.com/index_egg_E.html
https://en.wikipedia.org/wiki/Cassini_oval
https://en.wikipedia.org/wiki/Matryoshka_doll
https://www.faberge.com/the-world-of-faberge/the-imperial-eggs
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Proposition 11. The graph of the ratio of the two frequencies
1+7(c)
1—~(c)
is DESCRIBE + FIGURE. Here the numerator is the frequency in the in-

variant submanifold space, and the denominator the frequency in the trans-
verse space.

, ¢>0.

o=

Note as a check that for ¢ = 1 (sphere), the integral gives In2, so v = —1 as
we already know. For ¢ — 0, it is readily seen that v — 0, so the ratio of
frequencies is 1, as we also have seen. Moreover, for ¢ — oo, v — o0, and
the ratio of frequencies also tends to 1.

Adriano, poderia fazer esse grafico? pode integrar numericamente, var-
iando ¢ =0.1 ate’ digamos ¢ = 5.

31



4.3 Mr. Bean surfaces

The “bean” family of surfaces of revolution was considered in [15]. The
meridian is given by

z= %b0052q§+csin¢ , x=cos¢, ¢e€l-n/2,m/2] (76)

The surface develops a depression in the north pole when b > ¢, but this
does not matter for us: the xz-coordinate has only one maximum z, = 1.

For b = 0 the family reduces to the ellipsoids of revolution £(1, 1, ¢) that
we just considered.

Eliminating ¢, the meridian profile is

z=(b/2)2® £ c\/1 — 22 (77)

where the bottom sign is for the southern region ¢ € [0, —7/2], the upper
sign for the northern region ¢ € [0,7/2]. At the poles the local profile is

b
z~:|:c+(f$f):c2

2 2
so we get immediately
1
as = (78)
1
= — 79
N (79)
The required definite integral is
w/2
M = M(b,0) :/ mit) dt
—7/2

with
cos ¢ (bsin ¢ — ¢)?

; V/cos2 ¢ (bsing — )2 + sin® ¢ + | sin ¢|
Note that M(b,c) is an incomplete elliptic integral, computable in closed
form.

m(t)
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Since the belt radius is 2, = 1 we have
Proposition 12. (Mr. Bean surfaces) For the surfaces given by (76)

1 1
8=y (b+c)? Mt gy = 1 (b—c)? M)

Since x(¢) has only one maximum (does not matter that Mr. Bean
is not convex), we can use formula (73) in Proposition 9. We use (42) in
Proposition 4 to compute the frequencies. The ratio w_ /w4 is depicted in
figure FAZER E REFERENCIAR.

ADRIANO: de novo, poderia graficar a razao? aqui voce usa a formula para
as frequencias dadas por (42). Sugiro escolher um valor de b e variar ¢ e/ou
vice versa. Produzir figura e tabela de valores...
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4.4 The elliptic vortex billiard

In 1869 H.A. Schwarz gave the conformal map from the unit disk D in the
complex plane w to the interior of an ellipse R = R, in the &-plane ([16],
[17]; see also [18], [19]):

w s € =sin [QE(T)F(\C/U;; r)]

where F' is the incomplete elliptic integral of the first kind

w dt
Flwsn) :/o V-2

Let 7 = 7(r) be defined via the “master equation’

V=
W:‘j, re (0,1), 7 (0,00)

where K (r) = F(1,r) is the complete (real) elliptic integral.

We can use either r € (0,1) or 7 € (0, 00) to define the ellipse parameters:
the ellipse semiaxis are

c=cosh7 >b=sinht

so the foci are at +1 in the &-plane. As » — 1 the numerator in the master
equation becomes K (0) = 7/2 and the denominator K (1) = oo, so 7 — 0
(the segment). As r — 0, then 7 — oo (a very large disk).

We proceed as before, in the example of the circular vortex billiard. The
south pole of the unit sphere in the (X,Y, Z) space is sent to the origin of
w-plane by stereographic projection to the equatorial plane from (0,0, 1).

We denote by h(X,Y, Z) the conformal factor of the composition

stereographic
—

s=(X,Y,Z) w (disk) I8 ¢(ellipse).

The reader should bare with us the following calculations. First, we
expand the integrand of the incomplete F'(-,r)

1/\/(1—2)(1—r282) ~ 1+ %(1 + r)t?
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Hence
F(

third order,

¢ w[w

T 2K

s

Denote for short, K = K(r).

1 w3
\/;+6(1+7“2):|

w 1
— 4 -1+ —=

Jr 6

v

wd

v

Inserting in the sine series we get up to

5 () 7

Collecting the cubic terms, we get the local expansion

&=

where

M = M(r)

Lemma 4. M (r) increases from 0 to 1 in the interval 0 < r < 1.

Proof. Since K(0) = 7/2, in the limit » — 0 (circle) we get M — 0. Like-

1
w+Mw3)—|—---

st ("3

1
— (1 2
27‘( T

wise, in the limit r — 1, we get M — 1.

T

See the table below for intermediate values.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.95
0.99
0.995
0.999
0.9995
0.9999

K(r)
1.574745562
1.586867847

1.60804862
1.639999866
1.685750355
1.750753803
1.845693998
1.995302778
2.280549138
2.590011231
3.356600523
3.696875082
4.495596396
4.841257367
5.645148217
11.40135369
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M(r)
0.07504711
0.1503827
0.22632604
0.30326745
0.38173312
0.46250971
0.54692635
0.63765125
0.74199017
0.80772582
0.88944538
0.90928962
0.9388965
0.94733652
0.96128293
0.99050933



We now compute the conformal factor. We have

¢t <7r/2

h? = .=
R:/D = dw  dw

)2 [1+ M(w* +w%)]

KV
Write
D:w=u+1w, u? + 02 < 1.
Then
B2 F/221M2*2—7T/2212M22
mip~ (gop) DM@ +0)] = (£ 7 ) [1+2M@ -]
Therefore

T 1 1
=——[1+ M@ —v?)] - (1+-(X*+Y?
hg, /52 2K\/77[ + M — %)) 2( + (X )>

Near the south pole (0,0, —1), we have as before u ~ X/2 | v ~ Y/2 so that
T M 1 1
h = 1+ (X?-Y?)| - (1+ - (X?+YV?
Collecting terms we are lead to
Proposition 13.

i) The conformal map from the double faced ellipse to the unit sphere expands
at the poles (corresponding to the center of the faces) as

h = 1 X2 Y2
RT/S2 4K\/> |: + + :| (83)
1+M 1-M
/ /
= = 4
p 5 4 5 (84)
1 72 /4
M = —(1+r°-
o ( +r K2(r)> (85)
i1) Therefore we have always the center-center case with equal frequencies
W)y =wy =+V1— M?

(when r — 0 (circle), M =0, p' =¢ =1/2, and in the limitr — 1, M =1
sop=1,¢=0.)
Proof.

4p'q =4(1-p)(1-¢)=1- M (86)
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5 Conclusion

In this work we continued our previous paper [7], presenting here the general
linear analysis of an equilibrium pair, based on the quadratic expansions of
the conformal factor h. We provided some more examples for surfaces with
antipodal symmetries and for surfaces of revolution. We end with some
questions, hoping to attract interest to the theme.

i) In the characteristic polynomial of the main Theorem, can all (p, k) be
attained when the parameters vary? If not, what is the range?

ii) Nonlinear analysis of equilibria via Hamiltonian normal form methods,
from higher order expansions of h.

iii) Inverse shape problems (the objectives must be thought about).

iv) Study of systems of more than two vortices, with total vorticity arbi-
trary. In particular the stability of vortex rings.

v) Immersion/embedding of genus zero Riemann surfaces (X,g) in R?,
with prescribed conditions on the conformal factor at a pair of points.

Let us briefly comment on items i) and v).

There are five parameters p1/h, q1/h, p2/h, g2/h, 0, There are no restrictions
on them since Morse functions h(s) on the sphere can be constructed with
arbitrary quadratic expansions at two chosen critical points. Classifying all
the eigenvalue cases is in order. In particular we would like to have a con-
crete surface in R? with a loxodromic equilibrium.

Gromov showed that (3, h%g,) can be isometrically embedded in R® (see
[20], p. 298)*. Tt is to be expected that p/h is not arbitrary in a “physical’
surface of revolution. For surfaces in R3, the arc length along a meridian
starting at a pole satisfies s > z(s), for s > 0. An abstract S' equivariant
metric in S? can violate this condition. Consider the family of metrics on
the sphere with coordinates (¢,6) given by ds* = a? d¢? + cos? ¢ df? with
0 < a < 1. Then along the meridians s = a¢ < ¢. This is a simple example,
but already illustrates the depth of Gromov C'*° embedding results. Does
the added request about the quadratic expansions matter?

“See also the discussion in
https://mathoverflow.net/questions/37708/nash-embedding-theorem-for-2d-manifolds
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Project:

The vortex pair on Bolza’s surface:
an experimental investigation

“In mathematics and in life it is not okay to give up on a problem
or a cause just because the struggle is difficult.”
(Chandler Davis)!
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8 Implementation: mapping Fgo,. to the unit disk?
A Eigenfunctions of Bolza’s: a poor man’s way

B The unit disk or hemisphere to represent Fgg,a

C Mapping curvilinear triangles to upper half plane
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1 Introduction

We discuss some of the numerical challenges for the study the vortex pair
system on a compact surface

ze X =H/G,

where I' C PSLy(R) is a cocompact Fuchsian subgroup acting on the upper
half plane H, via Moebius transformations. As X is compact, I" does not
have elliptic or parabolic elements. We also use the Poincaré disk w € D,
for which the hyperbolic metric is 2/(1 — |w|?)|dw] .

Bolza’s? is a Riemann surface for which many results are known. It will be
the object of the experimental investigation.

We want to produce pictures and quantitative results. But of what kind?
What would be the purpose? What theoretical questions could emerge from
the investigation?

2 A vortex pair system is never chaotic

Recall Anosov’s famous result: on a compact manifold of constant negative
curvature the geodesic flow is chaotic . Anosov flows are not only mixing,
but even Bernoullian®. Poincaré section never show KAM tori®.

This is not what happens for the vortex pair system, for a very simple reason.
Denote G'x the Green function and R(z) = limy—,, Gx (w, 2) —log dhyp(w, 2)
the Robin function. The rescaled Hamiltonian

exp Gx (21, 22)

Fa1, 91509, y2) = Vexp R(z1)/exp R(z2) "

is symmetric in 21, 22 and F' ~ dyy;, near the diagonal.

’https://en.wikipedia.org/wiki/Bolza_surface

3D. V. Anosov, Proc. Steklov Math. Inst. 90, 1 (1967)

4Qrnstein, D., Weiss, B. Geodesic flows are Bernoullian. Israel J. Math. 14, 184-198
(1973) https://doi.org/10.1007/BF02762673

®A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR, 98, 527 (1954); V. I. Arnold, Soviet
Math. Dokl., 2, 501 (1961); J. Moser, Nachr. Akad. Wiss. Gotingen, Math. Phys. K1,
p.1 (1962)



Since X is compact,
max F' =M < oo (2)

(the hydrodynamical diameter). Even without special discrete symmetries,
critical points appear on a pair of pairs, (27, 23) and (23, 27).

For energy levels a lit bit smaller that M, KAM behavior is expected to be
observed, as the equilibrium point (27, 23) is of elliptic type. The vortex
pair symplectic form is the difference of the pullbacks of the area form

Qpair = Tjw — mhw , w=4dz ANdy/(1—|z/*)? , 2€D (3)

It is trivial to adapt a symplectic integrator.

3 Theoretical questions.

A good many theoretical questions could be asked to go in pair with the
experimental investigation. Here’s a just a few.

1. Can the hydrodynamical diameter M be estimated? Is it related to
the spectrum? Or the length spectrum?

2. What can be discovered about the location of this pair (z],23) in the
fundamental domain Fx? How does the pair changes as the metric
varies in the fixed conformal class of (x, g,)? How about moving along
the Teichmiiller space?

3. The two frequencies of the linearization around these (27, 23) that gives
F = M encode some geometrical information? Can one get normal
forms? Do resonances appear in special values of the 3g — 3, g > 2
complex parameters as one changes the complex structure?

4. How about the other equilibrium points? How many and the corre-
sponding indices? (numerical study is in order).

5. Is F' a Morse function in X x X — diagonal for the constant curvature
metric? Is it generically Morse when a conformal factor is introduced,
as it was shown for genus zero® ?

®https://link.springer.com/article/10.1007/s00220-021-04044-8,
https://link.springer.com/article/10.1007/s00205-018-1300-y



6. F' vanishes on the diagonal. The relative cohomology of H*(X X
X/diagonal) can be easily determined. What does this topological
information entails about the number an type of equilibrium points?

7. For F' = 0 the system is the geodesic flow in the unit tangent bundle.
Continuation of closed geodesics to periodic solutions in F' = ¢ for
small values of ¢ > 0.

8. Can symplectic geometry tools like SF'T be employed in this setting?

4 Constructing Poincaré sections

Fixed some z* € H, all the calculations should done inside the Dirichlet
fundamental domain Fx .~ centered around z*, which is defined as

Fx oo i={w € H| dpyp(2*, w) < dnyp(2*,yw), forall vy € T\{id}} (4)

Usually one takes z* = ¢ in the H representation and z* = 0 in the D repre-
sentation, and omit the label z*, so it will be denoted Fx.

When the fundamental domain is crossed, bringing the points back should
not bring excessive numerical error. It would be important to have a nice
way to visualize on a convenient model. Determining/estimating the sources
of error for long time integration is a challenge to the numerical analyst.
We hope that the hard work to produce Poincaré sections would be worth-
while. This effort obiter dictum could produce some new insights on Green,
and Batman functions.

At the level F = 0 the vortex pair system becomes the geodesic system
in the unit tangent bundle U(X). Therefore Poincaré sections will exhibit
total chaotic behavior.

On the other extreme, F = M, for a level c slightly less than M one should
observe typical KAM behavior near an elliptic equilibrium - when the fre-
quencies have resonances there is a pletora of possibilities.

Surfaces of section at intermediate values should exhibit a complicated mix
of both chaos and invariant curves. For intermediate values, what insights
could Poincaré sections provide us ?



The values of Green and Robin functions would be computed (and stored)
for a representative number of points in the fundamental domain Fx. Can
Delaunay triangulations be helpful??

Numerical differentiation could be done using the tabulated values of G and
R, but ideally one would like to devise a direct computational method for
partial derivatives up to a desired order (see section 6 below).

5 Robin function of Bolza’s surface (C. Ragazzo)

The reference is the paper by C. Ragazzo on Robin’s function for Bolza’s
surface®. Here’s a short account (by himself). In principle, for any surface
X, its Green function Gx can be obtained integrating the heat kernel of X
for t € (0,00). Two standard representations exist®.

In the first, one starts with the well known formula for the heat kernel of
the universal cover H. To produce the heat kernel on X, one takes all the
replicas of the Dirac delta an initial condition.

For short times this representation provides good service, because as the
solution originating from each delta decays in space like a Gaussian, so a
small number of deltas is sufficient to describe well the heat kernel restricted
to a fundamental domain of the surface.

However, as time goes on the Gaussians start to widen in space and the
number of Gaussians to be used in the description becomes prohibitive.

So one uses the second representation which is the spectral one summing
exp(—\;t) times the products ¢;(z)¢(w) of L? normalized eigenfunctions.

This is good for long times, since the time decay in each mode is exponential,
with rate equal to the Laplacian’s eigenvalue. In the end of the day, just a
few modes are enough to approximate the the heat kernel.

"https://hal.inria.fr/hal-01568002

®https://royalsocietypublishing.org/doi/10.1098/rspa.2017.0447

9See eg. Jorgenson, J., Kramer, J. (2006). Bounds on canonical Green’s functions.
Compositio Mathematica, 142(3), 679-700 doi:10.1112/S0010437X06001990.



The difficulty is how to paste the two representations for intermediate times.
It was necessary to invent several numerical tricks.

For the Robin function these tricks avoid calculating the eigenfunctions, only
the eigenvalues are needed.

Clodoaldo: explain this? What are the locations/values of F' at equilibria?
Compare with Anil’s estimates: we know rx and A; for Bolza’s.

For Bolza’s surface, the eigenvalues < 1000 are available from Alexander

Strohmaier’s web page, with high precision'C.

The picture below is from C. Ragazzo:

Robin function for Bolza’s surface.
Check the Euler characteristic with the indices of the equilibria.
For their location (and much more informations) see C. Ragazzo’s paper.

Ohttp://wwwl.maths.leeds.ac.uk/~pmtast/publications/eigdata/datafile.html



6 Bolza’s Green function and its derivatives.

How much more difficult would it be to numerically calculate the Green
function as compared with Robin’s? For one thing, the domain has now two
slots, but to store values to the square is not a big deal.

The logarithmic divergence on the diagonal should not be much of a prob-
lem; to study the dynamics outside a neighborhood of the diagonal, we
would compute and store the values of G on a compact subset of X x X
such that z1, 22 have hyperbolic distance dpyp(-,-) greater of equal than a
conveniently chosen small value.

The basic ideia would be the same as for Robin’s function: for short times
we start with the heat kernel in H as before; for long times it seems that
there will be no escape from using eigenfunctions, but still only a few may
be required, for the same reason, the exponential decay in time.

The same procedures could be done for the partial derivatives (gradient,
hessians, and so on). Derivation increases the decay in the covering space
which helps in the sum of the group replicas. Experts should be consulted
for codes (or “home delivery”) of the required quantity of eigenfunctions.

The first eigenspace of Bolza’s has dimension 3. Source: wikipedia

The appendices present a poor’s man approach to numerically compute the
eigenfunctions of Bolza’s surface.

Clodoaldo: do you have references ot people to ask for files containing the
eigenfunctions tabulated data?



7 Weierstrass points (see Ragazzo’s paper)

In what follows S a closed Riemann surface of genus g > 2.

The set of Weierstrass points on X consists of all points s such that S admits
a meromorphic function with a single pole of order less than g + 1 at s.

The surface S is called hyperelliptic if it has precisely 2g 4+ 2 Weierstrass
points. Any closed Riemann surface of genus two is hyperelliptic.

Proposition 3.3''. S is hyperelliptic if and only if there exists a conformal
involution J (the hyperelliptic involution) that fixes exactly 2g + 2 points;
these fixed points are the Weierstrass points, and .J is the unique conformal
involution with exactly 2g + 2 fixed points.

Theorem 3.2. (a) Let o be an involutive orientation-preserving symmetry
of S that is not the identity. Suppose that o has a fixed point s. Then s is
a singularity of the vortex velocity field. (b) Let o1 and o9 be two different
orientation-reversing symmetries of S. Suppose that s is a fixed point of
both. Then s is a singularity of the vortex velocity field.

Theorem 3.4. Every Weierstrass point of S is an equilibrium of the equations
of motion of a single vortex on S.

Bolza’s surface has several discrete symmetries and involutions, described
with details in Ragazzo’s paper.

These are obvious: the eight rotations
2 ek =1,..,8,

that are orientation-preserving symmetries and the eight reflections that are
orientation-reversing symmetries,

2o e ™z k=1,..,8.

These are non-obvious: the involutions f;, 2 defined in eq. (4.1). Figs. 2
and 3 depict them. Fig. 4 explains the 96 symmetries of Bolza’s surface.
Clodoaldo: are these 96 symmetries relevant for the vortex system?

HEarkas HM, Kra I. 1980, Riemann surfaces, I11. 7.9 .



Figure 1 from Ragazzo. The eight vertices of the octagon represent the
same point and opposite sides represent the same geodesic arc. Fx and the
hyperbolic metric are invariant under: eight rotations in multiples by 7/4
and eight reflections across eight axes of symmetry (four of them connecting
opposite vertices and four of them bisecting opposite sides). The geodesic
triangle shown in the figure (with sides a, b, and half of a side of the octagon)
is a fundamental domain in Fx for this group of 16 symmetries. The angles
in the figure are p = 7/8 and ¢ = 7/4 The Euclidean lengths of the segments
a,b and ¢ are E(a) = VV2—1, E(b) = 274 and E(c) = /(vV/2—-1)/2
respectively. The hyperbolic lengths of the segments a and b, which are
geodesic arcs, are ¢(a) = 2arctanh E(a) and ¢(b) = 2 arctanh E(b) The con-
formal involution z — —z fixes the six points represented by small balls,
that correspond to the six Weierstrass points of Bolza’s surface.

Figures 2-4, next, depict two further involutions 31, Bo.



The geodesic triangle T'

Figure 2. A detail of the geodesic triangle in figure 1. The arc of the Euclidean circle indicated as ‘inv’ is invariant under the
symmetry £. ‘inv’ divides the original triangle into two others: A and B. 8, maps A onto 8 and maps the two points represented
by small balls into each other. The Fuclidean lengths of the segments a and d are £(a) = (+/2 — 1)'/* and £(d) = 2V* —

(/2 =2,

Figure 3. A detail of the geodesic triangle in figure 1. The arc of the Euclidean circle indicated as ‘inv’ is invariant under the
symmetry £;. The two triangles indicated by C and D are contained in triangle A in figure 2. #; maps € onto D and maps the two
points represented by small balls into each other. The Eudlidean lengths of the segments eand f are £le) = (+/2 + 1)"/2 — 2V/4
and £(f) = (1 + 3/+/8)2 — (3/+/8)/,
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96 symmetries

Figure 4. A detail of the geodesic triangle in figure 1. As in figure 2, the arc indicated as ‘inv’ is invariant under the symmetry
. The three triangles marked with C, D and £ are contained in triangle A in figure 2; they are mapped by £, onto ', I and
E', respectively. Each one of the six triangles in the figure is a fundamental domain of the full group of 96 symmetries of 5.
B, maps the triangle C onto D, as in figure 3, and an orientation-preserving symmetry o maps C onto £ (o maps the point
in ¢ marked with a ball (triangle) to the point in £ marked with a hexagon (star) and leaves invariant the point marked with a
square). B; maps the two points represented by balls (triangles, squares) into each other and leaves invariant the points marked
with a hexagon and a star. The coordinates of all points marked in the figure can be obtained using the information in figures 1,2
and 3 and the expression for 8, in equation (4.1).

11



8 Implementation: mapping Fp,, to the unit disk?

We propose to compute and depict trajectories and Poincaré sections using
as coordinates a complex variable w in the unit disk, that is conformally
mapped to Fpolza:

z = Z(w)a |w’ <1 , 7€ fBolza- (5)

The vertices zj, of the octogon Fpolz, are mapped uniformly in the unit circle
|lw| = 1. This approach may please a numerical analyst: the 7/4 kinks in
the fundamental domain are smoothed, and one can use refined meshes near
the corresponding wy.

This map can be constructed explicitly. Using the symmetries of Bolza’s
surface, the conformal map (5) can be reduced to triangular maps. This is
done in appendix C. The same method can be applied to all generalized

Bolza surfaces, of genus x > 2. They correspond to regular 4r-gons'?.

It remains to be seen if conformal maps of an irregular fundamental domain
could be constructed for an arbitrary fuchsian group. Perhaps this could
be of interest to a Teichmiiller theorist, all information about the moduli is
encoded in the conformal map.

The “onion”. We add another possibility for visualization, that could be
aesthetically appealing : map via stereographic projection from the south
pole the northern hemisphere of S? C R3 to the unit disk |w| < 1.

What is the point about mapping to the northern hemisphere? All replicas
of FRolza Will correspond either the south or the north hemispheres!?. This
is due to the old and honorable reflection principle for complex functions.

The philosophical point is this: in the (Escher like) tesselation of the Poincaré
disk via replicas of Fpelza, their areas, as measured in Fuclidian eyes, shrink
fast as one approaches the unit circle.

"https://hal.archives-ouvertes.fr/LORIA/hal-03080125v1
https://arxiv.org/abs/2103.05960, https://hal.inria.fr/hal-01276386
13This is like scissoring a polyhedrall surface to planify it. To track layers of this self
covering object is the task for group or graph theorists, choosing arbitrary paths from the
origin to a given point in the Poincaré disk.

12



This tesselation of Poicaré disk is replaced by a ‘hollow onion’, where the
hemispherical replicas are all congruent in the Euclidian sense.

Somehow his may bring us a feeling of justice. We kind of everted curvature
-1 to curvature +1.

Proving the pudding would show if the idea is useful numerically. Since the
maximum area distortion from the disk to the hemisphere is 2, we will just
work the conformal map from Fggja to the unit disk.

The replicas shrink fast in Euclidian eyes

13



Final comments

Should we start from scratch and try to compute the spectrum (eigenvalues
+ eigenfunctions) of Bolza’s surface? From this data obtained by first prin-
ciple we could derive the Green and Robin functions.

In the Appendix we suggest a numerical method based upon the conformal
mapping approach. We wonder if will be competitive with methods cur-
rently in use by experts.

As a first step, we propose a compromise. We would take advantage from
using the already known eigenvalues < 1000 given in the aforementioned
web site of A. Strohmaier. So the task would be solely of finding the kernel
of large linear systems.

We suggest applying finite differences in polar coordinates (rather that using
finite elements or using trigonometric base functions). Near the vertices, to
provide more precision, it is trivial to refine the polar coordinates grid.

To study the vortex pair system near the diagonal, one would like also to get
hold of Batman’s function B. A numerical method is in order to compute
the leading term mo of its expansion near the diagonal, and the directional
derivatives dmsy.V; .

Ideally one wants a code to compute R, G, B, my and their derivatives,
alowing the fuchsian group to vary. With an algebraic description of the
group generators of I', the above method should work the same way, once
one could produce numerically a representative number of eigenvalues and
eigenfunctions.

Yhttps://arxiv.org/pdf/1110.2150.pdf
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Appendices

A Eigenfunctions of Bolza’s: a poor man’s way

We now suggest a procedure that probably has not been implemented yet.
One of us (JK) has outlined the idea in a short note (circa 1983?) at the
Seminario Brasileiro de Anadlise. It is a long shot, and we may shot our own
foot. But if it is doable it may have some interest to the experts.

The idea is use the the conformal mappings that we described in the previous
section so that the spectral problem in Bolza’s surface (represented as the
fundamental octogon z € Fpola) becomes an equivalent spectral problem.
Conceptually we should do it in the hemisphere, but as we mentioned, we
think it will be just as numerically efficient to do it in the unit disk of the
w = u + tv-plane.

The spectral problem will be
Lyp=0, Ly=A—-Am(r,0)1 (6)

where
A = 872 + 1 g + i 872
or2  r or r? 002
is the usual Laplacian operator in polar coordinates. Eigenfuntions are the
same: just compose back with the map from w = rexp(if) to z.

Boundary conditions on the eight arcs of the equator correspond uniformly,
the same conditions that in z € Fgolza-

Let us explain how the “mass” term m(r, 6) is computed.

Recall that in an isothermal chart z = x + iy on a surface S with metric g,
the metric writes locally as ds? = h(z,%)|dz|?>. The the Laplace-Beltrami
operator is

A = (1/h)(8%/02* + 0% /9y?).

For the hyperbolic metric in Poincaré disk, h = 4/(1 — |z|?)?, and hyperbolic
Laplacian in Fgelza C D is therefore

12)2
ap = C B (@200 1 02 0?).

15



Let us interpret the w = w + iv as coordinates in X, parametrizing the
fundamental domain Fpgi,,. In these, the metric becomes

4 d
ds]%lz— o

2 d 9
T Te@)P? law| "

so that the Laplacian is

_ 22
Ap = (14|’2;(Zw§’) (0%/0u® + 07 /ov?) | |w| < 1.
dw

The spectral problem will have the above form (6), with

4 |dz/dw]2 i0
m=————"———-_ w=re’, 0<r<1 (8)
(1= |z(w)[?)?
The denominator in m does not vanish: its minimum value occurs at the
vertices

z we, 0< KT,

K= 21/4

corresponding to
w0, — SEHRT.

The numerator will be computed using the intermediary &£-half plane,
|dz/dw| = |dz/d€ d§/dw| = |dz/dE]|/|dw/dE]. (9)

It turns out that it suffices to know z = z(§) and w = w(§) in the triangles
T and P. The vertices of the triangles will correspond to £ = 0 (mapped
to the origin), £ = 1 (mapped to points in the positive real axis), £ = oo
(mapped to points in the 7 /8-ray).

In the quotient (9) the singularities corresponding to £ = 0 and £ = 1 dis-
appear. But not at £ = co.

It seems that the numerical challenge is to expand and match the expansions
z = z(§) and w = w(§) near £ = oo, in order find a good approximation
for z = z(w) near the z,. What we already know is that the map w — 2
from the unit circle to the fundamental domain will have singularities only
at vertices wy:

z— 2z ~ (W — we) 4

Whatever might be the bad behavior the solution in the (7, §) coordinates, it
should be neutralized when returning to the original z-coordinates in H. If
this behavior is theoretically understood, one could factor it out and apply
a numerical method to compute the regular part.

16



B The unit disk or hemisphere to represent Fgg,.

The fundamental domain Fp,, inside the unit Poincaré disk is a regular
octagon with circular arcs as sides. The vertices are at radius 274 and
the arcs making a 7/4 angle. Using the distance formula, the diameter is
easily found to be (I guess) 4tanh™1(271/4) = 4.8969..., and the systole is
(see wikipedia page show it, is it where I think? 2 cosh™!(14-v/2) = 3.05784...

The Schwarz-Christoffel technique to conformally map rectilinear polygons

to a half plane can be generalized to polygons with circular arcs'®.

We now show how to construct in closed form a conformal mapping F of

the unit disk in the w plane to the fundamental domain z € Fpgglza. This

map has singularities like (w — w,)'/%, w, = ! (7/8+r/4),

Taking into account the discrete symmetry, it suffices to find a mapping
F:weP—zeT

from the the ‘pizza’ triangle P with angles /8,7 /2, 7/2, which is 1/16 of
in the unit w-disc, to the triangular region T' C Fpolza, joining the origin to
consecutive vertices (which is 1/16 of the fundamental domain having the
concave arc, the corresponding angles being /8, 7/2, 7/8). Such triangular
maps are given explicitly via hypergeometric functions'®. By the reflection
principle applied 16 times this map F' extends to w in the unit disk to the
whole of Fgolza-

Let an upper half plane be £ = v+ iv, v <0 be used as intermediary. Then
F will be constructed as the composition F' = Fy o F|~ Vo w — € — 2 where
Fy, F, are conformal maps of the £-half plane to the triangles w € P and
z € T respectively.

158ee Nehari, Conformal mapping, V.7, p. 198-209 on, and
https://doi.org/10.1016/0377-0427(93)90284-1, //doi.org/10.1137/0908003
161 found the construction on a short technical report M. Harmer and G. Martin that
also suggests the ideia to transform the Laplace-Beltrami operator
https://www.math.auckland.ac.nz/Research/Reports/Series/499.pdf
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Summarizing the derivations leading to the mass function m
We have (8):

4 2 ,
m:M w=re? 0<r<1.
(1 —z(w)]?)?’ ’

The denominator does not vanish. max |z(w)| = 271/ and z(w) is con-
tinuous at the boundaryt |w| = 1 (but not differentiable at the w,).

The factor |dz/dw| simplifies as

FP 2
|dz/dw| = e | (10)
VP |FS 2

and it will be the matter of computing the ratio near infinity of two hyper-
geometric functions, with «; = 1/8 in both, a3 = 1/2 in both, and only
differing in

ad =1/8, of =1/2.

This is because the two wronskians (25) are the same so they cancel out.

The numerical factors yr, vp are given below in (19), (24).
The F5’s are hypergeometric functions with parameters a, b, ¢ given by:

For triangle T': a1 =1/8, a3 =1/2, as = 1/8

The hypergeometric functions have poles

18



C Mapping curvilinear triangles to upper half plane

7. Domains Bounded by Circular Arcs. In this section we shall con-
sider the conformal mapping of domains which are bounded by a finite
number of circular arcs. For greater
brevity, such & domain will be referred
to a8 & curvilinear polygon (Fig, 20).
Our aim is to find the function w = f(z)
which maps the upper half-plane Re
[2] > 0 onto the interior of this figure,
In the similar problem of the preceding
seotion, the crucial step was the intro-
duction of the differential operator v /w'
which is not affected if the funetion w is
replaced by aw + b, where a and b are
arbitrary constants. To put it differ-
ently, this operator is invariant under a
linear substitution which transforms any straight line into any other
straight line. In the present problem, the domain in question is mot
bounded by linear segments but by circular arcs, and it may therefore be
expected that a fundamental role will be played by o differential operator
which is not susceptible to transformations earrying circles into elreles,
1.2., general linear transformations.

Consider a polygon in the z-plane with circular arcs whose sides make angles
way at the vertices A;, i = 1,---n. We want it to be the conformal image

z = f(§), £ in the upper half plane. (11)

The vertices will correspond to points a; on the real axis. Near the a;,
f(&) = (£ — a;)™ times a regular function, due to the angle conditions.

Using the Schwarzian derivative

{f.2y =" =@/ (£ f)

and the Liouville boundedness theorem trick (used to show that a function
is constant), it turns out that

_1 - 1_04% - 6/@
{fvz}_izi(g—an)Q +; 5—0%

k=1

with the accessory parameters 3, a third order ODE. The (3’'s satisfy three
compatibility conditions'”. Making f = Fy/F» one reduces to a second or-
der linear ODE such that Fy, F are linearly independent solutions!®.

For triangles, the linear ODE turns out to be the hypergeometric!?.

1"Nehari, Conformal mapping, chapter 7, specially eqs (56, 58, 59).

8Details can be seen in Nehari, Conformal mappping, chapter 7, pg. 198-209, especially
equations (56,58,59).

9Nehari, formulas (61-65, 72).
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Triangle T in Poincaré z-disk?’.

Let T be a geodesic triangle in the Poincaré disk |z| < 1, where the sides
meet at angles maq, mag, Tas at the vertices Ay, As, A3. We take A; at the
origin, Ajs in the positive real axis, and Ay on the ray e™!.

We want the sides A;As, A1 A3 to be rectilinear, while AyA3z is the arc
of a (concave) circle, whose extension meets the unit circle at right angles.
These conditions give an uniquely defined geodesic triangle in Poincaré disk.

In the example of our interest, the triangle T C Fpgy.q has angles
a1 =7/8, as =7/8, azg =7/2.
In general, a; + a2 + az < 1. We want T to be the conformal image of
z = fr(€), & in the upper half plane. (12)
The vertices will correspond to
a1 =0,ay =00,a3=1

on the real axis:

A1 = f(0), A2 = f(00), A3 = f(1) (13)
Proposition 1 The conformal map will be given by
z = f(§) =7 F1(§)/F2(§) (14)

where Fy, Fy are specially chosen (N. p. 206, p. 314) linearly independent
solutions of the hypergeometric equation®!

§1=F"(&) +[c— (a+b+1)EF(§) —abF =0 (15)

with parameters

1
a:§(1—a1+a2—a3)

b:%(l—al—ag—ag) (16)

c=1—-—o;.

20We follow the notes by Harmer and Martin.

“https://dlmf .nist.gov/15
https://en.wikipedia.org/wiki/Hypergeometric_function
https://mathworld.wolfram.com/HypergeometricFunction.html
https://www.mathworks.com/help/symbolic/hypergeom.html
https://keisan.casio.com/exec/system/1349143084
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To grit,
F>(&) = F(§;a,b,¢) (the hypergeometric)

1- v (17)
Fi(§) =& CF(&ad,b,c) (note that 1 —c = ag)
where
1
a/:a—c—i—l:i(l—i—al—i—ag—ag)
1
b':b—c+1:§(1+a1—a2—a3) (18)

d=2—c=14+a

Finally, for the geodesic triangle T', one obtains

_ \/cos(wozl + mag) + cos(raz) T'(1 —a1) F(% (14 o1 + a2+ a3) F(% (14 a1+ az —az))

T = cos(mar — waz) 4 cos(mag) T'(1+ a1) F(% (1—oa1+ a2+ a3z)) F(% 1—a14+az— ozg)).
(19)
(20)

(using the Gamma function relations with the hypergeometric equation??).
Outline of the proof. Since 0 < a; < 1, we have 0 < ¢(=1—aq) < 1.
We choose the branch of €17¢ so that £€!7¢ is real on the positive real axis
and z!17¢ = |z|'~¢€™(1=9) on the negative real axis.

It is known that F3j is a linearly independent solution of the hypergeometric
equation with the same parameters (a, b and c) as F;.

The auxiliary circle C, is centered in A; and intersects S at right angles.

https://en.wikipedia.org/wiki/Gamma_function
https://keisan.casio.com/exec/system/1180573444
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It follows from the properties of the hypergeometric ODE that

Lemma 1 Fory=1
A1 =0

Az = f(1) = F(1;d,V,c)/F(1;a,b,c) (in the positive real axis)
1) P(% (1 — o1+ a2+ 043)) F(% (1 — Qa1 — a9 + 043))

N1+«
F(l - CY1) F(% (1 + o +as + 043)) F(% (1 + a1 —ag + 063))
Ao — eiﬂ'ozl F(l —+ al) F(% (1 —o] +az+ a3)) F(% (1 -] —az+ 053))
’ T(1—a1) D3 (1+ a1 + a2 +a3) D3 (1+ a1 + a2 — ag))

(21)

A1As and AjAs are straight lines, and by construction the the angles at
A1, Ay and Aj are the correct ones.

It remains only to find the scale factor . This is achieved by the following
clever argument.

Rescale f — «vf so that the radius of C, equals 1.

Then C, can be interpreted as Poincaré disk and the triangle A, Ao, A3 is a
geodesic triangle. The hyperbolic cosine rule?? gives

cos(may) cos(mag) + cos(mas)

cosh(p(A1, A2)) = sin(may) sin(mag)

On the other hand the Euclidian length is tanh(p(A;, A2)/2)) which is

cosh(p(Ar, Az)) —1 \/cos(wal + map) + cos(mas)

tanh(p(A1, A2)/2)) = \/cosh(p(A1,A2)) +1 \/ cos(raq — wag) + cos(mas)

Comparing with the value of |A3| above, we get

(1 + a1 + oy — Ozg))

Y= \/cos(wozl + mag) + cos(maz) T(1 —ay) T(3 (1+ o1+ az+a3) T'(

1
2
cos(may — mag) 4 cos(maz) T(1+a1) ['(3 (1 — o1 + a2 +a3z)) (3

(1 — Qa1+ ag — ag))
. O
Z3A. F. Beardon. The Geometry of Discrete Groups. Springer-Verlag, Berlin, 1983.
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Triangle P in the w-plane.

The map w = fp(§) is defined in the same way - and the scale factor is
easier to find.

For an ‘honest ’ pizza slice (such that 0 < a3 < 1) and as = a3 = 1/2, the
same formulas (14, 15, 16, 17, 18) hold. In the Bolza surface oy = 1/8. We

have:
(14+0a1) T(32—)) T(3(1 - a)

r
|[Az| = | 43| = (22)
L(1—a1) T(3 24 a1) T(5 (14 a1))
In the hypergeometric functions Fp, F» (17) we insert
1
azi(l—al),b:—%,c:l—al (23)

and the scaling factor is (all arguments of the Gamma functions in (22) are
positive)
vp = 1/|As| (with the above As). (24)

Differentiating z = fr(§) and w = fp(§)

The procedures are the same. Our functions are of the same form, namely
quotient of linearly independent solutions of the same hypergeometric ODE,

(&) =y F1(§)/Fa(&)

Then W(E. Fy)
df fdg =y =5
2

where
W(Fy, Fy) = F Iy — IS Fy

is the Wronskian. But it is known that the Wronskian of two solutions of
the same hypergeometric equation satisfies the linear ODE

c—(a+b+1
AW/ de = éJ_;; €
and it follows that?*
W (F1, Fp) = ap (1 =€) gt (25)
This trick expedites using the differentiation formula for a hypergeometric
function?>.

Znttps://dlmf .nist.gov/15.10, formula 15.10.3 .
*https://dlmf.nist.gov/15.5
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von Karman vortex street and the induced flutter
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Fig. 32. Double rows of alternating vortices; symmetric (upper) and asymmetric
(lower) arrangements,
Theodore von Karman
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O Santo protetor

The search

‘I bought Kdrmdn's Aerodynamics in 1966 and was captivated by
the story about St Christopher. During the 70s, I went twice to
Bologna and was unable to trace St Christopher in any of the
churches. In the 80s, Professor Buresti of the University of Pisa
sugqested the help of his relative, a cardinal in the Vatican. The
answer came that, although a long list of St Christopher’s paint-
ings ezists, none is in Bologna. My wife spotted St Christopher in a
142030 manuscript held at the Fitzwilliam museum in Cambridge.
It was a book illurnination on vellum and behind St Christopher’s
feet only two alternating eddies are depicted.

In the late 90s, Professor Mizota of Fukuoka Institute of Tech-
nology came on sabbatical to England. He was fascinated and
decided to renew the search. He found a life-size St Christopher
in the badly damaged fifteenth century mural in the Basilica di
San Domenico in Bologna. Miraculously, the best preserved part is
the wake in the mural, see above. The procession of eddies along
the wake is now called the Kdrmdn-Bénard eddy street. (Bénard’s
sketches and photo from (1908J) and (1913J) were reproduced in
Vol. 1, Figs 1.7 and 18.4, p. 11 and 511, respectively.)

Mizota et al. (2000)), Nature, 404, No. 6775, p. 226.



l Fl [in ], [ht 1951, Iwa : ]

The arrangement of the vortices shown in Fig. 31 is connected
with my name; it is usually called a Kérmén vortex sireet or a
Kérmén vortex trail. But I do not claim to have discovered these
vortices; they were known long before I was born. The earliest
picture in which I have seen them is one in a church in Bologna,
Italy, where St. Christopher is shown carrying the child Jesus
across a flowing stream. Behind the saint’s naked foot the painter
indicated alternating vortices. Alternating vortices behind ob-
stacles were observed and photographed by an English scientist,
Henry Reginald Arnulpht Mallock (1851-1933) (Ref. 3), and
then by a French professor, Henri Bénard (1874-1939) (Ref. 4).
Bénard did a great deal of work on the problem before I did, but
he chiefly observed the vortices in very viscous fluids or in col-
loidal solutions and considered them more from the point of view



of experimental physics than aerodynamics. Nevertheless, he was
somewhat jealous because the vortex system was connected with
my name, and several times—for example, at the International
Congresses for Applied Mechanics held in Zurich (1926) and in
Stockholm (1930)-—claimed priority for earlier observation of the
phenomenon. In reply I once said, *‘I agree that what in Berlin
and London is called ‘Kdrmdn Street’ in Paris shall be called
‘Avenue de Henri Bénard.’” After this wisecrack we made
peace and became quite good friends.



What I really contributed to the aerodynamic knowledge of
the observed phenomenon is twofold (Ref. 5): I think I was the
first to show that the symmetric arrangement of vortices (Fig. 32,
upper), which would be an obvious possibility to replace the
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Fig. 32. Double rows of alternating vortices; symmetric (upper) and asymmetric
(lower) arrangements.

vortex sheet, is unstable. I found that only the asymmetric ar-
rangement (Fig. 32, lower) could be stable, and only for a certain
ratio of the distance between the rows and the distance between
two consecutive vortices of each row. Also, I connected the
momentum carried by the vortex system with the drag and
showed how the creation of such a vortex svstem can represent
the mechanism of the wake drag—a point for which neither
Mallock nor Bénard cared very much.



Herr Hiemenz: "It always oscillates’’

to the surface of a body. Prandtl had a doctoral candidate, Karl
Hiemenz (Ref. 6), to whom he gave the task of constructing a
water channel in which he could observe the separation of the
flow behind a cylinder. The object was to check experimentally
the separation point calculated by means of the boundary-layer
theory. For this purpose, it was first necessary to know the pres-
sure distribution around the cylinder in a steady flow. Much to
his surprise, Hiemenz found that the flow in his channel oscillated
violently.

When he reported this to Prandtl, the latter told him: “Ob-
viously your cylinder is not circular.”

However, even after very careful machining of the cylinder,
the flow continued to oscillate. Then Hiemenz was told that
possibly the channel was not symmetric, and he started to adjust it.

I was not concerned with this problem, but every morning
when I came in the laboratory I asked him, “Herr Hiemenz, is
the flow steady now?”

He answered very sadly, “It always oscillates.” !



Now, I thought, if the flow always oscillates, this phenomenon
must have a natural and intrinsic reason. One weekend I tried
to calculate the stability ol the system of vortices, and I did it in
a very primitive way. I assumed that only one vortex was free to
move, while all the other vortices were fixed, and calculated
what would happen if this vortex were displaced slightly. The
result I got was that, provided a symmetric arrangement was
assumed, the vortex always went off from its original position. I
obtained the same result for asymmetric arrangements but found
that, for a definite ratio of the distances between the rows and
between two consecutive vortices, the vortex remained in the
immediate neighborhood of its original position, describing a
kind of small closed circular path around it.



I finished my work over the weekend and asked Prandtl on
Monday, “What do you think about this?”

“You have something,” he answered. “Write it up and I will
present your paper in the Academy.”

This was my first paper on the subject. Then because I thought
my assumption was somewhat too arbitrary, I considered a sys-
tem in which all vortices were movable. This required a little
more complicated mathematical calculation, but after a few
weeks [ finished the calculation and wrote a second paper.

Some people asked, “Why did you publish two papers in three
weeks? One of them must be wrong.” Not exactly wrong, but
I first gave a crude approximation and afterward refined it. The
result was essentially the same; only the numerical value of the
critical ratio was different.

Now these vortices have many physical applications. Shortly
after the publication of my paper, Rayleigh (Ref. 7) got the idea
that the alternating vortices must give the explanation of the
Acolian harp—the singing wires. Some people will still remem-
ber the singing wires of the biplane cellules. The singing comes
from the periodical shedding of vortices. When certain struts used
on an underwater vehicle sang a high tune, Gongwer (Ref. 8)
showed experimentally that the vibration was caused by the
periodical shedding of vortices, which occurred when the trailing
edges were not properly sharp. This also explains the singing of
marine propellers, as was previously found by Gutsche (Ref. g).



A French naval engineer told me of a case where the periscope
of a submarine was completely useless at speeds over 7 knots
under water, because the rod of the periscope produced periodic
vortices whose frequency at a certain speed was in resonance with
the natural vibration of the rod. Radio towers have shown reso-
nant oscillations in natural wind. The galloping motion of power
lines also has some connection with the shedding of vortices. The
collapse of the bridge over the Tacoma Narrows was also caused
by resonance due to periodic vortices. The designer wanted to

build an inexpensive structure and used flat plates as side walls
instead of trusses. Unfortunately, these gave rise to shedding
vortices, and the bridge started torsional oscillations, which de-
veloped amplitudes up to 40° before it broke. The phenomenon
was a combination of flutter and resonance with vortex shedding.
I am always prepared to be held responsible for some other
mischief that the Kdrmdn vortices have caused!



Some fear flutter because they do
not understand It. And some fear It
because they do.

Jane Mansfied
from Hollywood
with an admirer
from Caltech




