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Arnold’s characterisation of the Euler flow

Recall the characterisation of the Euler flow as a geodesic on the group of
volume preserving diffeomorphisms Gy (M), M a manifold . In this picture
one considers, not the Cauchy problem

ou+u-vu+Vp=0, t>0,xeM

V-u=0, t>0,xeM (1)
u(0,-) = up, t=0

but rather
ou+u-Vu+Vp=0, 0<t<1
V-u=0, 0<t<i (2)
g1=~h

where g is the Lagrangian flow g; = u(9:), go = X € M, h a vol. preserving
diffeom.



The Lagrangian flow solves the variational problem in Gy

min 1/ 0:g¢(x)|?dtdx, go=1Id, g1 = h
2 Jjo,11xM
and u is recovered by u(t, x) = (3:g¢)(g; ' (x)).
From the Geometric Mechanics point of view, Euler equation is a
particular case of Euler-Poincaré equations, which, in a general (right

invariant) Lie group read

dru(t) = —ad;Hu(t)
when applied to the diffeomorphisms group Gy .



Navier-Stokes

For a time dependent vector field u(t,-) suchthat V- u(t,-) =0 Vte [0, T]
and for a constant v > 0, let g be the solution of the stochastic differential
equation (here in the flat case)

dgf (x) = v2vdW; + u(t, gf (x))dt
with g§(x) = x, t € [0,1].
We have a diffusion with generator Lf = vAf + (u - Vf); in particular

& Ef(gi(x) = E Li(g}(x)



Define the action functional

Alg’) = JE / |Dig¥(x) atox

where '
Digt = Iingt[gHE — 9]

E; the conditional expectation given the o-algebra generated by the
past of . Consider the (left) variations defined by

DAG = 4| Alewp (£v)o ()

for smooth divergence free vector fields v, v(0) = v(1) = 0.
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Theorem. Let u be a smooth time-dependent divergence free vector
field. Then g" is critical for A iff u satisfies the Navier-Stokes equation

ou+Vyu=vAu—-Vp
and u can be recovered through u(t, x) = Digi(9; 1(x)).

e In Stochastic Geometric Mechanics, this equation is, as in the classical case,
an application to Gy of the stochastic Euler-Poincaré reduction method. More
generally,

owu(t) = —adz(t)u(t) + K(u(t))

where K is some second order positive operator.

e For a (compact) Riemannian manifold M, the result in Gy (M) gives N.S.
equation with the de Rham-Hodge Laplacian K = [0 = dd* + d*d.

e Many other dissipative systems can be studied in this way (e.g.
Camassa-Holm).



Proof of the Theorem:
Writing gf = g1,

d

]
a|_, Alexp (ev) o g(-)] = E/o </ D;gi(x) - DtV(gt(X))dX> di

By Itd’s formula,

/ dx d DtQt gt / dx [dD:g:-v(gt)+Drgt-dv(gt)+adDrgr+dv(gr)]

The last (Itd’s contraction) term is equal to

20 / (Vv ® Vu)(gr)dx
where Vv @ Vu = Z%j:1 ovioiu’



Since v(0) = v(1) = 0, the derivative of the action is equal to

E / / DiDygi(x)ax)dt — 2vE / / Vv @ Vu)(gi(x))dx)dt

On the other hand

0
D:D:gt = (EU + (u-V)u+vAu)(gr)

and, using the invariance of the measure dx,

de

S[exp ev)og] = / / 6tu+ (u.V)u—vAu)- )(t,gt(x))dxdt

/ (/[u+ —vAU] - V(l‘,X))dx> ot
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Extensions: we can deal with advected quantities, covering the case of
compressible Navier-Stokes.

We can also consider boundary conditions (with suitable stochastic
processes).

Probabilistic methods for existence of solution:

A possible approach is via forward-backward sde’s (second order equations in
stochastic analysis).

Here, for the rest of the talk, we adopt a weaker approach.



Brenier’s generalised framework (for Euler)

One minimises a Kinetic energy, but now averaged by probability measures Q
on the path space Q = C([0, 1]; M)

1 LI
min ZEQ/ HXtszt, Qo1 =T,
0

Qo1 == (X0, X1). Q.
Here dQ; = dx Vt (Q; = (X;)«Q) and 7 is a probability measure on

M x M s.t. its marginals satisfy dmg = dmy = dx. The solutions P only
charge absolutely continuous paths, since the kinetic energy is understood to
be oo otherwise.

Then dP; = dx Vt and P01 =T
Xt + Vp(t,X;) =0, Vt, P— a.e.



In this approach one recovers the velocity field by defining a probability
measure o on [0, 1] x M x TM,

1 -
/ (¢, x, U)o (dt, dx, du) = / / £(t, X,, X, dPdt
0
as DiPerna-Majda solutions;

Introducing viscosity

In the spirit of the stochastic approach before, we consider Brownian-type
paths (not abs. continuous). For Q the corresponding law on the path space,
kinetic energy is replaced by the forward “mean" velocity:

uy = lim hEo(Xt+h Xt | Xo.17)
—)



Consider the reference measure R

R= / R¥dx,

R* the law of the Brownian motion starting from x with diffusion
constant v2v.

On the other hand recall the notion of relative entropy of a measure Q
with respect to a measure R

H(QIR) = /Iog(gg)dQE (o0, ]



By Girsanov theorem, to any measure Q on Q with a finite relative
entropy w.r.t. R corresponds a predictable (time dependent) vector

field U s.t. Qs the law of the process with generator

Lf = uAf+ U -Vf

meaning that for every regular f

t
f(Xt)—f(Xo)—/ Lf(Xy)dt  isa Q — martingale
0

and, in particular & Eqf(X;) = EqLf(X;).
Moreover

1 L.
H(QIR) = H(Qol o) + 5Ea | Ut X ot
(in our case dRy = dx).



So we naturally consider the problem

1 —\
min 1EQ/ lu(t, X;)|? ot
2 0

with Qg1 = m and Q; = u; prescribed measures (Lebesgue measure
for incompressibility constraint), which is the entropy minimisation
problem. We may ask only Q; = ps fort € S C [0, 1]

(r(- x M) = pg, (M x -) = juq).

We can also define the backward velocity

-Q 1
u; == lim hEQ(Xt Xe—n | Xit.17)
_>

and, since R is reversible, we also have

1 L
HIGIR) = 5Ea [ [u(t. X0 dit+ H(Q A)

(R = Ro).
]
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The dual problem

The (primal) entropy minimisation problem

inf {H(Q|Rp) : Q prob. measure on Q, Qt = p; Vt € S, Qo1 = 7}

is equivalent to the dual problem
SuP{(p,n)eA{ (B, ) + (1, m)

- /X log Egx exp < [3 p(t,x,)a(dt)+n(x,x1)) po(ax)}

Here A is a dense set of bounded measurable functions on (S x M) x M?, o
is a probability measure supported in S and y; is a flow of probability
measures, weakly continuous in f.



e constraint Ppy =7 — Lagrange multiplier n(Xp, X1)

e constraint dP; = dx — Lagrange multiplier f01 p(t, X;)dt

This is a particular case of a general convex duality result.



Theorem.
1) If the inf is finite, the primal problem admits a unique solution.

In the case of the torus the primal problem admits a unique solution.

2) If p and ) are are bounded measurable functions on M and M?
resp., if only a finite number of marginals .1, is prescribed, both the
primal problem and the dual problem are attained respectively at P
and (p,n), also the constraint Pyy = 7 is satisfied. Then P has the form

P = exp (n(Xo,X1) + ZQSK(XSK) + /Sp(l‘, Xt) dt) R

where 05 are some measurable functions.



In the case where an infinite number of marginal laws is prescribed
(Navier-Stokes) we can show that

P = exp <A(X) + n(Xo, X1 )) R

with A an additive functional, but we could not prove that
A(X) = [7p(t, X;)dt for some function p.

More recently, A. Baradat proved the existence of a function p, using
pde methods.



The dynamics

P is the law of a process X; such that

dX; = dM; + udt, P —as.
where M; is a P-martingale (the Brownian motion for the case where the

reference measure is the law of the Brownian motion), Ua predictable vector
field.

Comparing the expression we have for P with the one issued from Girsanov’s
theorem, namely

dP  dP, / /‘ po
Xo) ex - dX; dat), P-a.s.
dR dR ( 0 p /Bt t— o ’5t ’ )

we have,

[N

ut(Xo,q) = U(Xo Xe) = VP(Xy), YO <t<1, P-as,
with



W¥(t,2) = log ER[exp (n(x, X+ 3 0s(Xs)

seS,s>t

+/ p(r, X;) dr) ‘Xt = z}, R; — a.s.
TA(t1]

Note that for t = 1, we have ¢¥*(1,-) = n(x, -). Furthermore ¢* is the
solution of the Hamilton-Jacobi-Bellman equation

[(at+uA)zp+%|Vz/z!2+p](t,z):0, 0<t<1,t¢gS zeX,

w(tv ) - w(t_f) = _9(t7 ')7 te S:
v(1,:) =n(x,), t=1.



The forward velocity satisfies the equation
—X —X —X
(Or+u -V)(u)=-vA(u )-Vp, t<1,t¢S,
—X —X

Ut—Uﬁ:—VQt, tGS

—X
uy =Vyn(x,:), t=1

(notice the “wrong sign")



The backward velocity of P(-| Xy = y) solves

O+ 0 V)W )=va(l)-Vp, t>0, t¢s,
u Y —ur =V, teS
U<_7y = Vy77('a}/)a t=0

Moreover ut Vel(z), t¢ S, with
1
(8t—yA)g0—|—§\Vgo|2+p:0, t>0,t¢ S

(P(tf)_@(ti?‘) :9(1',‘), teS,
90(07 ) = —77('7}’)a =0.



Remarks.

1. The current velocity Uy = %(Et =+ U{) solves the continuity equation
Ot + V.(mut) =0

2.t — Pyt = (Xo, Xt)« P, probability measure on M2 corresponds to a
relaxation of the Lagrangian paths g(-).

3. The pressure and the “potentials” 6 do not depend on the final position,
only on the actual position.



The general solution of our generalization of Brenier’s type problem
can be described by

P~ | PCIXi =)

(corresponding to the gradient drift field u*Y = V) but the average
backward velocity

Ui(z) = / V. ¢!(2) PE(dy)

P# .= P(X; € dy|X; = z), is not a gradient, due to the nonlinearity of
the equations.

This superposition phenomenon is reminiscent of Brenier's multiphase
vortex sheets model.
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