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Geometry, Dynamics and Mechanics Seminar

August 31, 2021



Outline

1 Motivation

2 Retraction maps and symplectic integration

3 Parallel iterative methods for variational

integration



Outline

1 Motivation

2 Retraction maps and symplectic integration

3 Parallel iterative methods for variational

integration



Adams–Bashforth method
J.C. Butcher / Journal of Computational and Applied Mathematics 125 (2000) 1–29 3

Fig. 1. The title page of the Adams–Bashforth paper.

it is possible to !nd, by repeated di"erentiation and substitution of d2y=dt2 into the result, formulas
for

d3y
dt3
;
d4y
dt4
; : : : :

From these data evaluated at the initial value, the solution may then be advanced using the Taylor
series. Hence, after a small time-step, values of y and of dy=dt can be found. Further steps can then
be taken in the same manner until a desired value of t is reached.
After these remarks, Adams goes on to derive the Adams–Bashforth method, as we know it today,

in the form

y1 − y0 = !
(

q0 + 1
2!q0 +

5
12!

2q0 + · · ·
)

; (3)

where ! is the stepsize and q0; q−1; : : : denote the derivatives computed at the points t0; t−1; : : :
where the solution values are y0; y−1; : : : : In the Adams notation, ! denotes the backward di"erence
!q0 = q0− q−1, in contrast to the modern terminology of reserving ! for the forward di"erence and
using ! for the backward di"erence.
Adams goes on to discuss the relative merits of using, instead of (3), the formula

y0 − y−1 = !
(

q0 − 1
2!q0 −

1
12!

2q0 + · · ·
)

: (4)

He correctly observes the advantages of (4) in terms of magnitudes of the error constants. The
use of this implicit form of the Adams method was revisited and developed many years later by
Moulton [49].



y ′ = f (t, y)

yn+1 = yn + hf (tn, yn), Euler method

yn+2 = yn+1 + h

(
3

2
f (tn+1, yn+1)− 1

2
f (tn, yn)

)
,

yn+3 = yn+2 + h

(
23

12
f (tn+2, yn+2)− 4

3
f (tn+1, yn+1) +

5

12
f (tn, yn)

)
,

yn+4 = yn+3 + h

(
55

24
f (tn+3, yn+3)− 59

24
f (tn+2, yn+2)

+
37

24
f (tn+1, yn+1)− 3

8
f (tn, yn)

)
,

yn+5 = yn+4 + h

(
1901

720
f (tn+4, yn+4)− 1387

360
f (tn+3, yn+3)

+
109

30
f (tn+2, yn+2)− 637

360
f (tn+1, yn+1) +

251

720
f (tn, yn)

)
.



Runge-Kutta method
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Fig. 2. An extract from the Runge paper.

2.2. The Runge paper

The second great legacy of the 19th century to numerical methods for ordinary di!erential equa-
tions was the work of Runge [57]. Whereas the Adams method was based on the approximation of
the solution value for given x, in terms of a number of previously computed points, the approach of
Runge was to restrict the algorithm to being “one step”, in the sense that each approximation was
based only on the most recent point already computed in a previous step. To achieve the required
accuracy, approximations are found at a number of internal points within each step and the "nal
result is computed in terms of these various stage values. The short extract from Runge’s paper given
in Fig. 2, includes the formulations of methods with two derivative calculations per step, based on
the mid-point and trapezoidal quadrature rules, respectively.

2.3. The contributions of Heun and Kutta

Following the important and prophetic work of Adams and of Runge, the new century began with
further contributions to what is now known as the Runge–Kutta method, by Heun [40] and Kutta
[45]. In particular, the famous method in Kutta’s paper is often known as the Runge–Kutta method.
Heun’s contribution was to raise the order of the method from two and three, as in Runge’s paper, to
four. This is an especially signi"cant contribution because, for the "rst time, numerical methods for
di!erential equations went beyond the use of what are essentially quadrature formulas. Even though
second-order Runge methods can be looked at in this light, because the derivatives of the solution
are computed from accurate enough approximations so as not to disturb the second-order behaviour,
this is no longer true for orders greater than this. Write a three stage method in the form

Y1 = y0; F1 = f(x0; Y1);

Y2 = y0 + ha21F1; F2 = f(x0 + hc2; Y2);

Y3 = y0 + h(a31F1 + a32F2); F3 = f(x0 + hc3; Y3);

y1 = y0 + h(b1F1 + b2F2 + b3F3);

Second-order methods with two stages: Midpoint

yn+1 = yn + hf

(
tn +

1

2
h, yn +

1

2
hf (tn, yn)

)
Second-order methods with two stages: Euler-Heun method

yn+1 = yn + h
(
(1− 1

2 )f (tn, yn) + 1
2 f (tn + h, yn + hf (tn, yn))

)



Runge–Kutta method RK4

yn+1 = yn +
1

6
h (k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + h

k1 = f (tn, yn), k2 = f

(
tn +

h

2
, yn + h

k1

2

)
,

k3 = f

(
tn +

h

2
, yn + h

k2

2

)
, k4 = f (tn + h, yn + hk3) .
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Geometric Integration

Motion is described by differential equations derived from laws of physics

d2q

dt2
= F (t, q,

dq

dt
)

The equations contains not just a statement of acceleration but all the

physical laws relevant (phase space, symmetries, invariance properties...)
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Geometric Integration

• Conservation laws. Functions that stay constant along the solution

trajectories. For example, the energy H(q(t), p(t)) of a Hamiltonian

system
dq

dt
=
∂H

∂p
(q, p) ,

dp

dt
= −∂H

∂q
(q, p)

remains constant along a solution trajectory.

p, q ∈ Rn M = {(x , y) ∈ Rn × Rn | H(x , y) = H(q(0), p(0))}

Differentiable manifolds

• Symmetries. Transformations which, when applied to dependent or

independent variables, gives another solution to the same system of

differential equations.

Lie groups
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Geometric Integration

• Symplectic structure in Hamiltonian systems. Symplecticity:

∂(p(t), q(t))

∂(p(0), q(0))

>( 0 I

−I 0

)
∂(p(t), q(t))

∂(p(0), q(0))
=

(
0 I

−I 0

)
, t ≥ 0



Geometric Integration

Geometric mechanics

• Reducing the degrees of freedom

• Detecting the relevant geometric structures

• Identifying the symmetries and invariants of different physical

systems, such as conservation of energy, conservation of linear or

angular momentum

• Describing variational principles

• . . .



Geometric Integration

• Standard methods for simulating motion called numerical integrators

completely ignore all of the previous hidden physical laws.

• Since about 1990 new methods have been developed called

geometric integrators which obey some of these extra laws.



Geometric Integration

It is natural to look forward to those discrete

systems which preserve as much as possible

the intrinsic properties of the continuous

system.

Feng Kang 1985

Figure: (Feng Kang 1920-1993)



Example: the pendulumExample: the pendulum

■ Denote angle with the 
vertical at time     by

■ Motion described by the 
differential equation

which can be rewritten

Motion is described by the second-order differential equation

θ̈ = −g

l
sin θ

or equivalently, with H = 1
2ml2 p

2 + mgl(1− cos θ)

θ̇ =
p

ml2

ṗ = −mgl sin θ
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Explicit Euler method

Standard numerical methods:

• Replace θ(t) and p(t) by θk and pk
• Approximate the differential equations, e.g. by first-order Taylor

approximation (Euler methods)■ Approximate next time step by drawing 
tangent to curve:

■ As              , this approaches the true value.

Euler methods and Taylor 
approximation

θ(tk + h) = θ(tk) + hθ̇(tk) +O(h2)

p(tk + h) = p(tk) + hṗ(tk) +O(h2)

We obtain the Explicit Euler method

θk+1 = θk + h
1

ml2
pk

pk+1 = pk − hmgl sin θk



Implicit Euler method

θk+1 = θk + h
1

ml2
pk+1

pk+1 = pk − hmgl sin θk+1



Symplectic Euler method

θk+1 = θk + h
1

ml2
pk+1

pk+1 = pk − hmgl sin θk

Symplecticity

dθk+1 ∧ dpk+1 = dθk ∧ dpk



Symplectic Euler method

θk+1 = θk + h
1

ml2
pk+1

pk+1 = pk − hmgl sin θk

Symplecticity

dθk+1 ∧ dpk+1 = dθk ∧ dpk
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Symplectic integration

Poincaré H. 1893. Les méthodes nouvelles de la mécanique céleste III.

Gauthier–Villars, Paris.

q1 − q0 = h
∂H

∂p
(
q0 + q1

2
,
p0 + p1

2
)

p1 − p0 = −h∂H
∂q

(
q0 + q1

2
,
p0 + p1

2
)

A key development of modern geometric mechanics has been to study

dynamical systems on general manifolds such as spheres, tori, and Lie

groups, etc not only on vector spaces.



Hamiltonian mechanics and differential

geometric methods

The cotangent bundle T ∗Q of a differentiable manifold Q is equipped

with a canonical exact symplectic structure ωQ = dθQ , where θQ is the

canonical 1-form on T ∗Q. In canonical bundle coordinates (qi , pi ) on

T ∗Q the projection reads as πQ(qi , pi ) = (qi ), and

θQ = pi dq
i , ωQ = dqi ∧ dpi .

Given a Hamiltonian function H : T ∗Q → R we define the Hamiltonian

vector field

ıXH
ωQ = dH

Its integral curves are determined by Hamilton’s equations:

dqi

dt
=

∂H

∂pi
,

dpi
dt

= −∂H
∂qi

.



• Preservation of energy.

0 = ωQ(XH ,XH) = dH(XH) = XH(H)

we have the H : T ∗Q → R is preserved.

• Preservation of the symplectic form. LXH
ωQ = 0. That is, if

{φtXH
} is the flow of XH then

(φtXH
)∗ωQ = ωQ .

• Symmetries and constants of the motion

Goal: To design numerical methods for XH preserving the configuration

manifold and preserving the canonical symplectic form (or the

Hamiltonian).
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Symplectic integration

θk+1 = θk + h
1

ml2
pk+1

pk+1 = pk − hmgl sin θk

q1 − q0 = h
∂H

∂p
(
q0 + q1

2
,
p0 + p1

2
)

p1 − p0 = −h∂H
∂q

(
q0 + q1

2
,
p0 + p1

2
)



Retraction map on a manifold [Absil, Mahony, Sepulchre, 2008]1

A retraction map on a manifold M is a smooth map

R : U ⊆ TM → M such that the restriction map Rx = R|TxM satisfies

1 Rx(0x) = x ,

2 identifying T0xTxM ' TxM

DRx(0x) = T0xRx = IdTxM .

Example: (M, g) Riemannian manifold. The exponential map

expg : U ⊂ TM → M is a typical example

expg
x (vx) = γvx (1),

where γvx is the unique Riemannian geodesic satisfying γvx (0) = x and

γ′vx (0) = vx .

2P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix

manifolds. Princeton University Press, Princeton, NJ, 2008.



Extended retraction map on a manifold M

Maŕıa Barbero Liñán, DMdD: Extended retraction maps: a seed of

geometric integrators, arXiv:2106.00607

Let U be an open neighbourhood of the zero section of TM,

Rd : U ⊂ TM −→ M ×M

vx 7−→ (R1(vx),R2(vx))

such that

• Rd(0x) = (x , x),

• T0xR
2
x − T0xR

1
x = IdTxM : T0xTxM ' TxM → TxM is equal to the

identity map on TxM for any x in M.

Consequence: The extended retraction map Rd is a local

diffeomorphism.



Examples of extended retraction maps

On Euclidean vector spaces:

• Explicit Euler method: Rd(x , v) = (x , x + v).

• Midpoint rule: Rd(x , v) =
(
x − v

2
, x +

v

2

)
.

• θ-methods with θ ∈ [0, 1]: Rd(x , v) = (x − θ v , x + (1− θ) v) .

More general: Let R : TM → M be a retraction map,

Rd(x , v) = (R(x ,−θ v),R(x , (1− θ) v))

is an extended retraction map for θ ∈ [0, 1].



Examples of extended retraction maps

• Riemannian manifold (M, g) and associated exponential map

expx : TxM → M:

Rd(vx) = (expgx (−vx/2), expgx (vx/2)) .

• On the sphere S2:

Rd(x , ξ) =

(
x − ξ/2

‖x − ξ/2‖
,

x + ξ/2

‖x + ξ/2‖

)
.

• Lie groups....

Goal: How to obtain retraction on tangent and cotangent bundles for

mechanical systems and optimal control theory
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Tangent lift of extended retraction maps

• Canonical tangent bundle projection: τTQ : TTQ → TQ.

• Canonical involution κQ : TTQ → TTQ such that κ2
Q = idTTQ .

Locally,

κQ(qi , v i , q̇i , v̇ i ) = (qi , q̇i , v i , v̇ i ).

Objective

To define an extended retraction map on TQ:

RTTQ
d : U ⊂ TTQ → TQ × TQ.



Tangent lift of extended retraction maps

TTQ
RT
d //

κQ

��

TQ × TQ

TTQ

κQ

OO

τTQ

��

TRd // T (Q × Q)

OO

τQ×Q

��
TQ

Rd // Q × Q

Proposition (tangent lift)

If Rd : TQ → Q × Q is an extended retraction map on Q, then

RT
d = TRd ◦ κQ

is an extended retraction map on TQ.



Cotangent lift of extended retraction maps

Three ingredients:

• Cotangent lift of a diffeomorphism F : M1 → M2:

F̂ : T ∗M1 −→ T ∗M2 such that F̂ = (TF−1)∗.

• Canonical symplectomorphism:

αQ : T ∗TQ −→ TT ∗Q such that αQ(q, v , pq, pv ) = (q, pv , v , pq).

41 / 102



Cotangent lift of extended retraction maps

• The symplectomorphism between (T ∗(Q × Q), ωQ×Q) and

(T ∗Q × T ∗Q,Ω12 = pr∗2 ωQ − pr∗1 ωQ):

Φ : T ∗Q×T ∗Q −→ T ∗(Q×Q) , Φ(q0, p0; q1, p1) = (q0, q1,−p0, p1).

Objective

To define an extended retraction map on T ∗Q:

RTT∗Q
d : U ⊂ TT ∗Q → T ∗Q × T ∗Q.



Cotangent lift of extended retraction maps

TT ∗Q
RT∗
d //

αQ

��

T ∗Q × T ∗Q

T ∗TQ

πTQ

��

R̂d // T ∗(Q × Q)

Φ−1

OO

πQ×Q

��
TQ

Rd // Q × Q

Proposition (cotangent lift)

Let Rd : TQ → Q × Q be an extended retraction map on Q. Then

RT∗

d = Φ−1 ◦ R̂d ◦ αQ : TT ∗Q → T ∗Q × T ∗Q

is an extended retraction map on T ∗Q.



Corollary

RT∗

d = Φ−1 ◦ (TR−1
d )∗ ◦ αQ : T (T ∗Q)→ T ∗Q × T ∗Q is a

symplectomorphism between (T (T ∗Q),dTωQ) and (T ∗Q×T ∗Q,Ω12).

Duality between both lifts

〈Φ(αq0 , αq1 ),RT
d (w)〉 = 〈

(
RT∗

d

)−1

(αq0 , αq1 ),w〉T

where w ∈ TTQ and (Rd)−1(q0, q1) = T τQ(w).

Locally,

RT
d (q, q̇, v , v̇) =

(
R1
d (q, v),DR1

d (q, v) (q̇, v̇)T ;

R2
d (q, v),DR2

d (q, v) (q̇, v̇)T
)
,

RT∗

d (q, p, q̇, ṗ) =
(
R1
d (q, q̇),−(ṗ, p)DR−1

d (Rd(q, q̇))∗1;

R2
d (q, q̇), (ṗ, p)DR−1

d (Rd(q, q̇))∗2
)



Examples of lifts by the midpoint rule

• Extended retraction map on Q:

Rd(q, v) =

(
q − 1

2
v , q +

1

2
v

)
.

• Tangent lift of Rd :

RT
d (q, q̇, v , v̇) =

(
q − 1

2
v , q̇ − 1

2
v̇ ; q +

1

2
v , q̇ +

1

2
v̇ ,

)
.

• Cotangent lift of Rd :

RT∗

d (q, p, q̇, ṗ) =

(
q − 1

2
q̇, p − ṗ

2
; q +

1

2
q̇, p +

ṗ

2

)
.



Construction of geometric integrators using

retraction maps

For a Hamiltonian function H : T ∗Q → R, the solutions to Hamilton’s

equations

iXH
ω = dH

are the integral curves to the Hamiltonian vector field given locally by

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
.

Discretization of such a vector field using an extended retraction map on

T ∗Q, RTT∗Q
d : TT ∗Q → T ∗Q × T ∗Q.

Numerical Method

h XH

(
τTQ

((
RTT∗Q
d

)−1
(qk , pk ; qk+1, pk+1)

))
=

(
RTT∗Q
d

)−1
(qk , pk ; qk+1, pk+1) .



A numerical integrator

The solution γ : I → T ∗Q of Hamilton’s equations must satisfy

iγ̇(t)ωQ(γ(t)) = dH(γ(t)) , equivalently γ̇(t) = ]ωQ
(dH(γ(t))) .

Let RTT∗Q
d : T (T ∗Q)→ T ∗Q × T ∗Q be an extended retraction map on

T ∗Q.

Numerical integrator

(
RTT∗Q
d

)−1
(q0, p0; q1, p1) = ]ωQ (h dH((τT∗Q ◦

(
RTT∗Q
d

)−1
)(q0, p0; q1, p1))) .



Symplectic numerical integrator

Proposition [Maŕıa Barbero-Liñán, DMdD, 2021]

If RTT∗Q
d : T (T ∗Q)→ T ∗Q × T ∗Q is the cotangent lift of an extended

retraction map on TQ, then

(
RT∗

d

)−1

(q0, p0; q1, p1) = ]ωQ
(h dH((τT∗Q ◦

(
RT∗

d

)−1

)(q0, p0; q1, p1)))

defines a symplectic numerical integrator.



Example: explicit symplectic method

• Extended retraction map on Q: Rd(q, v) = (q − v , q) .

• Cotangent lift of Rd : RT∗

d (q, p, q̇, ṗ) = (q − q̇, p, q, p + ṗ) .

• Inverse of the cotangent lift:(
RT∗

d

)−1
(q0, p0, q1, p1) = (q1, p0, q1 − q0, p1 − p0).

Explicit symplectic method for H(p, q) =
p2

2
+ V (q):

q1 − q0

h
=

∂H

∂p
(q1, p0)

p1 − p0

h
= −∂H

∂q
(q1, p0)



Schematic representation

T ∗Q × T ∗Q TT ∗Q
RT∗
doo T ∗T ∗Q

]ωQoo

T ∗Q

XH

dd
dH

::



H : T ∗S2 → R

T ∗S2 ≡ {(x , p) ∈ R3 × R3 | ‖x‖ = 1, x · p = 0} .

Retraction map Rd : TS2 → S2 × S2 given by Rd(x , ξ) =
(
x , x+ξ
‖x+ξ‖

)
,

R−1
d (x0, x1) =

(
x0,

x1

x0 · x1
− x0

)
,

Consider C the matrix with entries

cij =

{
(x · y)

[
1 + (x · y)yixi − y2

i

]
if i = j ,

(x · y) [(x · y)yixj − yiyj ] if i 6= j .

(
RT∗

d

)−1

(x0, p0; x1, p1) =

(
x0, p1C ;

1

x0 · x1
x1 − x0,−p0 + (x0 · x1)p1

)
Symplectic integrator for Hamilton’s equations:

1

xk · xk+1
xk+1 − xk = h

∂H

∂p
(xk , pk+1C ) ,

−pk + (xk · xk+1)pk+1 = −h∂H
∂q

(xk , pk+1C ) .



Optimal control

Optimal control problem (OCP)

min

∫ tf

t0

F (q(t), u(t))dt,

q̇ = X (q, u) .

Pontryagin’s Hamiltonian function:

H : T ∗Q × U → R ,
H(q, p, u) = 〈p,X (q, u)〉 − F (q, u) .

If the OCP is regular, controls can be solved from the maximization

condition in Pontryagin’s Maximum Principle

∂H

∂u
= 0 .

Use a cotangent lift of a retraction map to define a symplectic

integrator for optimal control problems.



T ∗Q × T ∗Q TT ∗Q
RT∗
doo

πT∗Q $$

T ∗T ∗Q
]ωQoo

τT∗Qzz

LH
? _oo

T ∗Q

LH = {(q, p,Pq,Pp) | Pq =
∂H

∂q
(q, p, u),Pp =

∂H

∂p
(q, p, u),

∂H

∂u
(q, p, u) = 0}

is a Lagrangian submanifold of T ∗T ∗Q.



Future work

• Extension to more complex mechanical systems such as forced

systems, constrained systems, control systems, reduced systems, etc.

• Define higher-order retraction maps and study higher-order

Lagrangian systems.

• Establish relations with the discrete gradient methods [McLahlan,

Quispel, Robioux, 1999; Celledoni et al. 2017 ].

• Describe geometric integration of Dirac systems.

• Describe symplectic methods using Lagrangian submanifolds defined

by Morse families.
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2 Retraction maps and symplectic integration

3 Parallel iterative methods for variational

integration



Discrete variational principle

Replace TQ by Q × Q (velocities by nearby points) and curves by finite

sequences of points.

q0

q1(q0, v)

Q

q0
q1

q2
q3 . . .

qN−1 qN



Discrete Euler-Lagrange equations

Given a discrete Lagrangian, which is a function Ld : Q × Q → R, a

number of steps N and two points q0, qN ∈ Q, consider the space Cd of

sequences (q0, q1, . . . , qN) (fixed endpoints). A trajectory of the system

described by Ld is a critical point of the action sum Sd : Cd → R,

Sd(q0, q1, . . . , qN) =
N∑
i=1

Ld(qk−1, qk)

= Ld(q0, q1) + Ld(q1, q2) + · · ·+ Ld(qN−1, qN)

discrete Euler-Lagrange equations (DEL equations)

D1Ld(qk , qk+1) + D2Ld(qk−1, qk) = 0, k = 1, . . .N − 1.

The boundary conditions are the given values for q0 and qN .
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Geometric preservation properties

D1Ld(qk , qk+1) + D2Ld(qk−1, qk) = 0, k = 1, . . .N − 1.

For each k , we can locally solve for qk+1 if D12Ld(qk , qk+1) is regular,

which in coordinates reads

det

(
∂2Ld

∂qik∂q
j
k+1

)
6= 0.

The method is symplectic and momentum-preserving.



From continuous to discrete

Let L : TQ → R and [0,T ] be given.

Divide [0,T ] into N pieces of size h = T/N (time step).

For arbitrary (nearby) q0, q1 ∈ Q, define Ld(q0, q1) ≈
∫ h

0
L(q(t), q̇(t)) dt,

where q(t) is a trajectory of the continuous system joining q0 to q1 for

time h. Since this trajectory is not known in general, we must resort to

an approximation such as

q(t) ≈ q0 + q1

2
, q̇(t) ≈ q1 − q0

h
,

so we can define

Ld(q0, q1) =

∫ h

0

L

(
q0 + q1

2
,
q1 − q0

h

)
dt = hL

(
q0 + q1

2
,
q1 − q0

h

)
.
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.



Momentum preservation. Discrete Noether

theorem

Ld is G -invariant

Jd : Q × Q −→ g∗

〈Jd(x , y), ξ〉 = 〈D2Ld(x , y), ξQ(y)〉

〈D2Ld(qk−1, qk), ξQ(qk)〉 = 〈D2Ld(qk , qk+1), ξQ(qk+1)〉
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Discrete Hamiltonian mechanics

• The discrete Legendre transformations

F−Ld : Q × Q → T ∗Q

F−Ld(q0, q1)(Xq0 ) = −(D1Ld)(q0, q1)(Xq0 ), for Xq0 ∈ Tq0Q

F+Ld : Q × Q → T ∗Q

F+Ld(q0, q1)(Xq1 ) = (D2Ld)(q1, q2)(Xq1 ), for Xq1 ∈ Tq1Q

• The discrete Hamiltonian flow

FLd
= F+Ld ◦ (F−Ld)−1 : T ∗Q → T ∗Q is a symplectomorphism:

F ∗Ld
ωQ = ωQ



Exact discrete Lagrangian

Le
h(q0, q1) =

∫ h

0

L(q(t), q̇(t)) dt,

where q(t) is a trajectory of the continuous system joining q0 to q1 for

time h. If L is regular, then Le
h regular.



Exact discrete Lagrangian

If q(t) is a solution of the continuous system, then the evolution of the

discrete system for Le
h yields the sequence q(0), q(h), q(2h), q(3h), . . .

In order to write Le
h explicitly we need to solve the E-L equations. . . ?

We can write Taylor expansions of Le
h in h. The discrete Lagrangians that

we will consider must approximate Le
h, and the order of approximation

will be the order of convergence of the corresponding algorithm.
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Variational error analysis

Theorem

Let L : TQ → R be a regular Lagrangian function. Suppose that

Ldh : Q × Q → R is a regular discrete Lagrangian function and that Le
h is

the exact discrete Lagrangian function on Q ×Q associated with L. If Ldh
is an order r discretization then

FLd
h

= FLe
h

+ O(hr+1),

where FLd
h

is the discrete Hamiltonian flow for Ldh and FLe
h

is the exact

Hamiltonian flow.

Marsden-West 2001, Patrick and Cuell 2009



CONSTRUCTION OF VARIATIONAL

INTEGRATORS

We explicitly evaluate the first few terms of the expansion of the exact

discrete Lagrangian to give

Le
h(q(0), q(h), h) = hL(q, q̇) +

h2

2

(
∂L

∂q
· q̇ +

∂L

∂q̇
· q̈
)

+O(h3)

where q = q(0), q̇ = q̇(0) and so forth. Higher derivatives of q(t) are

determined by the Euler-Lagrange equations.



A class of discrete Lagrangian is given by

Lαd (q0, q1; h) = hL((1− α)q0 + αq1,
q1 − q0

h
)

for some parameter α ∈ [0, 1]. Calculating the expansion in h gives

Lαd (q0, q1; h) = hL(q, q̇) +
h2

2

(
2α
∂L

∂q
· q̇ +

∂L

∂q̇
· q̈
)

+O(h3)

Comparing the expansions of Lαd and for the exact discrete Lagrangian

shows that the method is second-order if and only if α = 1/2; otherwise

it is only consistent.
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L(q, q̇) = q̇TMq̇ − V (q)

q1 − q0

h
= hM−1(αp0 + (1− α)p1)

p1 − p0

h
= −∇V (αq0 + (1− α)q1)

Many other Examples: Newmark algorithms, symplectic partitioned

Runge-Kutta algorithms, Verlet, etc.

BUT other interesting extensions.
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Composition of Lagrangian submanifolds [Sniatycki, Tulczyjew,

1972]2

1 Let R1
d and R2

d : TQ → Q × Q be 2 different extended retraction

maps on Q.

2 For Lid = L ◦
(
R i
d

)−1
: Q × Q → R, a discrete dynamical system is

defined:

Si =

{
(q0, p0, q1, p1) ∈ T ∗Q × T ∗Q

∣∣∣∣∣ p0 = −D1L
i
d(q0, q1)

p1 = D2L
i
d(q0, q1)

}
.

3 Composition of Lagrangian submanifolds:

S12 =

{
(α1, α2)

∣∣∣∣∣ ∃ α1/2 ∈ T ∗Q such that
(α1, α1/2) ∈ S1

(α1/2, α2) ∈ S2

}
.

3
3J. Snityacki nd W. M. Tulczyjew. Generating forms of Lagrangian submanifolds,

Indiana Univ. Math. J., 22:267–275, 1972/73.



Composition of geometric integrators and Lagrangian submanifolds

Discrete Lagrangian: L3
d(q0, q2) = L1

d(q0, q1) + L2
d(q1, q2).

The discrete equations are

p0 = −D1L
1
d(q0, q1) ,

0 = D2L
1
d(q0, q1) + D1L

2
d(q1, q2) ,

p2 = D2L
2
d(q1, q2) .



Störmer–Verlet method as composition of geometric integrators

R−1
d,1(q0, q1) =

(
q0,

q1 − q0

h/2

)
L1
d(q0, q1) =

h

2
L

(
q0,

q1 − q0

h/2

)

R−1
d,2(q1, q2) =

(
q2,

q2 − q1

h/2

)
L2
d(q1, q2) =

h

2
L

(
q2,

q2 − q1

h/2

)
.

The composition gives the following set of equations:

p0 = p1 −
h

2
D1L

(
q0,

q1 − q0

h/2

)
,

D2L

(
q0,

q1 − q0

h/2

)
= D2L

(
q2,

q2 − q1

h/2

)
,

p2 = p1 +
h

2
D1L

(
q2,

q2 − q1

h/2

)
.

For L(q, q̇) = q̇ Mq̇ − V (q), Störmer-Verlet method is recovered.



Boundary conditions

For any regular discrete Lagrangian system, the discrete Euler-Lagrange

equations allow us to obtain a new point in the sequence from the last

two.

q0 q1
q2

q3 q4 q5



Boundary conditions: Initial and final conditions

q0
q1

q2
q3 . . .

qN−1 qN

D1Ld(q0, q1) + D2Ld(q1, q2) = 0,

D1Ld(q1, q2) + D2Ld(q2, q3) = 0,

. . . = . . .

D1Ld(qN−2, qN1 ) + D2Ld(qN−1, qN) = 0

A standard method of solving a boundary-value problem is to reduce it to

the solution of an initial-value problem using the method of shooting.

For example, if q0, qN ∈ Q and N are given, one can try assigning some

value to q1, run the sequential algorithm and compare the resulting qN

with the final condition; then adjust the value of q1 and repeat the

process, until the final condition is met within a certain tolerance.
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Boundary conditions: Initial and final conditions

However, this approach can often fail to converge in practice, because of

a high sensitivity of qN with respect to the starting guess q1. This issue

is even more prevalent in optimal control problems.



Parallel iterative methods for variational

integration

Sebastián J. Ferraro, DMdD, Rodrigo T. Sato Mart́ın de Almagro.

Parallel iterative methods for variational integration applied to

navigation problems, 7th IFAC Workshop on Lagrangian and

Hamiltonian Methods for Nonlinear Control

We propose a relaxation strategy for solving boundary value problems for

the discrete equations given above. The algorithm can be implemented

using a parallel computing approach, which can significantly improve its

performance and simplify the way to find approximate solutions.



Parallel iterative methods for variational

integration

Our method starts with a sequence {qk} chosen as initial guess, solely

required to satisfy the boundary conditions.

Produce a new sequence {q̄k} with q̄0 = q0 and q̄N = qN . For each

k = 1, . . . ,N − 1, we find q̄k by solving a modified (“parallelized”)

version of the discrete Euler-Lagrange equations:

D2Ld(qk−1, q̄k) + D1Ld(q̄k , qk+1) = 0. (1)

At the endpoints, we simply take q̄0 = q0 and q̄N = qN . Computing q̄k

for all k completes one iteration, and the following one will use {q̄k} in

place of {qk}.

q0

q1

q2

q3

q̄1

q̄2

Figure: An iteration of the parallel method, for N = 3.
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Parallel iterative methods for variational

integration

In general, neither {qk} nor {q̄k} will be a solution of DEL equations but

by iterating this procedure we can approach a solution {q∗k} of the DEL

equations with fixed boundary conditions, under certain reasonable

assumptions.

D2Ld(qk−1, qk) + D1Ld(qk , qk+1)+

(D22Ld(qk−1, qk) + D11Ld(qk , qk+1)) · (q̄k − qk) = 0,
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Zermelo’s navigation problem

The minimum time trajectories are precisely the geodesics for a particular

type of Finsler metric, a Randers metric defined by

F (q, vq) =
√

a(vq, vq) + 〈b(q), vq〉

a(vq, vq) =
1

α(q)
g(vq, vq) +

1

α(q)2
g(W (q), vq)2

〈b(q), vq〉 = − 1

α(q)
g(W (q), vq) = −

〈
[g (W (q))

α(q)
, vq

〉
α(q) = 1− g(W (q),W (q)) = 1− |W (q)|2 > 0.

Here [g : X(Q)→ Ω1(Q) is the musical isomorphism defined by

〈[g (X ),Y 〉 = g(X ,Y ) for all X ,Y ∈ X(Q).



Zermelo’s navigation problem

The time it takes the ship to move along a curve γ : [t0, tN ]→ Q is∫ tN

t0

F (γ(s), γ̇(s)) ds. (2)

Note that this integral is invariant under orientation-preserving

reparametrizations of γ, since Finsler metrics are positively

1-homogeneous, that is, F (q, λvq) = λF (q, vq) for any λ > 0. Therefore,

the solution curves are not unique. In fact, F is not regular as a

Lagrangian function. Similar to the case of Riemannian metrics and the

problem of minimizing length or energy, this can be circumvented by

considering instead the functional∫ tN

t0

(
F (γ(s), γ̇(s))

)2
ds. (3)

Any extremal of this functional will be an extremal of (2), and any

extremal of (2) admits an orientation-preserving reparametrization that

makes it an extremal of (3).



Zermelo’s navigation problem

The time it takes the ship to move along a curve γ : [t0, tN ]→ Q is∫ tN

t0

F (γ(s), γ̇(s)) ds. (2)

Note that this integral is invariant under orientation-preserving

reparametrizations of γ, since Finsler metrics are positively

1-homogeneous, that is, F (q, λvq) = λF (q, vq) for any λ > 0. Therefore,

the solution curves are not unique. In fact, F is not regular as a

Lagrangian function. Similar to the case of Riemannian metrics and the

problem of minimizing length or energy, this can be circumvented by

considering instead the functional∫ tN

t0

(
F (γ(s), γ̇(s))

)2
ds. (3)

Any extremal of this functional will be an extremal of (2), and any

extremal of (2) admits an orientation-preserving reparametrization that

makes it an extremal of (3).



Zermelo’s navigation problem

As a particular case, consider Q = R2 with the Euclidean metric, where

we are to find critical curves (x , y) = (x(s), y(s)) for the functional∫ tN

t0

[√
1

α
(ẋ2 + ẏ2) +

1

α2
(W1(x , y)ẋ + W2(x , y)ẏ)2

− 1

α
(W1(x , y)ẋ + W2(x , y)ẏ)

]2

ds

with α = 1− (W 2
1 + W 2

2 ).

As the discrete Lagrangian, we used

Ld(q0, q1) =
h

2

(
F 2

(
q0,

q1 − q0

h

)
+ F 2

(
q1,

q1 − q0

h

))
.



Zermelo’s navigation problem

(Zermelo)
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Zermelo’s navigation problem
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Zermelo’s navigation problem

Figure: Several local solutions to the optimal time navigation problem

starting from (0, 0) and ending at (6, 2). The time for each trajectory is shown.
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A minimal fuel trajectory

We also consider a non-equivalent variant of Zermelo’s problem. If T > 0

is a fixed time, we seek trajectories minimizing the cost function∫ T

0

1

2
(u2

1 + u2
2) dt ,

which can be interpreted as a measure of fuel expenditure.

ẋ = u1 + W1(x , y) ,

ẏ = u2 + W2(x , y) .

The goal is to arrive at a given destination at time T , extremizing fuel

expenditure with no a priori bounds on the engine’s power. This problem

is equivalent to solving the Euler-Lagrange equations for the Lagrangian

L(x , y , ẋ , ẏ) =
1

2

[
(ẋ −W1(x , y))2 + (ẏ −W2(x , y))2

]
,

with fixed (x(0), y(0)) and (x(T ), y(T )) as boundary conditions.



A minimal fuel trajectory for a fixed total

duration T = 30, joining (0, 0) to (6, 5), with

N = 200.

0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6



Interpolation problems

Fuel-optimal control problem with a weight minimizing the total variation

in the control variables. Minimize the cost functional∫ T

0

1

2
(u2

1 + u2
2 + cv2

1 + cv2
2 ) dt

subject to the control equations

ẋ = u1 + W1(x , y), ẏ = u2 + W2(x , y),

u̇1 = v1, u̇2 = v2 .



Interpolation problems

The continuous problem is equivalent to solving the fourth-order

Euler-Lagrange equations for the second-order Lagrangian

L(x , y , ẋ , ẏ , ẍ , ÿ) =
1

2

[
(ẋ −W1(x , y))2 + (ẏ −W2(x , y))2

+ c (ẍ − D1W1(x(t), y(t))ẋ − D2W1(x(t), y(t))ẏ)2

+c (ÿ − D1W2(x(t), y(t))ẋ − D2W2(x(t), y(t))ẏ)2
]

As boundary conditions, we consider (q(0), q̇(0)) and (q(T ), q̇(T )) fixed.

In addition, the system is subject to the interpolation constraints

q(t̂a) = q̂a, for all a = 1, . . . , l − 1 (4)

with 0 < t̂a < t̂b < T for all a, b ∈ {1, . . . , l − 1} and a < b.



Interpolation problems

As a discretization of the cost function we propose, for instance, a

2-stage Lobatto discretization:

Ld(qk , vk , qk+1, vk+1) =

h

2

[
L

(
qk , vk ,

2

h2
(3(qk+1 − qk)− h(vk+1 + 2vk)

)
+ L

(
qk+1, vk+1,−

2

h2
(3(qk+1 − qk)− h(2vk+1 + vk)

)]



An optimal trajectory for the second-order

problem with interpolation nodes
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Conclusions

Ferraro, S., DMdD., and Sato Mart́ın de Almagro, R.T. (2021). A

parallel iterative method for variational integration. Work in progress.

• We prove rigorous conditions for the convergence of the parallel DEL

equations

• Extensions to second-order Lagrangians.

• time-dependent water currents can be added to the proposed

navigation problems.

• We adapt our parallel iterative method for the case of invariant first

and second order Lagrangian systems where the configuration space

is a Lie group.

• Problems involving sharp univariate constraints such as state space

or control space exclusion zones have not yet been studied using this

approach (penalty potentials).



Thank you!!!
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