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Runge-Kutta method
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Second-order methods with two stages: Midpoint

1 1
Yn+1 = Yn+ hf (tn + Eha)/n + Ehf(tm Yn)>
Second-order methods with two stages: Euler-Heun method

Yot1 = Yo+ h((L = 3)f(tn, yn) + 3F(tn + b, yn + hf (tn, yn)))



Runge—Kutta method RK4
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Geometric Integration

Motion is described by differential equations derived from laws of physics



Geometric Integration

Motion is described by differential equations derived from laws of physics

d’q dq
W - F(t7 q, E)

The equations contains not just a statement of acceleration but all the

physical laws relevant (phase space, symmetries, invariance properties...)



Geometric Integration

e Conservation laws. Functions that stay constant along the solution
trajectories. For example, the energy H(q(t), p(t)) of a Hamiltonian

system
dg OH dp OH
—=a(ap), =

dt ~ Op dt _aiq(q’p)
remains constant along a solution trajectory.
p.q R M= {(x.y) € R" x B" | H(x,y) = H(q(0), p(0))}



Geometric Integration

e Conservation laws. Functions that stay constant along the solution
trajectories. For example, the energy H(q(t), p(t)) of a Hamiltonian
system
dg OH dp OH
i afp(q,p) T —afq(cnp)

remains constant along a solution trajectory.

p,g €R" M={(x,y) e R" xR" | H(x,y) = H(q(0), p(0))}

Differentiable manifolds




Geometric Integration

e Conservation laws. Functions that stay constant along the solution
trajectories. For example, the energy H(q(t), p(t)) of a Hamiltonian

system
dqg OH
—=—>-(a,p), q,p)

dt ~ Op dt (Tq( ’
remains constant along a solution trajectory.
p.q R M= {(x.y) € R" x B" | H(x,y) = H(q(0), p(0))}

Differentiable manifolds

dp _ OH

e Symmetries. Transformations which, when applied to dependent or
independent variables, gives another solution to the same system of

differential equations.



Geometric Integration

e Conservation laws. Functions that stay constant along the solution
trajectories. For example, the energy H(q(t), p(t)) of a Hamiltonian

system
dqg OH
—=—>-(a,p), q,p)

dt ~ Op dt aT;( ’
remains constant along a solution trajectory.
p,geR" M={(x,y) e R" xR" | H(x,y) = H(q(0), p(0))}
Differentiable manifolds

dp _ OH

e Symmetries. Transformations which, when applied to dependent or
independent variables, gives another solution to the same system of
differential equations.

Lie groups



Geometric Integration

e Symplectic structure in Hamiltonian systems. Symplecticity:

ap()q(t) T (0 1\ ap()a(t) _ [0 I £>0
q d(p(0), q(0)) -1 0 )’



Geometric Integration

Geometric mechanics
e Reducing the degrees of freedom
e Detecting the relevant geometric structures

e |dentifying the symmetries and invariants of different physical
systems, such as conservation of energy, conservation of linear or

angular momentum

e Describing variational principles



Geometric Integration

e Standard methods for simulating motion called numerical integrators

completely ignore all of the previous hidden physical laws.

e Since about 1990 new methods have been developed called
geometric integrators which obey some of these extra laws.



Geometric Integration

It is natural to look forward to those discrete
systems which preserve as much as possible
the intrinsic properties of the continuous

system.

Feng Kang 1985




Example: the pendulum

Motion is described by the second-order differential equation

é:—%sin@



Example: the pendulum

Motion is described by the second-order differential equation

6 = —% sinf
or equivalently, with H = 2;},2 p? + mgl(1 — cos®)
_ _P
mi?

p = —mglsinf



Explicit Euler method

Standard numerical methods:

e Replace 0(t) and p(t) by 0, and py

e Approximate the differential equations, e.g. by first-order Taylor
approximation (Euler methods)

O (41, Vt1)

(qr, vr)
Otk +h) = 0(tx) + hB(te) + O(h?)
p(t +h) = p(te) + hp(t) + O(h?)

We obtain the Explicit Euler method

1
Okt1 = b+ h—p«
ml
Pk+1 = px — hmglsin 6,



Implicit Euler method

1
Oks1 = Ok + h—5pk1
ml

Pk+1 = Pk — hmglsinf 4



Symplectic Euler method

1
Oky1 = ek‘f'hmpk—i-l

Px+1 = Pk — hmglsinf,



Symplectic Euler method

1
Oky1 = Qk‘f'hmpk-i-l

Pk+1 = Pk — hmglsin
Symplecticity

d0is1 A dpyr = dOi A dpi



(Loading...)
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Media File (video/mp4)


(Loading...)

Thanks Arillll
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Symplectic integration

Poincaré H. 1893. Les méthodes nouvelles de la mécanique céleste IlI.
Gauthier—Villars, Paris.

a/"’(qo-f—ql P0+P1)

— = h—
g1 — qo ap 5 o

L _haj(qo-i-% P0+P1)
P1— Po dq 5 5

A key development of modern geometric mechanics has been to study
dynamical systems on general manifolds such as spheres, tori, and Lie

groups, etc not only on vector spaces.



Hamiltonian mechanics and differential

geometric methods

The cotangent bundle T*Q of a differentiable manifold Q is equipped
with a canonical exact symplectic structure wq = dfg, where ¢ is the
canonical 1-form on T*Q. In canonical bundle coordinates (g', p;) on

T*Q the projection reads as mo(q', p;) = (g'), and
0o =pidg", wo=dg' Adp;.

Given a Hamiltonian function H : T*Q — R we define the Hamiltonian

vector field
IXywQ = dH

Its integral curves are determined by Hamilton’s equations:

dq’ ~ OH
dt op; ’
dp,' _ oH

dt aq' -’



e Preservation of energy.
0= WQ(XH,XH) = dH(XH) = XH(H)

we have the H: T*Q — R is preserved.

e Preservation of the symplectic form. Lx,wg = 0. That is, if
{¢%,,} is the flow of Xy then

(0%,) wo = wq -

e Symmetries and constants of the motion



e Preservation of energy.
0= WQ(XH,XH) = dH(XH) = XH(H)

we have the H: T*Q — R is preserved.

e Preservation of the symplectic form. Lx,wg = 0. That is, if
{¢%,,} is the flow of Xy then

(¢%,) " we = wa -
e Symmetries and constants of the motion
|
Goal: To design numerical methods for Xy preserving the configuration

manifold and preserving the canonical symplectic form (or the

Hamiltonian).



® Retraction maps and symplectic integration



Symplectic integration

1
Oki1 = Ok + h—5pki1
ml/

Pk+1 = Pk — hmglsin 0,

OH qo + +
G- = h_(CIo a1 Po P1)

op 2 72
b —po = _ha_H(QO+Q1 P0+P1)



A retraction map on a manifold M is a smooth map
R: U C TM — M such that the restriction map R, = R|7 u satisfies

(1] Rx(ox) =X,
@ identifying To, TM ~ T,M
DR, (0x) = To,Rx = Id1.p.
Example: (M, g) Riemannian manifold. The exponential map
expé : U C TM — M is a typical example
exp§ (vx) = 7, (1),

where 7, is the unique Riemannian geodesic satisfying 7,,(0) = x and

7, (0) = i

2P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix
manifolds. Princeton University Press, Princeton, NJ, 2008.



Maria Barbero Liidn, DMdD: Extended retraction maps: a seed of
geometric integrators, arXiv:2106.00607

Let U be an open neighbourhood of the zero section of TM,

Rp:UCcTM — MxM
Vx (Rl(VX)vRZ(VX))

such that

e R4(0x) = (x,x),

o To,R2—To R =1dr,m: To, TxM =~ T,M — T,M is equal to the
identity map on T, M for any x in M.

Consequence: The extended retraction map Ry is a local

diffeomorphism.



Examples of extended retraction maps

On Euclidean vector spaces:
e Explicit Euler method:  Ry(x,v) = (x,x + v).
. v %
e Midpoint rule: Ra(x,v) = (X - §’X+ 5) )
e O-methods with § € [0,1]:  Ry(x,v)=(x—0v,x+(1—-60)v).

More general: Let R: TM — M be a retraction map,

Ra(x,v) = (R(x,—0v),R(x,(1 —0) v))

is an extended retraction map for 6 € [0, 1].



Examples of extended retraction maps

e Riemannian manifold (M, g) and associated exponential map
expx . TxM — M:

Ra() = (expE(—1/2), expf (v4/2)) -

e On the sphere S

x—£/2 X+§/2>.

Ra(x, &) = <||X_§/2||’ Ix +¢&/2

e Lie groups....



Examples of extended retraction maps

e Riemannian manifold (M, g) and associated exponential map
expx . TxM — M:

Ra() = (expE(—1/2), expf (v4/2)) -

e On the sphere S

x—£&/2 X+§/2)'

Ra(x, &) = <||X_§/2||’ Ix +¢&/2

e Lie groups....

|
Goal: How to obtain retraction on tangent and cotangent bundles for

mechanical systems and optimal control theory



Tangent lift of extended retraction maps

e Canonical tangent bundle projection: 71 : TTQ — TQ.

e Canonical involution kg: TTQ — TTQ such that HQQ = id71T19-
Locally,

rolg' v, ¢ v =(q', ¢, v/, V).

Objective

To define an extended retraction map on TQ:

R/™: UCTTQ — TQ x TQ.



Tangent lift of extended retraction maps

RT
TTQ—2 > TQx TQ

TR ——Q@xQ

Proposition (tangent lift)

If Ry: TQ — Q x @ is an extended retraction map on Q, then
R] = TRy o kg

is an extended retraction map on TQ.



Three ingredients:

e Cotangent lift of a diffeomorphism F : My — Mjy:

F: T*My — T*M; such that F = (TF~1)*.

e Canonical symplectomorphism:

ag: T"TQ — TT*Q such that ag(q, v, pq, pv) = (g, pv, v, Pq)-

41 /102



Cotangent lift of extended retraction maps

e The symplectomorphism between (T*(Q x Q),wgxq) and
(T*Q x T*Q,u2 = prywq — priwq):

ST RXTQ — T*(Q%Q), (g0, po; 91, ,1) = (90, g1, —Po, p1)-

Objective

To define an extended retraction map on T*Q:

RITQUCTT'Q— T*Qx T*Q.



Cotangent lift of extended retraction maps

l‘ﬂ'TO \LT"QXQ
Rq

TQ

Proposition (cotangent lift)

Let Ry: TQ — @ x @ be an extended retraction map on Q. Then

RI"=dloRjo0q: TT*Q = T*Q x T*Q

is an extended retraction map on T*Q.



RI" =o~1o(TR; ) oag: T(T Q)= T*Q@ x T*Qis a
symplectomorphism between (T(T*Q),drwg) and (T*Q x T*Q, Q12).

Duality between both lifts

(®(atg ), REW)) = ((RT) ™ (g ) w) T

where w € TTQ and (Ry)~Y(q0,q1) = T1o(w).

Locally,
Ry (q,d4,v,v) = (Rj(q,v),DRy(q,v)(q,V)";
R3(q,v),DRi(g,v)(4,v)7) ,
R} (q,p,4,8) = (R(a,d),—(p, P)DR; (Ra(q; d))s1;

R3(q,4), (p. P)DR; (Ra(q, d))+2)



e Extended retraction map on Q:
1 1
Rd(qa V) - (q - EV,qu 2‘/) .
e Tangent lift of Ry:
1 1 1 1

Rc;'r(qaq.7vv‘./) = (q_2vaq_ EV' Q+2VaCI+2V7) .

e Cotangent lift of Ry:
RJ'*(q“D’ q7p) = <q_

1. p. 1. p
56P =35 Q+2qap+2) .



Construction of geometric integrators using
retraction maps

For a Hamiltonian function H: T*Q — R, the solutions to Hamilton's
equations

iXHw =dH

are the integral curves to the Hamiltonian vector field given locally by

H= 3439, a9, 9.

dOpi 09" 0q' Op;

Discretization of such a vector field using an extended retraction map on
T*Q RIT Q. TT*Q - T*Q x T*Q.

Numerical Method

o) 1 o\ —1
h Xy (TTQ ((RdTT Q) (Qk,Pk3Qk+17Pk+1))) = (RdTT Q) (9K PK: Ght1s Prt1) -



The solution v: I — T*@ of Hamilton's equations must satisfy
is(we(¥(t)) = dH(7(t)), equivalently ¥(t) = fu, (AH(7(1))) -

Let RdTT*Q: T(T*Q) — T*Q x T*Q be an extended retraction map on
T*Q.

Numerical integrator

(RdTT*Q)_l (qos Po; g1, P1) = tlwg (hdH((T7+q © (RdTT*Q)_l)(qo’ Poi 41, P1)) -



Proposition [Maria Barbero-Lindn, DMdD, 2021]

If RdTT*Q: T(T*Q) = T*Q x T*Q is the cotangent lift of an extended
retraction map on TQ, then

(RJ*) - (9o, Po; 91, P1) = Huwg(hdH((T7-q © (RJ*>71)(qo, Po; G1,p1)))

defines a symplectic numerical integrator.



e Extended retraction map on Q: Ra(q,v)=(qg—v,q) .

e Cotangent lift of Ry: R] (q,p.4,p) = (q—G.p,q,p+P).

e Inverse of the cotangent lift:

wy —1
(R{") (g0, po, g1, p1) = (a1, Po, 91 — Go, P1 — Po)-

2
Explicit symplectic method for H(p, g) = % + V(q):

- OH
qi - G _ 37, (41, Po)
p1 — Po oH

h = —afq(chypo)



Schematic representation

RI" fog

T Qx T Qe—""n—TT*Q T T*Q

T*Q




H:T*S* =R
T*S?={(x,p) e R*xR? | |x]| =1, x- p=0}.

Retraction map Ry : TS? — S2 x 52 given by Ry(x,¢) = (X, ﬁ) ,

Xo - X1

-1 X1
Rd (X()axl) = <X07 - XO) )
Consider C the matrix with entries

cij = (X'Y)[1+(X'Y)Yixi—y,2} if =,
T oy -yl i i £

N 1
(RdT ) (x0, Po; X1, P1) = (XO,P1C; TR + (xo 'X1)P1>
1

Symplectic integrator for Hamilton's equations:

1 oH
———— X1 — Xk = h—=— (%, 1 C)
e 'Xk+1Xk+1 Xk op (Xk Pk+1 )

OH
— Pk + (XK Xi41)Pry1 = —h%(Xk,Pk+1 Q).



Optimal control problem (OCP)

e /  F(q(),u(e)) dt,

to

c';:X(q7u).

Pontryagin’s Hamiltonian function:

H:T*Qx U—R,
H(qa P, U) = <p7X(q7 U)> - F(qa U).

If the OCP is regular, controls can be solved from the maximization
condition in Pontryagin's Maximum Principle
OH
— =0.
du
Use a cotangent lift of a retraction map to define a symplectic
integrator for optimal control problems.



T*

fo
T Qx T"Q——t TT*Q : T T°Q=—Ly

T*Q

oH oH OH
‘CH - {(qvpa qu PP) | 'Dq - aiq(qMD? U)7 'Dp - Fp(qvpa U), E(qvpa U) - 0}

is a Lagrangian submanifold of T*T*Q.



Extension to more complex mechanical systems such as forced

systems, constrained systems, control systems, reduced systems, etc.

Define higher-order retraction maps and study higher-order
Lagrangian systems.

Establish relations with the discrete gradient methods [McLahlan,
Quispel, Robioux, 1999; Celledoni et al. 2017 ].

Describe geometric integration of Dirac systems.

Describe symplectic methods using Lagrangian submanifolds defined

by Morse families.



@® Parallel iterative methods for variational
integration



Discrete variational principle

Replace TQ by @ x Q (velocities by nearby points) and curves by finite
sequences of points.

qs

q2
q1 gN-1 qnNn
qo



Discrete Euler-Lagrange equations

Given a discrete Lagrangian, which is a function Ly : @ Xx @ — R, a
number of steps N and two points qg, gy € Q, consider the space Cy of
sequences (qo, g1, - - -, gn) (fixed endpoints). A trajectory of the system
described by Ly is a critical point of the action sum Sy : Cy — R,

N
Sa(do, 1, - an) = Y La(qk—1, qk)
i=1

= Ld(q0,q1) + La(q1,2) + - - + La(gn-1, qn)



Discrete Euler-Lagrange equations

Given a discrete Lagrangian, which is a function Ly : @ Xx @ — R, a
number of steps N and two points qg, gy € Q, consider the space Cy of
sequences (qo, g1, - - -, gn) (fixed endpoints). A trajectory of the system
described by Ly is a critical point of the action sum Sy : Cy — R,

N
Sa(q0, 1, an) = Y La(qk—1, qk)
i=1

= Ld(q0,q1) + La(q1,2) + - - + La(gn-1, qn)

discrete Euler-Lagrange equations (DEL equations)

D1 La(qk, Gr+1) + DoLa(qr—1,9x) =0, k=1,...N—-1

The boundary conditions are the given values for go and gy .



Geometric preservation properties

DlLd(qkan+1)+D2Ld(Qk—1»Qk):07 k:]-?N_]-

For each k, we can locally solve for gx11 if Di2Lg(qk, gk+1) is regular,
which in coordinates reads

2
det (‘“") £0
09,0914,

The method is symplectic and momentum-preserving.



From continuous to discrete

Let L: TQ — R and [0, T] be given.
Divide [0, T] into N pieces of size h= T /N (time step).



From continuous to discrete

Let L: TQ — R and [0, T] be given.

Divide [0, T] into N pieces of size h= T /N (time step)

For arbitrary (nearby) qo, g1 € Q, define Ly(qo, g1) fo t),q(t)) dt,
where q(t) is a trajectory of the continuous system joining qo to q; for
time h. Since this trajectory is not known in general, we must resort to
an approximation such as

qo+q1 . q1 — qo
q(t);3 2 ) q(t)ziv

so we can define

h
do+g1 91— Qo do+391 91— Qo
Ld(QO;Ql):/ L< ) )dt—hL( ’ >
0 2 h 2 h



Momentum preservation. Discrete Noether

theorem

Ly is G-invariant



Momentum preservation. Discrete Noether

theorem

Ly is G-invariant

Ji: @xQ—g"

<Jd(X7y)v§> = <D2Ld(X’y)a€Q(y)>

(DaLg(qr—1,9x),€q(qk)) = (D2La(qx, qrs1), E(qr+1))



Discrete Hamiltonian mechanics

e The discrete Legendre transformations
FLy:QxQ— T*Q

IFHLd(QOa ql)(qu) = _(DlLd)(qu ql)(qu)’ for qu € TQOQ
Frlyg:Q@xQ — T*Q
IE‘+Ld(q()a ql)(Xm) = (D2Ld)(q1a q2)(XCI1)7 for Xth € TthQ

e The discrete Hamiltonian flow
Fr,=FtLyjo(F Lg)~t: T*Q — T*Q is a symplectomorphism:

Fi'wq = wq



Exact discrete Lagrangian

h
L¢(d0, 1) = / Lq(t), (1)) dt,

where g(t) is a trajectory of the continuous system joining qo to g for

time h. If L is regular, then L{ regular.



Exact discrete Lagrangian

If g(t) is a solution of the continuous system, then the evolution of the
discrete system for L¢ yields the sequence q(0), q(h), g(2h), g(3h), ...



Exact discrete Lagrangian

If g(t) is a solution of the continuous system, then the evolution of the
discrete system for L¢ yields the sequence q(0), q(h), g(2h), g(3h), ...

In order to write LL§ explicitly we need to solve the E-L equations...?
We can write Taylor expansions of IL§ in h. The discrete Lagrangians that

we will consider must approximate LS, and the order of approximation
will be the order of convergence of the corresponding algorithm.



Variational error analysis

Let L: TQ — R be a regular Lagrangian function. Suppose that

LY : Q x @ — R is a regular discrete Lagrangian function and that LL¢ is
the exact discrete Lagrangian function on @ x Q associated with L. If L¢
is an order r discretization then

FLZ = F]L; =F O(hﬂ_l)7

where F’-Z is the discrete Hamiltonian flow for L¢ and Fr: is the exact
Hamiltonian flow.

Marsden-West 2001, Patrick and Cuell 2009



CONSTRUCTION OF VARIATIONAL
INTEGRATORS

We explicitly evaluate the first few terms of the expansion of the exact
discrete Lagrangian to give

h? (oL oL
L; h),h) = hL(q,d)+ = | 7= 4+ == - § h
Ha(0).a(h). ) = htla. )+ 5 (5o -a+ Gz -a) + O
where g = q(0), ¢ = §(0) and so forth. Higher derivatives of g(t) are

determined by the Euler-Lagrange equations.



A class of discrete Lagrangian is given by

a1 — qo
)

L5 (qo, qui h) = AL((L — )qo + aqu, =

for some parameter « € [0, 1]. Calculating the expansion in h gives

K2 oL oL
Le p) = N (5 0L L O 3
(g0, g1 h) = hL(q,q) + 5 <2aaq q+ % q) +O(h°)



A class of discrete Lagrangian is given by

a1 — qo
)

L5 (qo, qui h) = AL((L — )qo + aqu, =

for some parameter « € [0, 1]. Calculating the expansion in h gives

h? oL oL
L5(qo, q1; h) = hL(q,4) + — (205 4+ - -4 ) + O(K®
a(qo, q1; h) (qq)+2<aaq i+ 5 q)+ (h)
Comparing the expansions of L§ and for the exact discrete Lagrangian
shows that the method is second-order if and only if a = 1/2; otherwise
it is only consistent.



g1 — qo

P1— Po

hM~*(apo + (1 = @)pr)

—VV(ago+ (1 — a@)q1)



g1 — qo

= hM apy + (1 — a)py)

PLoPo —  Gv(iag + (1 - a)q)

Many other Examples: Newmark algorithms, symplectic partitioned
Runge-Kutta algorithms, Verlet, etc.



L(g,4) = 4" Mg — V(q)

BZD — M apo + (1 a)p)

PLZR _  9V(ago + (1 a)ar)

Many other Examples: Newmark algorithms, symplectic partitioned
Runge-Kutta algorithms, Verlet, etc.

BUT other interesting extensions.



Composition of Lagrangian submanifolds [Sniatycki, Tulczyjew,

1972]2

O Let Rcl, and Rf,: TR — Q x @ be 2 different extended retraction
maps on Q.

® For LQ =1Lo (Rg)fl Q@ X @ — R, a discrete dynamical system is
defined:

Si= {(%:Po,qlapl) ETRQxTQ

po = —D1Li,(go, q1)
p1 = D2l (qo, q1)

® Composition of Lagrangian submanifolds:

Jay/p € T*Q such that

S = {(0417 042)

(a1,a1/2) € 5
(a1j2,2) € S
3

3J. Snityacki nd W. M. Tulczyjew. Generating forms of Lagrangian submanifolds,
Indiana Univ. Math. J., 22:267-275, 1972/73.




Composition of geometric integrators and Lagrangian submanifolds

Discrete Lagrangian: L3(qo, g2) = L(qo, q1) + L2(q1, 92).
The discrete equations are

po = -Dili(qo,qn),
0 DoL3(q0, q1) + D1L2(q1, g2),
D,L3(q1, g2) -

P2



Stormer—Verlet method as composition of geometric integrators

L (q07 (hh;;lo)

L (qg, (I2h;2<-71) .

The composition gives the following set of equations:

h g1 — qo
pl EDlL <q07 h/2 )

N>

- ¢ —q
Rd,i(q()) ql) = <q07 lh/2 0) Lb(q()v Cll) =

- ®2—q
Ry5(q1, q2) = (Chv 2h/2 1) L2(q1. q2) =

N>

pPo =
g1 — qo 92— q1
D,L = D,L
o (o 257%) = ek ).
h Q@ —q1
= — DL .
p2 1914-2 1 (CI2, hy2

For L(q,q) = g Mg — V(q), Stormer-Verlet method is recovered.



Boundary conditions

For any regular discrete Lagrangian system, the discrete Euler-Lagrange
equations allow us to obtain a new point in the sequence from the last
two.

qo q1
q2

&
-

e q4 qs5



Boundary conditions: Initial and final conditions

q3
q2
q1 gN-1 qn
qo

DiL4(qo,q1) + DoLa(qi,q2) = 0O,
DiL4(q1,92) + Dala(q,q3) = O,

DiLa(gn—2,9n,) + DoLa(gn-1,9n) = O



Boundary conditions: Initial and final conditions

q3
q2
q1 gN-1 qN
qo
DiL4(qo,q1) + DoLa(qi,q2) = 0O,
DiL4(q1,92) + Dala(q,q3) = O,
DiLa(gn—2,9n,) + DoLa(gn-1,9n) = O

A standard method of solving a boundary-value problem is to reduce it to
the solution of an initial-value problem using the method of shooting.



Boundary conditions: Initial and final conditions

q3
q2
q1 gN-1 qN
qo
DiL4(qo,q1) + DoLa(qi,q2) = 0O,
DiL4(q1,92) + Dala(q,q3) = O,
DiLa(gn—2,9n,) + DoLa(gn-1,9n) = O

A standard method of solving a boundary-value problem is to reduce it to
the solution of an initial-value problem using the method of shooting.
For example, if qo, gy € @ and N are given, one can try assigning some
value to g1, run the sequential algorithm and compare the resulting gy
with the final condition; then adjust the value of g; and repeat the

process, until the final condition is met within a certain tolerance.



Boundary conditions: Initial and final conditions

However, this approach can often fail to converge in practice, because of
a high sensitivity of gy with respect to the starting guess g;. This issue

is even more prevalent in optimal control problems.



Parallel iterative methods for variational

integration

Sebastian J. Ferraro, DMdD, Rodrigo T. Sato Martin de Almagro.
Parallel iterative methods for variational integration applied to
navigation problems, 7th IFAC Workshop on Lagrangian and
Hamiltonian Methods for Nonlinear Control

We propose a relaxation strategy for solving boundary value problems for
the discrete equations given above. The algorithm can be implemented
using a parallel computing approach, which can significantly improve its
performance and simplify the way to find approximate solutions.



Parallel iterative methods for variational

integration

Our method starts with a sequence {qx} chosen as initial guess, solely

required to satisfy the boundary conditions.



Parallel iterative methods for variational

integration

Our method starts with a sequence {qx} chosen as initial guess, solely
required to satisfy the boundary conditions.

Produce a new sequence {gx} with go = go and gy = gn. For each
k=1,...,N—1, we find gk by solving a modified (“parallelized")
version of the discrete Euler-Lagrange equations:

D>La(qk—1, ) + D1La(Gk, qrs1) = 0. (1)

At the endpoints, we simply take go = go and gy = gn. Computing g
for all k completes one iteration, and the following one will use {gx} in

place of {qx}.




Parallel iterative methods for variational

integration

In general, neither {qx} nor {Gx} will be a solution of DEL equations but
by iterating this procedure we can approach a solution {g; } of the DEL
equations with fixed boundary conditions, under certain reasonable

assumptions.



Parallel iterative methods for variational

integration

In general, neither {qx} nor {Gx} will be a solution of DEL equations but
by iterating this procedure we can approach a solution {g; } of the DEL
equations with fixed boundary conditions, under certain reasonable

assumptions.

D>La(qi—1, q) + D1La(qr, qr+1)+
(D22Lg(qr—1,9x) + D11La(qk, gr+1)) - (G — qi) = 0,



Zermelo’s navigation problem

The minimum time trajectories are precisely the geodesics for a particular
type of Finsler metric, a Randers metric defined by

F(q, Vq) = 3(an Vq) + (b(q), Vq>

= 71 Vg, V 71 V, 2
a(VQ’ Vq) - a(q)g( q q)+ a(q)zg(W(q)7 q)

_ /W)
(b(q), vq) = a(q)g(W(q) q) = < (@) q>

a(q) =1 - g(W(q), W(q)) =1—|W(q)]® > 0.



Zermelo’s navigation problem

The time it takes the ship to move along a curve v: [ty, tn] = Q is

|G b @)

ty



Zermelo’s navigation problem

The time it takes the ship to move along a curve v: [ty, tn] = Q is
ty
| FOe)- i) )
0
Note that this integral is invariant under orientation-preserving
reparametrizations of -y, since Finsler metrics are positively
1-homogeneous, that is, F(qg, Avq) = AF(q, vq4) for any A > 0. Therefore,
the solution curves are not unique. In fact, F is not regular as a
Lagrangian function. Similar to the case of Riemannian metrics and the
problem of minimizing length or energy, this can be circumvented by
considering instead the functional
tn
| (FG)4(6) o ©
0
Any extremal of this functional will be an extremal of (2), and any
extremal of (2) admits an orientation-preserving reparametrization that

makes it an extremal of (3).



Zermelo’s navigation problem

As a particular case, consider Q = R? with the Euclidean metric, where
we are to find critical curves (x,y) = (x(s), y(s)) for the functional

/t. y W;(X'z L)+ %(Wl(x,y)XJr Wa(x. y))?

2 (Wi + Wi )| o

with o = 1 — (W2 + W3).
As the discrete Lagrangian, we used

h _ _
Lo(do, 1) = 5 <,_—2 <q07 ¢ . qo) e (qu ¢ . cm)) _




Zermelo’s navigation problem

(Zermelo)
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Zermelo’s navigation problem

(Zermelo)
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A minimal fuel trajectory

We also consider a non-equivalent variant of Zermelo's problem. If T > 0

is a fixed time, we seek trajectories minimizing the cost function

1
| 5+ d) e,
0 2
which can be interpreted as a measure of fuel expenditure.
X = u + W](X,_)/),
y =u+ Wa(x,y).

The goal is to arrive at a given destination at time T, extremizing fuel
expenditure with no a priori bounds on the engine’s power. This problem

is equivalent to solving the Euler-Lagrange equations for the Lagrangian

Lixy%,9) = 5 [(5 = WA ) + (5 — Walx, )]

with fixed (x(0),y(0)) and (x(T),y(T)) as boundary conditions.
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Interpolation problems

Fuel-optimal control problem with a weight minimizing the total variation
in the control variables. Minimize the cost functional

-
1
/0 E(uf + U3+ cvi 4 cvd) dt

subject to the control equations

X = u1+W1(X7}/)7 }/ = u2+W2(X7)/)7
U = v, by = w.



Interpolation problems

The continuous problem is equivalent to solving the fourth-order
Euler-Lagrange equations for the second-order Lagrangian

Ly %9 5%.9) = 3 (5~ Walx )+ (7 — Walx.)?
(= DIA((E), ()%~ DaWA(K(E), ¥ ()7)°
e (7 = Dy Wa(x(2), (6)% — DaWalx(2), ()9’

As boundary conditions, we consider (g(0), g(0)) and (q(T),§(T)) fixed.
In addition, the system is subject to the interpolation constraints

q(f;) =8, foralla=1,..../-1 @)

with 0 < f, <, < T foralla,be {1,...,/—1} and a < b.



Interpolation problems

As a discretization of the cost function we propose, for instance, a
2-stage Lobatto discretization:

La(Qu, Vi, Grs1s Vis1) =

h 2
5 {L (Chﬁ Vi 12 (3(gr+1 — qi) — h(viy1 + 2Vk))

2
+ L (qk+17 Vit 1, —ﬁ(3(m<+1 —qk) — h(2viy1 + Vk))]



An optimal trajectory for the second-order

problem with interpolation nodes

T = - T T
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Conclusions

Ferraro, S., DMdD., and Sato Martin de Almagro, R.T. (2021). A

parallel iterative method for variational integration. Work in progress.

We prove rigorous conditions for the convergence of the parallel DEL

equations

Extensions to second-order Lagrangians.

time-dependent water currents can be added to the proposed
navigation problems.

We adapt our parallel iterative method for the case of invariant first
and second order Lagrangian systems where the configuration space
is a Lie group.

Problems involving sharp univariate constraints such as state space
or control space exclusion zones have not yet been studied using this

approach (penalty potentials).



Thank you!!l
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