Recent developments of computer-assisted proofs in
the Navier-Stokes equations

Jean-Philippe Lessard
F McGill

“ S UNITVERSITY

Geometry, Dynamics and Mechanics Seminar
Universita degli Studi di Padova, Italy
October |12th, 2021



The Navier-Stokes equations for a fluid of constant density p can be expressed as

fﬁtu—l—(u-V)u—uAu—l—szf
V-u=0,

\

where v = u(x,t) is the velocity, p(xz,t) = P(x,t)/p is the pressure scaled by the
density, v is the kinematic viscosity and f = f(x,t) is an external forcing term.
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Navier (1822)  Stokes (1845)

Millennium Prize problem
In three space dimensions and time, given an initial velocity field and identically
zero forcing term, there exists a vector velocity and a scalar pressure field, which
are both smooth and globally defined, that solve the Navier-Stokes equations.

From a dynamical systems perspective,
this may not be the most important question.

Henri Poincaré |



What shall we care about then ?

In any dynamical system, it is the bounded
solutions which are most important and
which should be investigated first.

Henri Poincaré [

Compact invariant sets
Exploit smoothness, boundedness and low dimensionality.

* Equilibrium solutions.
* Time periodic solutions.
¢ Connecting orbits.
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In 1959, James Serrin published two papers on the existence and stability of certain
solutions to the Navier-Stokes equations in the limit of large viscosity.

- Existence of globally stable equilibrium solutions;

- Existence of periodic solutions on a three-dimensional bounded domain sub-
ject to time-periodic boundary data and body forces.
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James Serrin

Many authors followed Serrin in studying the periodically forced (non-autonomous)
Navier-Stokes system dominated by viscosity.

- [Kaniel & Shinbrot, 1967] Existence of periodic strong solutions for small
time-periodic forcing f (for 3D bounded domains with fixed boundaries);

- [Takeshita, 1969] Existence of periodic strong solutions for any time-periodic
forcing f (for 2D bounded domains with fixed boundaries);

* many more proofs of existence of periodic orbits for non-autonomous NS
[Teramoto, Maremonti, Kozono & Nakao, Kato, Farwig & Okabe, Hsia]



e Our understanding of periodic flows in response to time-periodic forcing is rather
advanced.
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e Our understanding of periodic flows in response to time-periodic forcing is rather
advanced.

e The same cannot be said about spontaneous periodic motions, that is periodic

flows driven by a time-independent forcing.

e The regular vortex shedding in the wake of a cylinder, for instance, arises in the
absence of a body force and as a consequence of the nonlinearity in NS, not by
virtue of the advection being dominated by viscous damping.

Credit: ANSYS



Goal: Develop a general (computer-assisted) approach to prove existence of spon-
taneous periodic orbits in the Navier-Stokes flow for some time-independent f.

Major difficulty: the Navier-Stokes equations are nonlinear and infinite dimensional.
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Goal: Develop a general (computer-assisted) approach to prove existence of spon-
taneous periodic orbits in the Navier-Stokes flow for some time-independent f.

Computer-assisted proofs (CAPs) in dynamics

The main idea Is to construct algorithms that provide an approximate solution to a
problem together with precise and possibly efficient bounds within which the exact
solution is guaranteed to exist in the mathematically rigorous sense.

This field draws inspiration from the ideas in

- Scientific computing
Functional analysis
Approximation theory
Nonlinear analysis
Numerical analysis
Topological methods

Early pioneer works

Cesari [1964] Functional analysis and Galerkin’s method.

Lanford [1982] A computer-assisted proof of the Feigenbaum conjectures.
Mischaikow & Mrozek [1995] Chaos in the Lorenz equations.

Tucker [1999] The Lorenz attractor exists.



A functional analytic approach to CAPs in dynamics



A general nonlinear problem

F(x)=0

The unknown x could be a

¢ solution to an initial value problem of an ODE

¢ periodic orbit of an ODE

¢ Jocal (un)stable manifold of a fixed point of an ODE
e hormal bundle of a periodic orbit of an ODE

¢ local (un)stable manifold of a periodic orbit of an ODE
e connecting orbit of an ODE

¢ periodic orbit of a functional delay equation

e critical point of an action functional

¢ solution to a boundary value problem

¢ steady state of a PDE

¢ bifurcation equilibrium point of a PDE

¢ periodic orbit of a PDE
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A general nonlinear problem to solve in a Banach space

F(x) =0 X
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Alternative: find small balls in which it is demonstrated (in a
mathematically rigorous sense) that a unique solution exists.
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|. Let  a numerical approximation of F(x) = 0in X
computed using a finite dimensional reduction.
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How to find these small isolating balils ?

|. Let  a numerical approximation of F(x) = 0in X
computed using a finite dimensional reduction.

2. Construct with the help of the computer a linear
operator A that is an approximate inverse of D F ().

3. Verify that A is an injective linear operator.

4. Define T'(z) = x — AF(x)a Newton-like operator
about the numerical approximation .

5. Consider Bz(r) C X the closed ball of radius r
centered at .

6. Find r > O such that 7" : Bz(r) — Bz(r) is a
contraction mapping (tool : radii polynomials).



Theorem: Let T : X — X defined by T'(z) = x — AF(x) with T € C*'(X).
Let > 0 and consider bounds ¢ and k = k(r) satisfying

IT(z) —z||x = [[AF(Z)|x <¢
sup ||[DT'(w)||lx = sup |[I — A -DF(w)|lx < k(r).
wE Bz (r) w€ Bz (1)

If

p(T) = g + 7“/4:(7“) — 1 < (0 (radii polynomial)

then T': Bz(r) — Bz(r) is a contraction with Lipschitz constant x(r) < 1.

Moreover A is injective and therefore F = 0 has a unique solution in Bz(r).
A

p(r)
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Spontaneous periodic orbits in the Navier-Stokes flow

Joint work with
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J-B. van den Berg Maxime Breden Lennaert van Veen
VU Amsterdam Ecole Polytechnique Ontario Tech



A zero-finding problem for periodic orbits in NS

Applying the curl operator to Navier-Stokes yields the vorticity equation
Oyw — vAw + nonlinear terms = f“ on T° x R,

wherew £ V xuand f* £ V x f.

Plugging the space-time Fourier expansion of the vorticity

W(CE, t) — Z wnei(ﬁ-x+n4ﬂt)7 n = (nla na, n3) S ZS?
nez4

in the vorticity equation yields having to solve the zero-finding problem

F,(W) = iQnuw, + vitw, — ¥ 4 nonlinear terms = 0,

. . ~ 9 def
where () is the time-frequency, 7* = n{ + n3 + n3, and

W( . )
(Wn)nez4\{0}



A zero-finding problem for periodic orbits in NS

Lemma: Let W be such that the vorticity w is analytic. Assume that /(W) = 0 and
V -w = 0. Assume also that f does not depend on time and has space average
zero. Define u = Mw (that is u solves w = V x u). Then there exists a pressure
function p : T* x R — R such that (u, p) is a 2X-periodic solution of NS.

Fe(W)
— :O 553
— 5= (5, 7),ey) O R —

(phase condition)

F,(W) < iQnyw, + vitw, — f” 4+ nonlinear terms

Given 1 > 1, denote the weighted ¢! Banach algebra (under discrete convolution)

6,(C) = qaeC® i llaly = 3 lanly™ ! < oo

nezs

Banach space : X = C x (6717((?))3 with norm

Wl = 19 4 llwrlley + [lwzlley 4 flwslley



Spontaneous periodic orbits in the Navier-Stokes flow

r

O+ (u-V)u—vAu+Vp=f, onT?ofsize L =2r
V.-u=0.

Taylor-Green (time-independent) forcing term

L

2 S1n 1 COS X9
f —2 oS x1 SIn o
0

AN L \)

1@/ (2v)

o)

L2}
0
w def

4 sin x1 sin o

0 L

Density plot of the vertical vorticity ff /( ) Red corresponds to vortices with a
counter clockwise rotation and blue clockwis
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The autonomous Navier-Stokes equations under this time-independent forcing term
admit a viscous equilibrium solution for which we have the analytic expression

ut = —Vf, pt = 12 (cos2x1 + cos2xs) .



Spontaneous periodic orbits in the Navier-Stokes flow

F, (W) = iQnaw, + viw, — f* + nonlinear terms

|. Let W a numerical approximation of F(W) = 0in X
computed using a finite dimensional reduction.

2. Construct with the help of the computer a linear
operator A that is an approximate inverse of DF (/).

3. Verify that A is an injective linear operator.

4. Define T'(W) = W — AF(W) a Newton-like operator
about the numerical approximation W'

5. Consider By (r) C X the closed ball of radius r
centered at /.

6. Find r > 0 such that T : By (1) — By (r) is a
contraction mapping).



T(W) =W — AF(W)

DF(W)

What is the operator A?

E, (W) = iQnyw, + vit*w, — f* + nonlinear terms




T(W) =W — AF(W)

DF(W)

What is the operator A?

E,(W) = iQnaw, + vi*w, — f* + nonlinear terms

Regularity implies decay
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What is the operator A?
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What is the operator A?

T(W) =W — AF(W)

E, (W) = iQnyw, + vit*w, — f* + nonlinear terms
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A functional analytic approach to CAPs in dynamics

Theorem : Let » > 0 and consider € and k = k(r) be such that

|AF(W)[x(=e
sup || — ADF(Z)|px)< k(7).

ZEBV—V(T)

Define the radii polynomial
p(r) = e+ rr(r) —r.

If 3 79 > 0 such thatp(rg) < 0, then 3! W € By (r) satisfying F(1W) = 0.

® Calculus of Variations

* Morse-Conley Theory

® Floer Homology

I_ —r
* Nonlinear Analysis ‘ e Scientific Computing
* Topological Methods ‘ ¢ Numerical Methods
¢ Functional Analysis .‘ * Approximation Theory
¢ Algebraic Topology ‘ * Numerical Linear Algebra

* |terative Methods

BN |
s Nl
o - ?&
& a.-_f/ ( ’
o -

‘ * Galerkin Approximations
N

" Y\‘JL'\Y,'.'}J:;'.;:-‘: ‘ ¢ Fast Fourier Transform (FFT) I NTLAB - I N Te rva I LABO ra to ry

¢ Symplectic Geometr y
e Leray-Schauder Degree a * Algorithms
The Matlab/Octave toolbox for Reliable Computing Version 12
* Bifurcation Theory MATLAB
* Banach Algebras o C++




Spontaneous periodic orbits in the Navier-Stokes flow




Theorem: Consider NS defined on the three-torus T (with size length L = 2n)
and consider the Taylor-Green time-independent forcing term. Let v = 0.265 and
(u, p) be a numerical solution computed with N,,, = N,, =21, N,, = 0and N; = 16
Fourier coefficients. Let r = 2.2491-107°. There exists a %T—periodic solution (u, p)
of NS with |2 — Q| < r and |Ju — @] co < 7.

! inE

0 L ,."“v 2 L

n| Ny, | Ngy | Naw | N¢ | NT | N | RAM (GB) | CPU days
pr | 1| 17 | 17 | 0 |11 | 130 | 265 10 6
po | 1] 21 | 21 | 0 | 16 | 210 | 425 110 95

Spontaneous Periodic Orbits in the Navier—Stokes Flow. J. Nonlinear Sci. 31 (2021), no. 2, Paper No. 41



https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=4111
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=448068

Future work: a fully 3D spontaneous periodic orbit
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Other Recent Applications



Equilibria of PDEs

Joint work with

2D Phase-Field-Crystal Model
b= V2 (V2 1)+ 4* - By)

4
V3

Ng, N, € N : number of atoms lined up in the z, y-axes

0= [o, Nx] x [0, 47 N,]

Rustum Choksi Gabriel Martine
McGill McGill

Steady states in the localized patterns regime

B =0.6, (N, N,) = (7,4)

Microscopic patterns in the 2D phase-field-crystal model. Preprint.




Equilibria of PDEs

Joint work with

2D Phase-Field-Crystal Model
Yo = V2 (V1) + 47 — By)

4
V3

Ng, N, € N : number of atoms lined up in the z, y-axes

0= [o, Nx] x [0, 47 N,]

Rustum Choksi Gabriel Martine
McGill McGill

(7,4)




Equilibria of PDEs

Joint work with

A nonlinear Laplace-Beltrami equation on the sphere

up = Au + \u + u?

i N L

J.B. van den Berg Gabriel Duchesne
VU Amsterdam McGill
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Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: a Taylor-Chebyshev series
approach. Preprint.




Global dynamics in the nonlinear Schrodinger equation

Joint work with
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Global dynamics in nonconservative nonlinear Schrédinger equations. Preprint, 2021.

MS188 Computer-Assisted Mathematical Proofs in Nonlinear Dynamics (Thursday, May 27th)
8:00AM--8:25AM Akitoshi Takayasu - Rigorous Integrator for Dissipative PDEs using the Chebyshev-Fourier Spectral Method




Periodic orbits in the iII-Eosed Boussinesg eguation

U = Uyy + AMyyyy + (U)yy, A >0
u=u(t,y) €eR, y€[0,1], u(t,0)=u(t,1)

This “bad” version of Boussinesq arises in the study of water waves.
Specifically, it is used to describe a two-dimensional flow of a body of
water over a flat bottom with air above the water, assuming that the
water waves have small amplitudes and the water is shallow.

Joint work with

Marcio Gameiro Roberto Castelli
U. Sao Paulo VU Amsterdam



Periodic orbits in the ill-posed Boussinesg equation
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(a) Branch of solutions. (b) A =0.1356
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____Periodic orbits in the ill-posed Boussinesq equation

my = mo = 61, r = 4.37571 x 10711

Rigorous numerics for ill-posed PDEs: periodic orbits in the Boussinesq equation. Arch. Ration. Mech.
Anal. 228 (2018), no. 1, 129-157.



https://mathscinet-ams-org.proxy3.library.mcgill.ca/mathscinet/search/journaldoc.html?id=5283
https://mathscinet-ams-org.proxy3.library.mcgill.ca/mathscinet/search/journaldoc.html?id=5283
https://mathscinet-ams-org.proxy3.library.mcgill.ca/mathscinet/search/publications.html?pg1=ISSI&s1=359007

Coexistence of hexagons and rolis

Joint work with

OU = —(14+ A)*U + pU — B|VU]? — U°
U=U(t,z) eR,t >0, z € R?

This equation generalizes the Swift-Hohenberg equation and the
additional term 3|VU|?, reminiscent of the Kuramoto-Sivashinsky

J.B. van den Berg A. Deschénes

equation, breaks the up-down symmetry U — —U for 3 # 0.
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Stationary coexistence of hexagons and rolls via rigorous computations. SIAM J. Appl. Dyn. Syst. 14
(2015), no. 2, 942-979.



https://mathscinet-ams-org.proxy3.library.mcgill.ca/mathscinet/search/journaldoc.html?id=5763
https://mathscinet-ams-org.proxy3.library.mcgill.ca/mathscinet/search/publications.html?pg1=ISSI&s1=331115
https://mathscinet-ams-org.proxy3.library.mcgill.ca/mathscinet/search/publications.html?pg1=ISSI&s1=331115

Periodic orbits in the Mackey-Glass equation

N u(t — 1)
1 +u(t—T1)P

Models the concentration of white blood cells in a subject.

w'(t) = —Pu(t) +

J.B. van den Berg C. Groothedde
VU Amsterdam VU Amsterdam

a=2 =1, 7=2and p=9.65

13
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11r
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A general method for computer-assisted proofs of periodic solutions in delay differential problems.
Journal of Dynamics and Differential Equations, 2021.




Torus-knot choreograEhies in the n-bodx Eroblem

Definition: A choreography is a periodic solution of the gravitational n-body
problem where n equal masses follow the same path.

Joint work with

The equations for the generating body u,, = (w,z2) € C x R are reduced to the
system of delay differential equations with multiple delays

= w(t) — e¥Sw(t + jkC)

R. Calleja C. Garcia-Azpeitia J.D. Mireles James
UNAM UNAM FAU

Rotating coordinates Inertial coordinates

Torus knot choreographies in the n-body problem. Nonlinearity 34 (2021), no. 1, 313-349.



https://mathscinet-ams-org.proxy3.library.mcgill.ca/mathscinet/search/journaldoc.html?id=3473
https://mathscinet-ams-org.proxy3.library.mcgill.ca/mathscinet/search/publications.html?pg1=ISSI&s1=446024

Questions that guide the research in the field

* Understand the global dynamics of ODEs, PDEs and delay equations
e Compute rigorously compact invariant sets

* Develop computational tools for equilibria, periodic orbits, stable and
unstable manifolds, homoclinic and heteroclinic orbits, solutions to BVP,
travelling waves, fronts, radial solutions, invariant tori, etc

* Develop rigorous methods to study the stability of the above objects
e Obtain theorems about existence of symbolic dynamics

e Combine the rigorous computations with topology (e.g. Morse-Conley-
Floer theory) to obtain forcing theorems

* Study energy landscapes / compute local minimizers of functionals

* Chaos / turbulence in infinite dimensional dynamical systems

* Develop tools to compute Morse-Floer homology
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