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December 18th, 2017 
 
To whom it may concern, 
 
I am writing a very strong letter of support for the candidacy of Jonathan Jaquette (Ph.D. Rutgers) 
for a CRM-ISM postdoctoral fellowship. Jonathan has some truly remarkable results in the field 
of delay differential equations (see the recommendation letters from Roger Nussbaum and 
Konstantin Mischaikow). In fact, as Roger Nussbaum writes in his letter “Well over fifty years 
ago, two conjectures (Wright’s conjecture and Jones conjectures) were made concerning Wright’s 
equation. In his Ph.D. dissertation Jonathan provides the first proofs of both conjectures. This is a 
major piece of work, and I highly recommend Jonathan. While it is true that Jonathan’s proof uses 
some earlier results, it is equally true that a complete proof required, in a highly nontrivial way, 
new ideas and methods.” Besides his outstanding results in the field of delay differential equations 
(one paper published in J. of Differential Equations, one paper submitted and one paper in 
preparation), he has a paper on persistent homology which appeared in Math. Comp. this year.  
 
As a CRM-ISM postdoctoral fellow, Jaquette would be working with the Applied Math group, but 
could also be involve with the Analysis group and the CIRGET. His results and interests in delay 
differential equations and infinite dimensional dynamical systems naturally fits with my research 
interests, as well as those of Tony Humphries (Applied Math, McGill), Tomasz Kaczysnki 
(Analysis, Sherbrooke) and Christiane Rousseau (Analysis, UdeM). I would personally be very 
interested to do research with Jonathan Jaquette on his projects “Invariant Manifolds in PDEs and 
DDEs”, “Connecting Orbits in PDEs and DDEs” and “Computational Morse-Floer Homology”, 
as describe in his research statement. Moreover, his results in the field of persistent homology and 
his interest in computational Morse theory (see his research statement) could be of interest to the 
members of the CIRGET (for instance Octav Cornea and Olivier Collin). Tony Humphries wrote 
that “it would be great to have him at McGill, and that he is the sort of applicant who is likely to 
do well in the CRM-ISM competition”. Tomasz Kaczysnki wrote that he “strongly support the 
candidate” and Dmitry Jakobson wrote that “he will support Jonathan, and that his results look 
very impressive!”. Moreover, Christiane Rousseau (Analysis), Adam Oberman (McGill, Applied 
Math) and Rustum Choksi (McGill, Applied Math) openly support his candidacy.  
 
The source of the 20K/year in funding would be 5K/year from the CRM Applied Math group, 
7.5K/year from my start-up grant at McGill and 7.5K/year from my NSERC research grant.  
 

Sincerely yours, 
 

Jean-Philippe Lessard 
 

 

 

 

Quebec City, CANADA 
November 28th, 2012  

 
To whom it may concern, 
 
I am very pleased to write a very strong letter of support for Dr. Roberto Castelli for his 
application for the two years post doc position at the University of Milano Bicocca. I 
have known Roberto for two years as his group leader in Computational Mathematics at 
the Basque Center for Applied Mathematics (BCAM) in Bilbao. Dr. Castelli is an expert 
in the broad field of dynamical systems, the calculus of variations, computational 
astrodynamics and rigorous numerical methods. I can say without any hesitation that he 
has a very broad mathematical culture and that he has a bright future in mathematics. 
 
After five months of work with me at BCAM, Roberto and I developed a general 
method to rigorously compute Floquet normal forms, which were discovered in 1883 
and which provide a canonical decomposition for fundamental matrix solutions of 
periodic non-autonomous linear differential equations. Fundamental matrix solutions, 
which are objects of primary importance in the field of differential equations, are 
unfortunately almost impossible to compute. In the work Rigorous numerics in Floquet 
theory: computing stable and unstable bundles of periodic orbits that is accepted to 
appear in the SIAM Journal of Applied Dynamical Systems, Roberto and I introduced a 
novel approach to compute explicitly (and rigorously!) the Floquet normal forms. This 
is the first explicit computational method that achieves such task and it comes more 
than 125 years after Floquet’s original discovery of his canonical decomposition. 
 
Then, Roberto and I worked on developing a general computational method to study 
eigendecomposition of complex interval matrices, a subject of fundamental importance 
in many fields of applied sciences. Roberto developed all the code and derived all the 
necessary estimates. We presented our new proposed technique in the work A method to 
rigorously enclose eigendecompositions of interval matrices, that is submitted. We are 
currently working on a project to rigorously compute parameterizations of stable and 
unstable manifolds of periodic solutions of differential equations. Once again, Roberto 
is writing all the matlab code and derived most of the necessary theory to carry out this 
work, which ultimate goal is to study and prove existence of chaotic dynamics.  
 
In my opinion, Roberto is a very independent researcher with strong qualities to become 
a fruitful mathematician. His broad interests in analysis, his strong background in 
mathematics and his enthousiasm in learning make him, in my opinion, a serious 
candidate for the post doct position in your department. 
 
 
 
 
 
       
 

 
Sincerely yours, 
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Recent developments of computer-assisted proofs in 
the Navier-Stokes equations



Talk Brown 2019

—————————————————————————————————————
The Navier-Stokes equations for a fluid of constant density ρ can be expressed as

{
∂tu+ (u ·∇)u− ν∆u+∇p = f

∇ · u = 0,

where u = u(x, t) is the velocity, p(x, t) = P (x, t)/ρ is the pressure scaled by the
density, ν is the kinematic viscosity and f = f(x, t) is an external forcing term.

—————————————————————————————————————
Definition. A slowly oscillating periodic solution (SOPS) is a periodic solution y(t)
with the following property: there exist q, q̄ > 1 and L = q + q̄ such that up to a
time translation, y(t) > 0 on the interval (0, q), y(t) < 0 on the interval (q, L), and
y(t+ L) = y(t) for all t, so that L is the minimal period of y(t).

—————————————————————————————————————
The existence of SOPS in Wright's equation for all α > π

2 was proven in 1962 by
Jones who formulated the following conjecture based on numerical experiments:

JonesConjecture. For all α > π
2 there exists a unique SOPS to Wright's equation.

1

In three space dimensions and time, given an initial velocity field and identically 
zero forcing term, there exists a vector velocity and a scalar pressure field, which 
are both smooth and globally defined, that solve the Navier-Stokes equations.

Millennium Prize problem

Navier (1822) Stokes (1845)

Henri Poincaré

Who cares?

From a dynamical systems perspective, 
this may not be the most important question.



F(x) = 0

In any dynamical system, it is the bounded 
solutions which are most important and 
which should be investigated first.

Henri Poincaré

• Equilibrium solutions.
• Time periodic solutions.
• Connecting orbits.
• Global attractors.

Compact invariant sets
Exploit smoothness, boundedness and low dimensionality.

What shall we care about then ?



James Serrin
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—————————————————————————————————————
The Navier-Stokes equations for a fluid of constant density ρ can be expressed as

{
∂tu+ (u ·∇)u− ν∆u+∇p = f

∇ · u = 0,

where u = u(x, t) is the velocity, p(x, t) = P (x, t)/ρ is the pressure scaled by the
density, ν is the kinematic viscosity and f = f(x, t) is an external forcing term.

—————————————————————————————————————
In 1959, James Serrin published two papers on the existence and stability of certain
solutions to the Navier-Stokes equations in the limit of large viscosity.

• Existence of globally stable equilibrium solutions;

• Existence of periodic solutions on a three-dimensional bounded domain sub-
ject to time-periodic boundary data and body forces.

—————————————————————————————————————
Many authors followed Serrin in studying the periodically forced non-autonomous
Navier-Stokes system dominated by viscosity. Kaniel and Shinbrot [?] considered
bounded domains with fixed boundaries and showed the existence of periodic strong
solutions for small time-periodic forcing f . Without making any assumption about
the size of f , Takeshita [?] showed the same result as Kaniel and Shinbrot. Some
time later, Teramoto [?] proved the existence of time-periodic solutions for domains
with slowly moving boundaries. Then, Maremonti [?] and Kozono and Nakao [?]
extended the results from bounded domains to R3. The latter made use of the Lp

theory of the Stokes operator rather than the energy method. A similar result, rely-
ing on a milder condition on the forcing function, was derived by Kato [?]. Other ex-
tensions were those to inhomogeneous boundary conditions on compact domains
by Farwig and Okabe [?] and to the case of a rotating fluid in two dimensions by
Hsia et al. [?]. The latter paper also contains a fairly extensive list of references of
which only a fraction is discussed here.
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The Navier-Stokes equations for a fluid of constant density ρ can be expressed as

{
∂tu+ (u ·∇)u− ν∆u+∇p = f

∇ · u = 0,

where u = u(x, t) is the velocity, p(x, t) = P (x, t)/ρ is the pressure scaled by the
density, ν is the kinematic viscosity and f = f(x, t) is an external forcing term.

—————————————————————————————————————
In 1959, James Serrin published two papers on the existence and stability of certain
solutions to the Navier-Stokes equations in the limit of large viscosity.

• Existence of globally stable equilibrium solutions;

• Existence of periodic solutions on a three-dimensional bounded domain sub-
ject to time-periodic boundary data and body forces.

—————————————————————————————————————
Many authors followed Serrin in studying the periodically forced (non-autonomous)
Navier-Stokes system dominated by viscosity.

• [Kaniel & Shinbrot, 1967] Existence of periodic strong solutions for small
time-periodic forcing f (for 3D bounded domains with fixed boundaries);

• [Takeshita, 1969] Existence of periodic strong solutions for any time-periodic
forcing f (for 2D bounded domains with fixed boundaries);

• many more proofs of existence of periodic orbits for non-autonomous NS
[Teramoto,Maremonti,Kozono&Nakao,Kato,Farwig&Okabe,Hsia]
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—————————————————————————————————————

• Our understanding of periodic flows in response to time-periodic forcing is rather
advanced.

• The same cannot be said about spontaneous periodic motions, that is periodic
flows driven by a time-independent forcing.

• The regular vortex shedding in the wake of a cylinder, for instance, arises in the
absence of a body force and as a consequence of the nonlinearity in NS, not by
virtue of the advection being dominated by viscous damping.

—————————————————————————————————————
In an attempt to address the difficulties in studying spontaneousmotions, the present
paper proposes a general (computer-assisted) approach to prove existence of time-
periodic Navier-Stokes flows on the three-torus for given time-independent forcing
terms f = f(x).

—————————————————————————————————————

Jones conjecture reformulated. There are no connected components (isolas) of
SOPS disjoint from F0 over the parameter range α ∈

(
π
2 , 1.9

]
.

—————————————————————————————————————
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—————————————————————————————————————

‚ Our understanding of periodic flows in response to time-periodic forcing is rather
advanced.

‚ The same cannot be said about spontaneous periodic motions, that is periodic
flows driven by a time-independent forcing.

‚ The regular vortex shedding in the wake of a cylinder, for instance, arises in the
absence of a body force and as a consequence of the nonlinearity in NS, not by
virtue of the advection being dominated by viscous damping.

—————————————————————————————————————
Goal: Develop a general (computer-assisted) approach to prove existence of spon-
taneous periodic orbits in the Navier-Stokes flow for some time-independent f .

—————————————————————————————————————

The main idea is to construct algorithms that provide an approximate solution to a
problem together with precise and possibly efficient bounds within which the exact
solution is guaranteed to exist in the mathematically rigorous sense.

This field draws inspiration from the ideas in

• Scientific computing
• Functional analysis
• Approximation theory
• Nonlinear analysis
• Numerical analysis
• Topological methods

This requires an a priori setup that allows analysis and numerics to go hand in hand:

• the choice of function spaces,

• the choice of the basis functions and Galerkin projections,

• the analytic estimates,

• and the computational parameters

must all work together to bound the errors due to approximation, rounding and
truncation sufficiently tightly for the verification proof to go through.

—————————————————————————————————————
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Major difficulty: the Navier-Stokes equations are nonlinear and infinite dimensional. 



Computer-Assisted Proofs

How do mathematicians study 
nonlinear equations ?

• Nonlinear Analysis

• Topological Methods

• Functional Analysis

• Algebraic Topology

• Calculus of Variations

• Morse-Conley Theory

• Floer Homology

• Symplectic Geometry

• Leray-Schauder Degree

• Bifurcation Theory

• Banach Algebras

• Fixed Point Theory

• Fourier series

Pen and Paper Analysis

• Scientific Computing

• Numerical Methods

• Approximation Theory

• Numerical Linear Algebra

• Iterative Methods

• Galerkin Approximations

• Continuation Methods

• Fast Fourier Transform (FFT)

• Algorithms

• MATLAB

• C++

• Programming

• Interval Arithmetics

&
Computations



Computer-assisted proofs (CAPs) in dynamics
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must all work together to bound the errors due to approximation, rounding and
truncation sufficiently tightly for the verification proof to go through.

—————————————————————————————————————
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Cesari [1964] Functional analysis and Galerkin’s method.
Lanford [1982] A computer-assisted proof of the Feigenbaum conjectures. 
Mischaikow & Mrozek [1995] Chaos in the Lorenz equations.
Tucker [1999] The Lorenz attractor exists.

Early pioneer works
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A functional analytic approach to CAPs in dynamics 



F(x) = 0

A general nonlinear problem

• solution to an initial value problem of an ODE
• periodic orbit of an ODE
• local (un)stable manifold of a fixed point of an ODE
• normal bundle of a periodic orbit of an ODE
• local (un)stable manifold of a periodic orbit of an ODE
• connecting orbit of an ODE
• periodic orbit of a functional delay equation
• critical point of an action functional
• solution to a boundary value problem
• steady state of a PDE
• bifurcation equilibrium point of a PDE
• periodic orbit of a PDE
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F(x) = 0

A general nonlinear problem

X
to solve in a Banach space



•

•

•

•

•

• •

x1

x2

x3

x4

x5

x6

x7

Impossible to compute exactly !

F(x) = 0

A general nonlinear problem

X
to solve in a Banach space



Alternative: find small balls in which it is demonstrated (in a 
mathematically rigorous sense) that a unique solution exists.

F(x) = 0

A general nonlinear problem

X
to solve in a Banach space



How to find these small isolating balls ?

'HÀQLWLRQ� &RQVLGHU�WKH�DERYH�ERXQGV Y DQG Z� 7KH UDGLL�SRO\QRPLDOV DUH�JLYHQ�E\

pi(r) = Yi + Zi(r)− r, i = 1, . . . , 7.

/HPPD� (I½RI
I = {r > 0 : pi(r) < 0, ∀ i = 1, . . . , 7}.

-J I #= ∅� XLIR�JSV�ER] r ∈ I � XLIVI�I\MWXW�E�YRMUYI�½\IH�TSMRX�SJ T � ERH�LIRGI�E�YRMUYI
^IVS�SJ f � [MXLMR�XLI�WIX Bx̄(r) = x̄+ B(r)�

• L = 6 � VIWGEPMRK�SJ�XMQI�JEGXSV�
• Ns = Nu = 20 � SVHIV�SJ�XLI�TEVEQIXVM^EXMSR�SJ�XLI�QERMJSPHW�
• m = 50 � ��SJ�'LIF]WLIZ�GSIJ½GMIRXW�XS�GSQTYXI�IEGL�GSQTSRIRX�SJ�XLI�&:4�

�� 0IX x̄ E�RYQIVMGEP�ETTVS\MQEXMSR�SJ f(x) = 0 MR X
GSQTYXIH�YWMRK�E�½RMXI�HMQIRWMSREP�VIHYGXMSR�

�� 'SRWXVYGX�[MXL�XLI�LIPT�SJ�XLI�GSQTYXIV�E�PMRIEV
STIVEXSV A XLEX�MW�ER�ETTVS\MQEXI�MRZIVWI�SJ Df(x̄)�

�� :IVMJ]�XLEX A MW�ER�MRNIGXMZI�PMRIEV�STIVEXSV�

�� (I½RI T (x) = x− Af(x) E�2I[XSR�PMOI�STIVEXSV
EFSYX�XLI�RYQIVMGEP�ETTVS\MQEXMSR x̄�

�� 'SRWMHIV Bx̄(r) ⊂ X XLI�GPSWIH�FEPP�SJ�VEHMYW r
GIRXIVIH�EX x̄�

�� *MRH r > 0 WYGL�XLEX T : Bx̄(r) → Bx̄(r) MW�E
GSRXVEGXMSR�QETTMRK��XSSP � UDGLL�SRO\QRPLDOV�

�

F(x) = 0

DF(x̄)

F(x)
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A zero-finding problem for periodic orbits in NS

The autonomousNavier-Stokes equations under this time-independent forcing term
admit a viscous equilibrium solution for which we have the analytic expression

u∗ =
1

2ν
f, p∗ =

1

4ν2
(cos 2x1 + cos 2x2) .

The associated forcing for the vorticity equation is given by

fω def
= ∇× f =




0
0

4 sinx1 sinx2



 . (1)

—————————————————————————————————————
{

∂tu+ (u ·∇)u− ν∆u+∇p = f, on T3 of size L = 2π

∇ · u = 0.

—————————————————————————————————————

The Galerkin projection for the solution p2 is F : C61018 → C61018.

—————————————————————————————————————

Applying the curl operator to Navier-Stokes yields the vorticity equation

∂tω − ν∆ω + nonlinear terms = fω on T3 × R,

where ω
def
= ∇× u and fω def

= ∇× f .

—————————————————————————————————————

Xie was only able to obtain a proof for α ≥ 5.67 because of the difficulty of the first
part, that is of obtaining estimates on all possible SOPS to Wright's equation.

3

Plugging the space-time Fourier expansion of the vorticity

ω(x, t) =
∑

n∈Z4

ωne
i(ñ·x+n4Ωt), ñ = (n1, n2, n3) ∈ Z3,

in the vorticity equation yields having to solve the zero-finding problem

Fn(W )
def
= iΩn4ωn + νñ2ωn − fω

n + nonlinear terms = 0,

where Ω is the time-frequency, ñ2 def
= n2

1 + n2
2 + n2

3, and

W =

(
Ω

(ωn)n∈Z4\{0}

)
.

——————————————————————————————————

where ω̂ is an approximate periodic orbit

——————————————————————————————————

Given η ≥ 1, denote the weighted $1 Banach algebra (under discrete convolution)

$1η(C)
def
=




a ∈ CZ4
∗ : ‖a‖#1η

def
=
∑

n∈Z4
∗

|an|η|n1|+···+|n4| < ∞




 .

Banach space : X = C×
(
$1η(C)

)3
with norm

‖W‖X = |Ω|+ ‖ω1‖#1η + ‖ω2‖#1η + ‖ω3‖#1η .

——————————————————————————————————

1. Let W̄ a numerical approximation of F(W ) = 0 in X
computed using a finite dimensional reduction.

2. Construct with the help of the computer a linear
operator A that is an approximate inverse of DF(W̄ ).

1



Lemma: LetW be such that the vorticity ω is analytic. Assume that F (W ) = 0 and
∇ · ω = 0. Assume also that f does not depend on time and has space average
zero. Define u = Mω (that is u solves ω = ∇ × u). Then there exists a pressure
function p : T3 × R → R such that (u, p) is a 2π

Ω -periodic solution of NS.

4

A zero-finding problem for periodic orbits in NS

where ω̂ is an approximate periodic orbit

——————————————————————————————————

Given η ≥ 1, denote the weighted #1 Banach algebra (under discrete convolution)

#1η(C)
def
=




a ∈ CZ4
∗ : ‖a‖"1η
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=
∑

n∈Z4
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)3
with norm

‖W‖X = |Ω|+ ‖ω1‖"1η + ‖ω2‖"1η + ‖ω3‖"1η .

——————————————————————————————————

1. Let W̄ a numerical approximation of F(W ) = 0 in X
computed using a finite dimensional reduction.

2. Construct with the help of the computer a linear
operator A that is an approximate inverse of DF(W̄ ).

3. Verify that A is an injective linear operator.

4. Define T (W ) = W − AF(W ) a Newton-like operator
about the numerical approximation W̄ .

5. Consider BW̄ (r) ⊂ X the closed ball of radius r
centered at W̄ .

6. Find r > 0 such that T : BW̄ (r) → BW̄ (r) is a
contraction mapping).

1

Lemma: LetW be such that the vorticity ω is analytic. Assume that F (W ) = 0 and
∇ ¨ ω = 0. Assume also that f does not depend on time and has space average
zero. Define u = Mω (that is u solves ω = ∇ ˆ u). Then there exists a pressure
function p : T3 ˆ R Ñ R such that (u, p) is a 2π

Ω -periodic solution of NS.

—————————————————————————————————————

F(W ) =

(
FK(W )

(Fn(W ))nPZ4
˚

)
= 0.

FK = 0

—————————————————————————————————————

We can then define q : X Ñ (1,8) and q̄ : X Ñ (1,8) by
q(x)

def
= z1(x) ´ z0(x),

q̄(x)
def
= z2(x) ´ z1(x).

—————————————————————————————————————

Moreover, if x is a SOPS then q(x) + q̄(x) is its period and max
tPR

x(t) = x(1).

—————————————————————————————————————

We classify X using the finite dimensional reduction map κ : X Ñ R3 defined as

κ(x)
def
= tq(x), q̄(x), x(1)u.

—————————————————————————————————————

Definition. Fix α P [1.9, 6] and a region K Ă R3 (not necessarily α-exhaustive).
The functions $K , uK : R Ñ R are bounding functions (associated with K) if

$K(t) ď x(t) ď uK(t), for all t P R,

whenever x P X is a SOPS to Wright's equation at α such that κ(x) P K.

—————————————————————————————————————

Tools: classical estimates from Wright (1955), Jones (1962) and Walther (1978).

4

The autonomousNavier-Stokes equations under this time-independent forcing term
admit a viscous equilibrium solution for which we have the analytic expression

u˚ =
1

2ν
f, p˚ =

1

4ν2
(cos 2x1 + cos 2x2) .

The associated forcing for the vorticity equation is given by

fω def
= ∇ ˆ f =




0
0
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#

Btu+ (u ¨ ∇)u ´ ν∆u+∇p = f, on T3 of size L = 2π

∇ ¨ u = 0.

—————————————————————————————————————

The Galerkin projection for the solution p2 is F : C61018 Ñ C61018.

—————————————————————————————————————

Applying the curl operator to Navier-Stokes yields the vorticity equation

Btω ´ ν∆ω + nonlinear terms = fω on T3 ˆ R,

where ω
def
= ∇ ˆ u and fω def

= ∇ ˆ f .

—————————————————————————————————————

Plugging the space-time Fourier expansion of the vorticity

ω(x, t) =
ÿ

nPZ4

ωne
i(ñ¨x+n4Ωt), ñ = (n1, n2, n3) P Z3,

in the vorticity equation yields having to solve the zero-finding problem

Fn(W )
def
= iΩn4ωn + νñ2ωn ´ fω

n + nonlinear terms = 0,

where Ω is the a-priori unknown time-frequency of the periodic orbit and

W =

(
Ω

(ωn)nPZ4zt0u

)
.

3

<latexit sha1_base64="n/6kwCkAfJguGZbDGbKdC2T1BrQ="></latexit>

FKpW q “
2⇡
⌦ª

0

ª

T3

!px, tq ¨ Bt!̂px, tq dxdt “ 0

(phase condition)



Spontaneous periodic orbits in the Navier-Stokes flow

The autonomousNavier-Stokes equations under this time-independent forcing term
admit a viscous equilibrium solution for which we have the analytic expression

u∗ =
1

2ν
f, p∗ =

1

4ν2
(cos 2x1 + cos 2x2) .

—————————————————————————————————————

For y > −1, letting x = ln(1 + y) leads to x′(t) = −α(ex(t−1) − 1)
—————————————————————————————————————

[Xie, 1991] Let X def
=
{
x ∈ C1(R,R) | x(0) = 0, x′(0) > 0 and x < 0 on (−1, 0)

}
. If

x ∈ X is a SOPS to Wright's equation with period L, then its nontrivial Floquet
multipliers λ ∈ C are given by solutions to the eigenvalue problem

z′(t) = −αex(t−1)z(t− 1)

λz(s) = −z(L)
x′(s+ L)

x′(L)
+ z(s+ L), s ∈ [−1, 0].

—————————————————————————————————————

[Xie, 1993] If α ≥ 5.67, then there is a unique SOPS to Wright's equation.

Idea of the proof.

1. Obtain estimates on all possible SOPS to Wright's equation;

2. Show that |λ| < 1 for all possible solutions z of the eigenvalue problem.

—————————————————————————————————————

Xie was only able to obtain a proof for α ≥ 5.67 because of the difficulty of the first
part, that is of obtaining estimates on all possible SOPS to Wright's equation.
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x ∈ X is a SOPS to Wright's equation with period L, then its nontrivial Floquet
multipliers λ ∈ C are given by solutions to the eigenvalue problem

z′(t) = −αex(t−1)z(t− 1)

λz(s) = −z(L)
x′(s+ L)

x′(L)
+ z(s+ L), s ∈ [−1, 0].

—————————————————————————————————————

[Xie, 1993] If α ≥ 5.67, then there is a unique SOPS to Wright's equation.

Idea of the proof.

1. Obtain estimates on all possible SOPS to Wright's equation;

2. Show that |λ| < 1 for all possible solutions z of the eigenvalue problem.

—————————————————————————————————————

Xie was only able to obtain a proof for α ≥ 5.67 because of the difficulty of the first
part, that is of obtaining estimates on all possible SOPS to Wright's equation.

3

0 L/2 L
x1

L

L/2

0

x
2

−
2

ν

0

2

ν

ω∗

Figure 2: Density plot the vertical vorticity of the viscous equilibrium state, !˚ “ f!{p2⌫q. The
maxima (red) correspond to vortices with a counter clockwise rotation and the minima (blue)
to vortices with a clockwise rotation.

• A shift over L{2 in both the x1 and x2 directions, D.

These operations generate the group of spatial symmetries of the Navier-Stokes equation with
planar Taylor-Green forcing. In addition, the system is equivariant under translations in time.
One may reduce this continuous symmetry to a discrete subgroup by considering, for a periodic
orbit of period ⌧ , the shift by ⌧

k
in time, Pk, for some k P N (k “ 4 for the solutions studied

below).
The linear instability of the viscous equilibrium at high Reynolds number (that is at low

viscosity) has been investigated at length in the literature, for instance by Sipp and Jacquin [33].
In those studies, the emphasis is on the rapid formation of small-scale structures. In the current
context, we are interested in the first instabilities that occur when increasing the Reynolds
number from zero. Due to a classical result by Serrin [32] the viscous equilibrium is guaranteed
to be the unique limit state of the flow for any viscosity greater than

⌫s “ 4

d
8

3 `
?
13

« 1.049 pRes « 4.78q .

Below that value, linear instabilities occur, giving rise to branches of solutions for which some
of the symmetries are broken. Such bifurcating branches can be numerically approximated by
standard methods [30]. Using these methods, we found that the first instability is a Hopf
bifurcation that gives rise to a branch of two-dimensional periodic solutions. Subsequently,
this branch appears to turn unstable at a point where at least one family of three-dimensional
periodic solutions branches o↵. A partial bifurcation diagram is shown in Figure 3. In order
to di↵erentiate between the solutions, we compute the deviation from reflection symmetry by
computing the maximum of }u ´ Sx1u}E, where

}u}E

def“ 1

2

ª
u¨u dx

is the energy. We normalize this measure by the maximum it can attain, and display

max
0§t§⌧

max
0§x1§2⇡

}uptq ´ Sx1uptq}E

4}uptq}E

, (5.5)

on the vertical axis of the bifurcation diagram.
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standard methods [30]. Using these methods, we found that the first instability is a Hopf
bifurcation that gives rise to a branch of two-dimensional periodic solutions. Subsequently,
this branch appears to turn unstable at a point where at least one family of three-dimensional
periodic solutions branches o↵. A partial bifurcation diagram is shown in Figure 3. In order
to di↵erentiate between the solutions, we compute the deviation from reflection symmetry by
computing the maximum of }u ´ Sx1u}E, where
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5.1 Analytical and numerical background

We consider the forced Navier-Stokes equations for an incompressible, homogeneous fluid
$
&

%
Btu ` pu ¨ rqu ´ ⌫0�u ` 1

⇢0
rP “ f0,

r ¨ u “ 0,

on a cubical domain of dimension L with periodic boundary conditions. Here ⇢0 is the density
of the fluid and ⌫0 is its viscosity, while the forcing is chosen to be of the simple form

f0pxq “ �0
2

¨

˚̋
sin 2⇡x1

L
cos 2⇡x2

L

´ cos 2⇡x1
L

sin 2⇡x2
L

0

˛

‹‚,

where �0 parametrizes its intensity. This corresponds to the planar case of a family of flows
introduced by Taylor and Green [37] to study the interaction of motions on di↵erent spatial
scales. Non-dimensionalization (without introducing new notation for the new variables) leads
to #

Btu ` pu ¨ rqu ´ ⌫�u ` rp “ f,

r ¨ u “ 0,
(5.1)

on a cube of dimension 2⇡, where ⌫ “
b

32⇡3

�0L
3 ⌫0 is a dimensionless parameter and the dimen-

sionless forcing is

f “
¨

˝
2 sinx1 cosx2

´2 cosx1 sinx2
0

˛

‚. (5.2)

To be able to compare with the literature we use the geometric Reynolds number Re “
?
8⇡
⌫

in
the discussion of the bifurcation diagram below, cf. Figure 3.

The Navier-Stokes equations (5.1) under the forcing (5.2) admit an equilibrium solution for
which we have the analytic expression

u˚pxq “ 1

2⌫
fpxq p˚pxq “ 1

4⌫2
pcos 2x1 ` cos 2x2q . (5.3)

We will refer to this solution as the viscous equilibrium. The associated forcing for the vorticity
equation is given by

f!pxq “
¨

˝
0
0

4 sinx1 sinx2

˛

‚. (5.4)

The viscous equilibrium consists of four counter-rotating vortices. Its vertical vorticity is shown
in a plane of constant height in Figure 2. It is straightforward to verify that this solution is
invariant under the following symmetry operations:

• Translation over any distance d in the vertical direction, Td.

• Reflection in the x1-direction, Sx1 .

• Reflection in the x2-direction, Sx2 .

• Reflection in the x3-direction, Sx3 .

• Rotation about the axis x1 “ x2 “ 0 over ⇡{2 followed by a shift over L{2 in the x1-
direction, R.
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The autonomousNavier-Stokes equations under this time-independent forcing term
admit a viscous equilibrium solution for which we have the analytic expression

u∗ =
1

2ν
f, p∗ =

1

4ν2
(cos 2x1 + cos 2x2) .

The associated forcing for the vorticity equation is given by

fω def
= ∇× f =




0
0

4 sinx1 sinx2



 . (1)

—————————————————————————————————————

For y > −1, letting x = ln(1 + y) leads to x′(t) = −α(ex(t−1) − 1)
—————————————————————————————————————

[Xie, 1991] Let X def
=
{
x ∈ C1(R,R) | x(0) = 0, x′(0) > 0 and x < 0 on (−1, 0)

}
. If

x ∈ X is a SOPS to Wright's equation with period L, then its nontrivial Floquet
multipliers λ ∈ C are given by solutions to the eigenvalue problem

z′(t) = −αex(t−1)z(t− 1)

λz(s) = −z(L)
x′(s+ L)

x′(L)
+ z(s+ L), s ∈ [−1, 0].

—————————————————————————————————————

[Xie, 1993] If α ≥ 5.67, then there is a unique SOPS to Wright's equation.

Idea of the proof.

1. Obtain estimates on all possible SOPS to Wright's equation;

2. Show that |λ| < 1 for all possible solutions z of the eigenvalue problem.

—————————————————————————————————————

Xie was only able to obtain a proof for α ≥ 5.67 because of the difficulty of the first
part, that is of obtaining estimates on all possible SOPS to Wright's equation.

3

Taylor-Green (time-independent) forcing term

Lemma: LetW be such that the vorticity ω is analytic. Assume that F (W ) = 0 and
∇ ¨ ω = 0. Assume also that f does not depend on time and has space average
zero. Define u = Mω (that is u solves ω = ∇ ˆ u). Then there exists a pressure
function p : T3 ˆ R Ñ R such that (u, p) is a 2π

Ω -periodic solution of NS.

—————————————————————————————————————

F(W ) =

(
FK(W )

(Fn(W ))nPZ4
˚

)
= 0.

FK = 0

—————————————————————————————————————

Theorem: Consider NS defined on the three-torus T3 (with size length L = 2π)
and consider the Taylor-Green time-independent forcing term. Let ν = 0.265 and
(ū, p̄) be a numerical solution computed withNx1 = Nx2 = 21,Nx3 = 0 andNt = 16
Fourier coefficients. Let r = 2.2491 ¨10´6. There exists a 2π

Ω -periodic solution (u, p)
of NS with |Ω ´ Ω̄| ď r and }u ´ ū}C0 ď r.

-------------------------------------------------------------------------------------------------------------
--

Density plot of the vertical vorticity of fω/(2ν). Red corresponds to vortices with a
counter clockwise rotation and blue clockwise.

-------------------------------------------------------------------------------------------------------------
--

We classify X using the finite dimensional reduction map κ : X Ñ R3 defined as

κ(x)
def
= tq(x), q̄(x), x(1)u.

-------------------------------------------------------------------------------------------------------------
--

Definition. Fix α P [1.9, 6] and a region K Ă R3 (not necessarily α-exhaustive).
The functions &K , uK : R Ñ R are bounding functions (associated with K) if

&K(t) ď x(t) ď uK(t), for all t P R,

whenever x P X is a SOPS to Wright's equation at α such that κ(x) P K.
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The autonomousNavier-Stokes equations under this time-independent forcing term
admit a viscous equilibrium solution for which we have the analytic expression

u˚ =
1

2ν
f, p˚ =

1

4ν2
(cos 2x1 + cos 2x2) .

The associated forcing for the vorticity equation is given by

fω def
= ∇ ˆ f =




0
0

4 sinx1 sinx2



 . (1)

—————————————————————————————————————
#

Btu+ (u ¨ ∇)u ´ ν∆u+∇p = f, on T3 of size L = 2π

∇ ¨ u = 0.

—————————————————————————————————————

The Galerkin projection for the solution p2 is F : C61018 Ñ C61018.

—————————————————————————————————————

Applying the curl operator to Navier-Stokes yields the vorticity equation

Btω ´ ν∆ω + nonlinear terms = fω on T3 ˆ R,

where ω
def
= ∇ ˆ u and fω def

= ∇ ˆ f .

—————————————————————————————————————

Plugging the space-time Fourier expansion of the vorticity

ω(x, t) =
ÿ

nPZ4

ωne
i(ñ¨x+n4Ωt), ñ = (n1, n2, n3) P Z3,

in the vorticity equation yields having to solve the zero-finding problem

Fn(W )
def
= iΩn4ωn + νñ2ωn ´ fω

n + nonlinear terms = 0,

where Ω is the a-priori unknown time-frequency of the periodic orbit and

W =

(
Ω

(ωn)nPZ4zt0u

)
.

3

where ω̂ is an approximate periodic orbit

——————————————————————————————————

Given η ≥ 1, denote the weighted #1 Banach algebra (under discrete convolution)

#1η(C)
def
=




a ∈ CZ4
∗ : ‖a‖"1η

def
=
∑

n∈Z4
∗

|an|η|n1|+···+|n4| < ∞




 .

Banach space : X = C×
(
#1η(C)

)3
with norm

‖W‖X = |Ω|+ ‖ω1‖"1η + ‖ω2‖"1η + ‖ω3‖"1η .

——————————————————————————————————

1. Let W̄ a numerical approximation of F(W ) = 0 in X
computed using a finite dimensional reduction.

2. Construct with the help of the computer a linear
operator A that is an approximate inverse of DF(W̄ ).

3. Verify that A is an injective linear operator.

4. Define T (W ) = W − AF(W ) a Newton-like operator
about the numerical approximation W̄ .

5. Consider BW̄ (r) ⊂ X the closed ball of radius r
centered at W̄ .

6. Find r > 0 such that T : BW̄ (r) → BW̄ (r) is a
contraction mapping).

1

Spontaneous periodic orbits in the Navier-Stokes flow
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4ν2
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The associated forcing for the vorticity equation is given by

fω def
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∇ ¨ u = 0.
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The Galerkin projection for the solution p2 is F : C61018 Ñ C61018.
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Applying the curl operator to Navier-Stokes yields the vorticity equation

Btω ´ ν∆ω + nonlinear terms = fω on T3 ˆ R,

where ω
def
= ∇ ˆ u and fω def

= ∇ ˆ f .
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Plugging the space-time Fourier expansion of the vorticity

ω(x, t) =
ÿ

nPZ4

ωne
i(ñ¨x+n4Ωt), ñ = (n1, n2, n3) P Z3,

in the vorticity equation yields having to solve the zero-finding problem

Fn(W )
def
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n + nonlinear terms = 0,
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The autonomousNavier-Stokes equations under this time-independent forcing term
admit a viscous equilibrium solution for which we have the analytic expression

u˚ =
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The associated forcing for the vorticity equation is given by

fω def
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The Galerkin projection for the solution p2 is F : C61018 Ñ C61018.
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Applying the curl operator to Navier-Stokes yields the vorticity equation

Btω ´ ν∆ω + nonlinear terms = fω on T3 ˆ R,

where ω
def
= ∇ ˆ u and fω def
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Regularity implies decay



What is the operator A?
<latexit sha1_base64="PmuJB/TY34itQRYcMfwdqfnXTLo="></latexit>

T pW q “ W ´ AFpW q

<latexit sha1_base64="1Qb6LFg0Bak6lHxYTxlzViCqRsA="></latexit>

DFN pW̄N q

The autonomousNavier-Stokes equations under this time-independent forcing term
admit a viscous equilibrium solution for which we have the analytic expression

u˚ =
1

2ν
f, p˚ =

1

4ν2
(cos 2x1 + cos 2x2) .

The associated forcing for the vorticity equation is given by

fω def
= ∇ ˆ f =




0
0

4 sinx1 sinx2



 . (1)

—————————————————————————————————————
#

Btu+ (u ¨ ∇)u ´ ν∆u+∇p = f, on T3 of size L = 2π

∇ ¨ u = 0.

—————————————————————————————————————

The Galerkin projection for the solution p2 is F : C61018 Ñ C61018.

—————————————————————————————————————

Applying the curl operator to Navier-Stokes yields the vorticity equation

Btω ´ ν∆ω + nonlinear terms = fω on T3 ˆ R,

where ω
def
= ∇ ˆ u and fω def

= ∇ ˆ f .

—————————————————————————————————————

Plugging the space-time Fourier expansion of the vorticity

ω(x, t) =
ÿ

nPZ4

ωne
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—————————————————————————————————————
#

Btu+ (u ¨ ∇)u ´ ν∆u+∇p = f, on T3 of size L = 2π

∇ ¨ u = 0.

—————————————————————————————————————

The Galerkin projection for the solution p2 is F : C61018 Ñ C61018.

—————————————————————————————————————

Applying the curl operator to Navier-Stokes yields the vorticity equation

Btω ´ ν∆ω + nonlinear terms = fω on T3 ˆ R,

where ω
def
= ∇ ˆ u and fω def

= ∇ ˆ f .

—————————————————————————————————————

Plugging the space-time Fourier expansion of the vorticity

ω(x, t) =
ÿ

nPZ4

ωne
i(ñ¨x+n4Ωt), ñ = (n1, n2, n3) P Z3,

in the vorticity equation yields having to solve the zero-finding problem

Fn(W )
def
= iΩn4ωn + νñ2ωn ´ fω

n + nonlinear terms = 0,

where Ω is the a-priori unknown time-frequency of the periodic orbit and

W =

(
Ω

(ωn)nPZ4zt0u

)
.
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3. Verify that A is an injective linear operator.

4. Define T (W ) = W − AF(W ) a Newton-like operator
about the numerical approximation W̄ .

5. Consider BW̄ (r) ⊂ X the closed ball of radius r
centered at W̄ .

6. Find r > 0 such that T : BW̄ (r) → BW̄ (r) is a
contraction mapping).

Theorem : Let r > 0 and consider ε and κ = κ(r) be such that

‖AF(W̄ )‖X ≤ ε

sup
Z∈BW̄ (r)

‖I − A DF(Z)‖B(X) ≤ κ(r).

Define the radii polynomial
p(r)

def
= ε+ rκ(r)− r.

If ∃ r0 > 0 such that p(r0) < 0, then ∃ ! W̃ ∈ BW̄ (r) satisfying F(W̃ ) = 0.
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Spontaneous periodic orbits in the Navier-Stokes flow
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Figure 3: Partial numerical bifurcation diagram of the planar Taylor-Green flow, where we
use the geometric Reynolds number as the bifurcation parameter. Solutions that appear to be
stable are shown with solid lines and unstable solutions with dashed lines. Shown on the vertical
axis is the deviation from symmetry under the reflection Sx1 as defined (5.5). For periodic
solutions, the maximal value over one period is shown. For increasing Reynolds number, the
first instability of the viscous equilibrium, represented by the blue line, is a Hopf bifurcation
(HB) to a branch of two-dimensional periodic orbits, shown in red. At the branch point labeled
BP, the two-dimensional periodic orbit turns unstable and a family of three-dimensional periodic
solutions branches o↵. The latter is stable near the branch point and turns unstable at a torus
bifurcation point (TR). The solid squares correspond to the solutions proven to exist, as laid
out in Theorems 5.1 and 5.2.

5.2 New results for 2D periodic orbits

Using a computer program in MATLAB, we computed a numerical approximation W̄ of a
periodic orbit and applied Theorem 4.23, together with the bounds of Section 4.6, to validate
this solution with explicit error bounds, see Theorems 5.1 and 5.2 below. In the appendix, we
describe how to recover errors bounds for the associated velocity u and pressure p that solve the
Navier-Stokes equations.

This validation was done for two separate orbits, represented by p1 and p2 in the bifurcation
diagram of Figure 3. These two orbits are trivially invariant under Td and Sx3 . In addition,
they are invariant under a symmetry group G of order 16, generated by the following three
symmetries:

g1 “ Sx1Sx2 , g2 “ DSx1 , g3 “ P4Sx1R. (5.6)

43

5.1 Analytical and numerical background

We consider the forced Navier-Stokes equations for an incompressible, homogeneous fluid
$
&

%
Btu ` pu ¨ rqu ´ ⌫0�u ` 1

⇢0
rP “ f0,

r ¨ u “ 0,

on a cubical domain of dimension L with periodic boundary conditions. Here ⇢0 is the density
of the fluid and ⌫0 is its viscosity, while the forcing is chosen to be of the simple form

f0pxq “ �0
2

¨

˚̋
sin 2⇡x1

L
cos 2⇡x2

L

´ cos 2⇡x1
L

sin 2⇡x2
L

0

˛

‹‚,

where �0 parametrizes its intensity. This corresponds to the planar case of a family of flows
introduced by Taylor and Green [37] to study the interaction of motions on di↵erent spatial
scales. Non-dimensionalization (without introducing new notation for the new variables) leads
to #

Btu ` pu ¨ rqu ´ ⌫�u ` rp “ f

r ¨ u “ 0
(5.1)

on a cube of dimension 2⇡, where ⌫ “
b

32⇡3

�0L
3 ⌫0 is a dimensionless parameter and the dimen-

sionless forcing is

f “ fpxq “
¨

˝
2 sinx1 cosx2

´2 cosx1 sinx2
0

˛

‚. (5.2)

To be able to compare with the literature we use the geometric Reynolds number Re “
?
8⇡
⌫

in
the discussion of the bifurcation diagram below, cf. Figure 3.

The Navier-Stokes equations (5.1) under the forcing (5.2) admit an equilibrium solution for
which we have the analytic expression

u˚pxq “ 1

2⌫
fpxq p˚pxq “ 1

4⌫2
pcos 2x1 ` cos 2x2q . (5.3)

We will refer to this solution as the viscous equilibrium. The associated forcing for the vorticity
equation is given by

f!pxq “
¨

˝
0
0

4 sinx1 sinx2

˛

‚. (5.4)

The viscous equilibrium consists of four counter-rotating vortices. Its vertical vorticity is shown
in a plane of constant height in Figure 2. It is straightforward to verify that this solution is
invariant under the following symmetry operations:

• Translation over any distance d in the vertical direction, Td.

• Reflection in the x1-direction, Sx1 .

• Reflection in the x2-direction, Sx2 .

• Reflection in the x3-direction, Sx3 .

• Rotation about the axis x1 “ x2 “ 0 over ⇡{2 followed by a shift over L{2 in the x1-
direction, R.
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⌘ Nx1 Nx2 Nx3 Nt N : rN RAM (GB) CPU days
p1 1 17 17 0 11 130 265 10 6
p2 1 21 21 0 16 210 425 110 95

Table 1: Parameters for the two rigorously computed solutions of the Navier-Stokes equations
with Taylor-Green forcing (1.2). The number Nx1 , Nx2 , Nx3 and Nt define the set Ssol in (5.7).
The solutions are indicated by labels p1 and p2 in bifurcation diagram 3 and are computed for
⌫ “ 0.286 and ⌫ “ 0.265 respectively. The computations were timed on an Intel Xeon E5-1620v2
with a 3.7GHz clock speed.

Lemma 6.1. Let � P
`
C3

˘Z4

satisfy

#
r ˆ � “ 0

�n “ 0, for all ñ “ 0.

Then the map � :
`
C3

˘Z4

Ñ CZ4
constructed component-wise as

p��qn “
#

´i�pkq
n {nk if nk ‰ 0 for any k “ 1, 2, 3

0 if ñ “ 0,

is well defined, and p “ �� satisfies � “ ´rp.

Proof. To ensure that � is well defined, it su�ces to show that, for all n P Z4 and l,m P t1, 2, 3u

if nl, nm ‰ 0 then
�plq
n

nl

“ �pmq
n

nm

. (6.1)

Indeed, since r ˆ � “ 0, we have that for all n P Z4 and all l,m P t1, 2, 3u,

nl�
pmq
n “ nm�plq

n , (6.2)

which immediately yields (6.1). Therefore p “ �� is well defined, and we are left to check that
� “ ´rp. If ñ “ 0 then we have

�n “ ´ prpq
n
,

because we assumed �n “ 0 for all ñ “ 0. If ñ ‰ 0, for any l P t1, 2, 3u we distinguish between
two cases. If nl ‰ 0, then

´ prpqplq
n

“ ´inlpn “ ´inl

´i�plq
n

nl

“ �plq
n .

If nl “ 0, then ´ prpqplq
n

“ 0, but there exists an m ‰ l such that nm ‰ 0 and thus by (6.2) we

find �plq
n “ 0, i.e. ´ prpqplq

n
“ �plq

n also holds.

The above lemma can be used in the context of Navier-Stokes equations, to recover the
pressure from the velocity (we recall that the velocity itself is recovered from the vorticity via
u “ M!). We point out that an alternative (arguably more classical) approach is to define p as
the solution of the Poisson equation

´ �p “ r ¨ ppu ¨ rquq ´ r ¨ f, (6.3)

47

Lemma: LetW be such that the vorticity ω is analytic. Assume that F (W ) = 0 and
∇ ¨ ω = 0. Assume also that f does not depend on time and has space average
zero. Define u = Mω (that is u solves ω = ∇ ˆ u). Then there exists a pressure
function p : T3 ˆ R Ñ R such that (u, p) is a 2π

Ω -periodic solution of NS.

—————————————————————————————————————

F(W ) =

(
FK(W )

(Fn(W ))nPZ4
˚

)
= 0.

FK = 0

—————————————————————————————————————

Theorem: Consider NS defined on the three-torus T3 (with size length L = 2π)
and consider the Taylor-Green time-independent forcing term. Let ν = 0.265 and
(ū, p̄) be a numerical solution computed withNx1 = Nx2 = 21,Nx3 = 0 andNt = 16
Fourier coefficients. Let r = 2.2491 ¨10´6. There exists a 2π

Ω -periodic solution (u, p)
of NS with |Ω ´ Ω̄| ď r and }u ´ ū}C0 ď r.

-------------------------------------------------------------------------------------------------------------
--

Moreover, if x is a SOPS then q(x) + q̄(x) is its period and max
tPR

x(t) = x(1).

-------------------------------------------------------------------------------------------------------------
--

We classify X using the finite dimensional reduction map κ : X Ñ R3 defined as

κ(x)
def
= tq(x), q̄(x), x(1)u.

-------------------------------------------------------------------------------------------------------------
--

Definition. Fix α P [1.9, 6] and a region K Ă R3 (not necessarily α-exhaustive).
The functions &K , uK : R Ñ R are bounding functions (associated with K) if

&K(t) ď x(t) ď uK(t), for all t P R,

whenever x P X is a SOPS to Wright's equation at α such that κ(x) P K.

-------------------------------------------------------------------------------------------------------------
--
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Figure 3: Partial numerical bifurcation diagram of the planar Taylor-Green flow, where we
use the geometric Reynolds number as the bifurcation parameter. Solutions that appear to be
stable are shown with solid lines and unstable solutions with dashed lines. Shown on the vertical
axis is the deviation from symmetry under the reflection Sx1 as defined (5.5). For periodic
solutions, the maximal value over one period is shown. For increasing Reynolds number, the
first instability of the viscous equilibrium, represented by the blue line, is a Hopf bifurcation
(HB) to a branch of two-dimensional periodic orbits, shown in red. At the branch point labeled
BP, the two-dimensional periodic orbit turns unstable and a family of three-dimensional periodic
solutions branches o↵. The latter is stable near the branch point and turns unstable at a torus
bifurcation point (TR). The solid squares correspond to the solutions proven to exist, as laid
out in Theorems 5.1 and 5.2.

5.2 New results for 2D periodic orbits

Using a computer program in MATLAB, we computed a numerical approximation W̄ of a
periodic orbit and applied Theorem 4.23, together with the bounds of Section 4.6, to validate
this solution with explicit error bounds, see Theorems 5.1 and 5.2 below. In the appendix, we
describe how to recover errors bounds for the associated velocity u and pressure p that solve the
Navier-Stokes equations.

This validation was done for two separate orbits, represented by p1 and p2 in the bifurcation
diagram of Figure 3. These two orbits are trivially invariant under Td and Sx3 . In addition,
they are invariant under a symmetry group G of order 16, generated by the following three
symmetries:

g1 “ Sx1Sx2 , g2 “ DSx1 , g3 “ P4Sx1R. (5.6)
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of the fluid and ⌫0 is its viscosity, while the forcing is chosen to be of the simple form
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where �0 parametrizes its intensity. This corresponds to the planar case of a family of flows
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scales. Non-dimensionalization (without introducing new notation for the new variables) leads
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sionless forcing is
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˝
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0

˛

‚. (5.2)

To be able to compare with the literature we use the geometric Reynolds number Re “
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in
the discussion of the bifurcation diagram below, cf. Figure 3.

The Navier-Stokes equations (5.1) under the forcing (5.2) admit an equilibrium solution for
which we have the analytic expression

u˚pxq “ 1

2⌫
fpxq p˚pxq “ 1

4⌫2
pcos 2x1 ` cos 2x2q . (5.3)

We will refer to this solution as the viscous equilibrium. The associated forcing for the vorticity
equation is given by

f!pxq “
¨

˝
0
0

4 sinx1 sinx2

˛

‚. (5.4)

The viscous equilibrium consists of four counter-rotating vortices. Its vertical vorticity is shown
in a plane of constant height in Figure 2. It is straightforward to verify that this solution is
invariant under the following symmetry operations:

• Translation over any distance d in the vertical direction, Td.

• Reflection in the x1-direction, Sx1 .

• Reflection in the x2-direction, Sx2 .

• Reflection in the x3-direction, Sx3 .

• Rotation about the axis x1 “ x2 “ 0 over ⇡{2 followed by a shift over L{2 in the x1-
direction, R.
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Future work: a fully 3D spontaneous periodic orbit
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Figure 1: Left: Details of a grain boundary appearing in a PFC simulation
(taken from [3]). Right: Grain boundary network from a PFC simulation (taken
from [4]). Within each grain is a hexagonal lattice of atoms with a particular
orientation.

which entails the sixth-order PFC equation

 t = r2
⇣�

r2 + 1
�2
 +  

3 � � 

⌘
.

Note that the PFC model shares its energy with the Swift-Hohenberg equa-
tion [2], which is simply the L2 gradient flow of E. From linear stability analysis
applied to single Fourier mode Ansatz, we find three main candidate global mini-
mizers that divide parameter space, see the appendices. In the hexagonal lattice
regime, 2D-simulations of the PDE starting with random noise quickly produce
atoms that arrange into small patches of hexagonal lattices with random ori-
entations. These patches grow and interact with each other, forming grains of
hexagonal lattices of atoms with a particular orientation. The morphology and
evolution of these grains have features resembling those in polycrystalline ma-
terials (cf. Figure 1). In particular, it has recently been shown that statistics
of many of experimentally observed (universal) grain boundary distributions
are accurately captured by data amassed from simulations of this simple PFC
equation [5, 4]. While here we will mostly work with this vanilla PFC formula-
tion, we note that a family of PFC-like equations can be derived from Density-
Functional-Theory [6] to obtain more complicated models capable of simulating
eutectic and dendritic solidification [7] and graphene structures [8, 9].

In this article, we address the PFC model and its steady states at the “mi-
croscopic” level - the local atomic arrangement. We believe that such an in-
vestigation of microscopic pattern-formation capabilities of PFC is not only of
mathematical interest but is also necessary to construct “designer” models for
polycrystalline behaviour. For example, varying the parameters in the energy
lead to more complicated states than simple lamellar and hexagonal. These
include localized patterns in the “glassy regime” - the transition at the liquid
(constant) and solid (hexagonal) transitions - and “globules” at large �.

With the exception of the constant (liquid) state (cf. [10]), it is di�cult to
prove any theorem on the exact nature of steady states, local and global min-
imizers to this di↵use interface problem. What exists in the physics literature

2

3. Verify that A is an injective linear operator.

4. Define T (W ) = W − AF(W ) a Newton-like operator
about the numerical approximation W̄ .

5. Consider BW̄ (r) ⊂ X the closed ball of radius r
centered at W̄ .

6. Find r > 0 such that T : BW̄ (r) → BW̄ (r) is a
contraction mapping).

——————————————————————————————————

Theorem : Let r > 0 and consider ε and κ = κ(r) be such that

‖AF(W̄ )‖X ≤ ε

sup
Z∈BW̄ (r)

‖I − A DF(Z)‖B(X) ≤ κ(r).

Define the radii polynomial
p(r)

def
= ε+ rκ(r)− r.

If ∃ r0 > 0 such that p(r0) < 0, then ∃ ! W̃ ∈ BW̄ (r) satisfying F(W̃ ) = 0.
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Steady states in the localized patterns regime

Microscopic patterns in the 2D phase-field-crystal model. Preprint.
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Figure 1: Left: Details of a grain boundary appearing in a PFC simulation
(taken from [3]). Right: Grain boundary network from a PFC simulation (taken
from [4]). Within each grain is a hexagonal lattice of atoms with a particular
orientation.
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(a) (b)

Figure 4: Connection diagram (a) where arrows represent a few of the con-
nections found. The two hexagonal lattice states di↵er in their amplitude and
stability. The vertical axis roughly indicates the energy while the numbers give
the Morse indices. We could not obtain (nor disprove) a connection to the single
atom state, indicated with the question mark. The connection labeled with a
star is broken down in the energy plot to the right (b). These states appear
to be metastable intermediates where the energy gradient becomes small and
the evolution slows down considerably. The blue curve shows the energy as a
function of time in arbitrary units, highlighting momentaneous “flats” in the
evolution.
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for generic ✓ 2 R. Moreover (1) does not have an obvious Hamiltonian structure so often present in the
study of nonlinear Schrödinger equations.

While the local well-posedness theory for (1) is well established, the global well-posedness and general
dynamical structure of these equations are less understood. In the present paper, we use perturbative and
non-perturbative methods to study the dynamics of (1). For the class of equations in (1) we prove semi-global
existence of close to constant initial data (see Theorem 1.4). That is, solutions will exist for all positive time
or all negative time. Furthermore, we prove the existence of an open set of initial data which limits to 0
in both forward and backward time (see Theorem 1.5). This result in turn forces the non-existence of any
real-analytic conserved quantities (see Theorem 1.6) in stark contrast to the case of Hamiltonian NLS.

We then study in depth the case of (1) with a quadratic nonlinearity,

�iut = 4u+ u
2 (2)

for x 2 T1 = R/Z. In Theorem 1.7 we prove the existence of two (infinite) families of nontrivial equilibria.
These equilibria are all unstable, and in Theorem 1.9 we prove the existence of heteroclinic orbits limiting
to the nontrivial equilibria in backward time and to zero in forward time. By a time reversal argument, we
also obtain heteroclinic orbits limiting to the nontrivial equilibria in forward time and to zero in backward
time. All of these dynamics trivially extend to (2) posed on Td.

While Hamiltonian NLS has attracted considerable study from physicists and mathematicians alike,
non-Hamiltonian NLS has also garnered considerable interest over the past several decades. Beyond their
intrinsic appeal, NLS with non-gauge invariant terms have been used to study asymptotic behavior about
planar waves to the Gross-Pitaevskii equation [28], and Raman amplification in a plasma [16,32]. Equations
such as (2) also arise as toy models of the NLS with an external electric field [43,44].

One notable feature of NLS without gauge invariance is that their local well-posedness theory extends
to negative Sobolev spaces. The landmark work [36] studied @tu = i4u +Nj(u, u⇤) for nonlinearities c1u

2

and c2|u|
2 and c3(u⇤)2 with cj 2 C. They showed that the IVP with nonlinearities u

2 and (u⇤)2 is locally
well-posed in H

s(R) for s > �3/4 and in H
s(T) for s > �1/2. However for the nonlinearity |u|

2 they only
showed local well-posedness for H

s(R) with s > �1/4. Indeed, the structure of the nonlinearity and not
just its degree often plays an important role, an observation enounced in [65] where the local well-posedness
with nonlinearity (u⇤)2 for data in H

s(R2) with s > �1/2 was proven. Achieving a sharp result, in [2]
the nonlinearity u

2 is shown to be locally well-posed for initial data in H
s(R) for s � �1 and ill-posed for

s < �1. For further references we refer the reader to [37], which itself studies the problem of ill-posedness
for more general nonlinearities and spatial domains.

When the spatial domain is Rd, there is a considerable literature on the global existence and scattering
of small initial data, for which we do not attempt to provide a comprehensive review. Regarding just the
quadratic NLS on R3, we briefly mention the work of [24,31] and for the addition of a potential we refer the
reader to [43, 59].

However when the spatial domain is Td it is harder to prove global existence, even for Hamiltonian NLS.
Any dynamical behaviour that can exist in the spatially homogeneous dynamics carries over to the PDE on
Td as a complex one-dimensional subsystem. If the NLS is not gauge invariant, as in (3), one may obtain an
explicit formula for arbitrarily small initial data which blow-ups in finite time, cf (6). In [53], for example,
they show finite-time blowup in iut +4u = �|u|

p on Td for all 1 < p < 1 simply based on a condition on
the phase of the initial data’s zero-Fourier coe�cient. In short, to show global existence of a solution on Td,
assuming smallness of the initial data is by no means su�cient.

To obtain a global existence result, in Section 2 we perform a center manifold analysis about the 0
equilibrium to (1). The linearization about this equilibrium has one zero eigenvalue (associated with the
homogeneous dynamics) and infinitely many imaginary eigenvalues. Unlike the gauge invariant NLS, the
spatially homogeneous dynamics of (1) does not support planar waves, but instead admits a singular foliation
of homoclinic orbits (see Figure 3). By pairing Grönwall type estimates with a detailed analysis of the
homogeneous dynamics, we show that initial data which is su�ciently close to a constant will exist globally
forward or backward in time.

Before stating our results further, let us first fix some definitions. For k = (k1, . . . kd) 2 Zd let |k|
def
=

|k1|+ . . . |kd|. We define the following norms.
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Theorem 1.7. There exist two analytic, spectrally unstable equilibria u
i

1 and u
ii

1 to (2). By the rescaling in
(4), these equilibria (and their complex conjugates) generate infinite families of spectrally unstable equilibria
{u

i

n
}n2N and {u

ii

n
}n2N.

Figure 1: Profiles of two di↵erent equilibria: ui

1(x) (left), u
ii

1 (x) (right), the existence of which are established
via computer-assisted proof.

We are not aware of prior work demonstrating non-trivial equilibria to NLS without gauge invariance. In
one sense, these equilibria could be thought of a special case of standing waves of the form u(t, x) = e

i!t
�(x)

wherein ! = 0. The existence and stability of standing waves for general ! 2 R is well studied in the
literature of nonlinear Schrödinger equations. The existence of such profile solutions can be found by solving
an integrable Hamiltonian with two degrees of freedom [7], and for the stability of spatially periodic � we
refer to [21]. However, for our non-gauge invariant NLS, it turns out that equilibria are the only standing
wave profiles we may expect to find.

Proposition 1.8. Suppose that p � 2 and u(t, x) =  (t)�(x) is a solution to (3). Then either  (t) or �(x)
is a constant function.

The existence of these unstable equilibria established by Theorem 1.7 reveals a hidden complexity in the
global dynamics of (2), and presents an obstacle in the path of proving global well-posedness. In particular,
any proof of global existence must contend with the possibility that solutions limit not to the zero equilibria,
but instead to one of these equilibria, or even some other nontrivial invariant set. In Theorem 1.9 we prove
just that, establishing the existence of several heteroclinic orbits to (2) limiting from the nontrivial equilibria
and to the zero solution, cf Figures 2, 7, and 8. Using the fact that if u(t) is a solution to (2) then so too is
(u(�t))⇤, we are able to establish the existence of heteroclinic orbits to (2) limiting from the zero solution
and to nontrivial equilibria.

Theorem 1.9. Let u be any one of the equilibria in Theorem 1.7. There exist heteroclinic orbits ua and ub

to (2) such that

lim
t!�1

ua(t) = u, lim
t!+1

ua(t) = 0, lim
t!�1

ub(t) = 0, lim
t!+1

ub(t) = u,

converging exponentially fast to u and algebraically fast to 0.

These results may also be seen in parallel to the prodigious line of inquiry seeking to answer one of
Bourgain’s open problems [3]: Do there exist global solutions to the cubic defocusing NLS on T2 which
actually achieve unbounded growth in the higher Sobolev norms in infinite time? In the past decade, there
have been beautiful results working towards answering this question, in particular showing arbitrarily large
finite growth. While earlier work [41] had shown arbitrarily large growth for su�ciently large initial data,
such growth is achieved in [17,27] for small initial data: for any s > 1, � > 0 and K � 1 there is 0 < T < K

c

5

Nontrivial steady states

(a) The heteroclinic solution ua: connection from u
i

1(x) to 0.

(b) The heteroclinic solution ub: connection from 0 to u
i

1(x).

Figure 2: Extracted part of heteroclinic orbits of (2) between the first equilibrium u
i

1(x) and the zero function,
validated with a computer-assisted proof. Here the x-variable is extended to the range x 2 [�2, 2] in order
to understand the time evolution of the solution.

6

(a) The heteroclinic solution ua: connection from u
i

1(x) to 0.

(b) The heteroclinic solution ub: connection from 0 to u
i

1(x).

Figure 8: Heteroclinic orbits of (2) between u
ii

1 (x) to 0. Proofs of these orbits are achieved in the same
manner. Note that the amplitude of this orbit is much bigger than the previous ones. Such connection is
quite nontrivial to prove.

42

Rigorous computation of heteroclinic orbits

Global dynamics in nonconservative nonlinear Schrödinger equations. Preprint, 2021.
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Periodic orbits in the ill-posed Boussinesq equation
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u = u(t, y) ∈ R, y ∈ [0, 1],ͱu(t, 0) = u(t, 1)
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This “bad” version of Boussinesq arises in the study of water waves. 
Specifically, it is used to describe a two-dimensional flow of a body of 
water over a flat bottom with air above the water, assuming that the 
water waves have small amplitudes and the water is shallow. 
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Abstract

We present a computer aided method for proving the existence of ...

1 Introduction

The analysis of pattern formation phenomena is often hampered by the inherent com-
plexity of nonlinearities. On the one hand, nonlinear dynamics is usually the fundamental
drive for the patterns to form, while on the other hand the nonlinear character of the
equations obstructs the rigorous mathematical analysis of its solutions.

In many pattern formation problems one can exploit some asymptotic regime in which
the problem simplifies through a rigorous reduction (e.g. center manifolds, Lyapunov-
Schmidt reduction, averaging, normal forms). This reduces the governing partial dif-
ferential equation to a less complicated one, or even to a system of ordinary di↵erential
equations, describing certain coherent structures that govern much of the dynamics. How-
ever, in all but the simplest cases, even the reduced, simplified problem is nonlinear and
still cannot be fully analyzed rigorously.

In this paper we demonstrate how novel advances in rigorous computer-assisted anal-
ysis of dynamical systems can overcome this obstacle. In particular, we consider the
pattern formation model [1]

@tU = �(1 +�)2U+ µU� �|rU|2 �U3 (1.1)

in the plane, i.e., U = U(t, x) 2 R, t � 0, x 2 R2. This equation generalizes the Swift-
Hohenberg equation [2] and the additional term �|rU|2, reminiscent of the Kuramoto-
Sivashinsky equation [3, 4], breaks the up-down symmetry U 7! �U for � 6= 0. The
Swift-Hohenberg equation acts as a phenemenological model for pattern formation in
Rayleigh-Bénard convection, with � 6= 0 corresponding to a free boundary at the top
of the convection cell, rather than a fixed one for the symmetric case � = 0, [5]. The
parameter µ is related to the distance to the onset of convection rolls. For µ < 0 the
trivial equilibrium U ⌘ 0 is locally stable, whereas for µ > 0 it is unstable.
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Québec, QC, G1V0A6, Canada. andrea.deschenes.1@ulaval.ca.
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Abstract

We present a computer aided method for proving the existence of ...

1 Introduction

The analysis of pattern formation phenomena is often hampered by the inherent com-
plexity of nonlinearities. On the one hand, nonlinear dynamics is usually the fundamental
drive for the patterns to form, while on the other hand the nonlinear character of the
equations obstructs the rigorous mathematical analysis of its solutions.

In many pattern formation problems one can exploit some asymptotic regime in which
the problem simplifies through a rigorous reduction (e.g. center manifolds, Lyapunov-
Schmidt reduction, averaging, normal forms). This reduces the governing partial dif-
ferential equation to a less complicated one, or even to a system of ordinary di↵erential
equations, describing certain coherent structures that govern much of the dynamics. How-
ever, in all but the simplest cases, even the reduced, simplified problem is nonlinear and
still cannot be fully analyzed rigorously.

In this paper we demonstrate how novel advances in rigorous computer-assisted anal-
ysis of dynamical systems can overcome this obstacle. In particular, we consider the
pattern formation model [1]

@tU = �(1 +�)2U+ µU� �|rU|2 �U3 (1.1)

in the plane, i.e., U = U(t, x) 2 R, t � 0, x 2 R2. This equation generalizes the Swift-
Hohenberg equation [2] and the additional term �|rU|2, reminiscent of the Kuramoto-
Sivashinsky equation [3, 4], breaks the up-down symmetry U 7! �U for � 6= 0. The
Swift-Hohenberg equation acts as a phenemenological model for pattern formation in
Rayleigh-Bénard convection, with � 6= 0 corresponding to a free boundary at the top
of the convection cell, rather than a fixed one for the symmetric case � = 0, [5]. The
parameter µ is related to the distance to the onset of convection rolls. For µ < 0 the
trivial equilibrium U ⌘ 0 is locally stable, whereas for µ > 0 it is unstable.
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Québec, QC, G1V0A6, Canada. andrea.deschenes.1@ulaval.ca.
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Figure 1: At the bottom are graphs of B1 (red) and B2 (blue) representing heteroclinic
solutions of (1.2) that connect the hexagon state to the positive rolls (on the left) and

negative rolls (and the right). The parameter values are c̃ = 0, µ̃ = 7+3
p
6

30 and �̃ =
1, corresponding to the assumptions in Theorem 1. At the top are the corresponding
stationary patterns of (1.1). We note that the two phase transitions from rolls to hexagons
have distinctive features. On the left, the stripes (“positive” rolls) undergo pearling,
which gradually leads to separation into spots (hexagons). On the right, the stripes
(“negative” rolls) develop transverse waves, which break up into a block structure that
then transforms into hexagonal spots.

The heteroclinic solutions are depicted in Figure 1, together with the corresponding
patterns of the PDE (1.1). These orbits thus represent two types of stationary domain
walls between hexagons and rolls (spots and stripes). While each heteroclinic connection
exists on a parabola in the (�̃, µ̃) parameter plane, a parameter scaling reduces this to a
single connecting orbit, see Section 2.1.

Our method, which builds on foundations laid in [7, 8, 9, 10], is summarized as
follows. At the center of the method is an approximate solution unum, obtained through
a numerical calculation. We then construct an operator which has as its fixed points the
heteroclinic solutions, and we set out to prove that this operator is a contraction mapping
on a small ball around unum in an appropriate Banach space. The ball should be small
enough for the estimates to be su�ciently strong to prove contraction, but large enough
to include both unum (the center of the ball) and the genuine solution (the fixed point).
Qualitatively, considering the numerical approximations of solutions depicted as graphs
in Figure 1, we can choose the radius of the ball so small that the genuine solution is
guaranteed to lie within the thickness of the lines. A mathematically precise, quantitative
statement can be found in Section 5.

We can distinguish several components in the computer-assisted proof of Theorem 1.
Since we are looking for solutions of (1.2) on an unbounded domain, we first reduce the
problem to a finite domain by parametrizing the local stable and unstable manifolds of
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Periodic orbits in the Mackey-Glass equation

to present a review of the literature, we remark that, roughly speaking, these e↵orts can be
categorized in two categories. The first type of approach centers around developing rigorous
integrators for (semi-)flows and combining these with intricate topological arguments to study
a variety of dynamic behaviours. One could describe these as “phase space” methods, and we
refer to [?]TODO and the references therein for the tremendous advances made. The second,
complementary viewpoint, is based on reformulating the question of locating and proving
certain types of dynamic structures as a zero finding problem in an appropriate functional
analytic setting. For a sample of such “function space” methods we refer to [?]TODO and
the references therein.

The novel general approach to periodic orbits in systems of DDEs proposed here is of
the function space type. In a nutshell, it is based on a careful consideration of a modified
Newton iteration method. We study zeros of a function F(x) by looking for fixed points of
a Newton-like map:

T (x) = x�AF(x), (2)

where A is a carefully chosen approximation of the inverse of DF(x). We thus construct a
map F , such that the zeros correspond to periodic solutions, and then show the existence
of a zero by means of a fixed point argument applied to the map T . Such an approach was
previously used in [17], which focussed on Wright’s DDE

u0(t) = ��u(t� 1)[1 + u(t)], with � > 0. (3)

We note that Equation (3) has received particular scrutiny in the context of computer-assisted
proofs, see [17, 12, 37, ?]TODO. More generally, additional function space e↵orts for DDEs
include [14, 9], while concerning the phase space perspective on computer-assisted proofs we
refer to [32, 30] for some applications to DDEs.

The main contribution of the present paper is a function space method that applies to
periodic orbits of general systems of DDEs of the type (1). We stress that this class includes
forward-backward problems (both positive and negative delays ⌧j) for which there is no
well-defined semi-flow. On a technical level, we propose a flexible zero finding formulation,
together with an associated fixed point map T described by (2). The success of the method
is intimately linked to our novel choice for A, the approximate inverse of the Jacobian, see
Section 4.4 for the details.

In order to illustrate the e�cacy of our approach, we will consider several examples. The
example that we will cover in most detail is the Mackey-Glass equation [21], a scalar DDE
with a single delay and a nonpolynomial nonlinearity:

u0(t) = ��u(t) + ↵
u(t� ⌧)

1 + u(t� ⌧)⇢
. (4)

This DDE, which models the concentration of white blood cells in a subject, is one of the
first scalar DDEs that was conjectured to exhibit chaotic behaviour. In this equation, ↵ is
the production rate of new cells and � is the rate at which the cells die. The delay parameter
⌧ > 0 models the time it takes for the subject’s body to observe the concentration and
react, by either increasing or decreasing cell production. Finally, the positive real (i.e. not
necessarily integer) parameter ⇢ models the assumption that the production of new cells will
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Figure 1: Two periodic solutions found in the chaotic regime, corresponding to ↵ = 2, � = 1,
⌧ = 2 and ⇢ = 9.65. Left: a parametric plot of (u(t), u(t � ⌧)) of the two solutions. Right:
a 3-dimensional rendering of (u(t), u(t � ⌧/2), u(t � ⌧))) for the same two solutions. Also
depicted is a (numerical) long orbit with random initial data, to illustrate the nature of the
chaotic attractor.

struct these solutions using Fourier series, i.e. we look for functions of the form

u(t) =
X

k2Z
ake

ik#t,

where 2⇡/# is the a priori unknown period.
Our first observation then is that both di↵erential and delay operators have nice analogues

in Fourier space:

u0(t) =
X

k2Z
(ik#ak)e

ik#t , u(t� ⌧j) =
X

k2Z
(ake

�ik#⌧j )eik#t,

i.e. the Fourier coe�cients of u0(t) are given by ik#ak and those of u(t � ⌧j) are given by
ake�ik#⌧j .

Secondly, we observe that Fourier series have the property that pointwise multiplication
translates to two-sided convolution products.

Definition 1.1 (Convolutions). Let a, b 2 CZ, then we define the convolution of a and b,
denoted as a ⇤ b as the bi-infinite sequence given by

(a ⇤ b)k =
X

k1+k2=k

ak1bk2 ,
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Definition:  A choreography is a periodic solution of the gravitational n-body 
problem where n equal masses follow the same path. 

The equations for the generating body un = (w, z) P C ˆ R are reduced to the
system of delay differential equations with multiple delays

ẅ(t) + 2
?
s1iẇ(t) = s1w(t) ´

n´1ÿ

j=1

w(t) ´ eijζw(t+ jkζ)
(

|w(t) ´ eijζw(t+ jkζ)|2 + |z(t) ´ z(t+ jkζ)|2
)3/2

z̈(t) = ´
n´1ÿ

j=1

z(t) ´ z(t+ jkζ)
(

|w(t) ´ eijζw(t+ jkζ)|2 + |z(t) ´ z(t+ jkζ)|2
)3/2 .
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Questions that guide the research in the field

• Understand the global dynamics of ODEs, PDEs and delay equations
• Compute rigorously compact invariant sets
• Develop computational tools for equilibria, periodic orbits, stable and 
unstable manifolds, homoclinic and heteroclinic orbits, solutions to BVP, 
travelling waves, fronts, radial solutions, invariant tori, etc 
• Develop rigorous methods to study the stability of the above objects
• Obtain theorems about existence of symbolic dynamics
• Combine the rigorous computations with topology (e.g. Morse-Conley-
Floer theory) to obtain forcing theorems
• Study energy landscapes / compute local minimizers of functionals
• Chaos / turbulence in infinite dimensional dynamical systems
• Develop tools to compute Morse-Floer homology
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December 18th, 2017 
 
To whom it may concern, 
 
I am writing a very strong letter of support for the candidacy of Jonathan Jaquette (Ph.D. Rutgers) 
for a CRM-ISM postdoctoral fellowship. Jonathan has some truly remarkable results in the field 
of delay differential equations (see the recommendation letters from Roger Nussbaum and 
Konstantin Mischaikow). In fact, as Roger Nussbaum writes in his letter “Well over fifty years 
ago, two conjectures (Wright’s conjecture and Jones conjectures) were made concerning Wright’s 
equation. In his Ph.D. dissertation Jonathan provides the first proofs of both conjectures. This is a 
major piece of work, and I highly recommend Jonathan. While it is true that Jonathan’s proof uses 
some earlier results, it is equally true that a complete proof required, in a highly nontrivial way, 
new ideas and methods.” Besides his outstanding results in the field of delay differential equations 
(one paper published in J. of Differential Equations, one paper submitted and one paper in 
preparation), he has a paper on persistent homology which appeared in Math. Comp. this year.  
 
As a CRM-ISM postdoctoral fellow, Jaquette would be working with the Applied Math group, but 
could also be involve with the Analysis group and the CIRGET. His results and interests in delay 
differential equations and infinite dimensional dynamical systems naturally fits with my research 
interests, as well as those of Tony Humphries (Applied Math, McGill), Tomasz Kaczysnki 
(Analysis, Sherbrooke) and Christiane Rousseau (Analysis, UdeM). I would personally be very 
interested to do research with Jonathan Jaquette on his projects “Invariant Manifolds in PDEs and 
DDEs”, “Connecting Orbits in PDEs and DDEs” and “Computational Morse-Floer Homology”, 
as describe in his research statement. Moreover, his results in the field of persistent homology and 
his interest in computational Morse theory (see his research statement) could be of interest to the 
members of the CIRGET (for instance Octav Cornea and Olivier Collin). Tony Humphries wrote 
that “it would be great to have him at McGill, and that he is the sort of applicant who is likely to 
do well in the CRM-ISM competition”. Tomasz Kaczysnki wrote that he “strongly support the 
candidate” and Dmitry Jakobson wrote that “he will support Jonathan, and that his results look 
very impressive!”. Moreover, Christiane Rousseau (Analysis), Adam Oberman (McGill, Applied 
Math) and Rustum Choksi (McGill, Applied Math) openly support his candidacy.  
 
The source of the 20K/year in funding would be 5K/year from the CRM Applied Math group, 
7.5K/year from my start-up grant at McGill and 7.5K/year from my NSERC research grant.  
 

Sincerely yours, 
 

Jean-Philippe Lessard 
 

 

 

 

Quebec City, CANADA 
November 28th, 2012  

 
To whom it may concern, 
 
I am very pleased to write a very strong letter of support for Dr. Roberto Castelli for his 
application for the two years post doc position at the University of Milano Bicocca. I 
have known Roberto for two years as his group leader in Computational Mathematics at 
the Basque Center for Applied Mathematics (BCAM) in Bilbao. Dr. Castelli is an expert 
in the broad field of dynamical systems, the calculus of variations, computational 
astrodynamics and rigorous numerical methods. I can say without any hesitation that he 
has a very broad mathematical culture and that he has a bright future in mathematics. 
 
After five months of work with me at BCAM, Roberto and I developed a general 
method to rigorously compute Floquet normal forms, which were discovered in 1883 
and which provide a canonical decomposition for fundamental matrix solutions of 
periodic non-autonomous linear differential equations. Fundamental matrix solutions, 
which are objects of primary importance in the field of differential equations, are 
unfortunately almost impossible to compute. In the work Rigorous numerics in Floquet 
theory: computing stable and unstable bundles of periodic orbits that is accepted to 
appear in the SIAM Journal of Applied Dynamical Systems, Roberto and I introduced a 
novel approach to compute explicitly (and rigorously!) the Floquet normal forms. This 
is the first explicit computational method that achieves such task and it comes more 
than 125 years after Floquet’s original discovery of his canonical decomposition. 
 
Then, Roberto and I worked on developing a general computational method to study 
eigendecomposition of complex interval matrices, a subject of fundamental importance 
in many fields of applied sciences. Roberto developed all the code and derived all the 
necessary estimates. We presented our new proposed technique in the work A method to 
rigorously enclose eigendecompositions of interval matrices, that is submitted. We are 
currently working on a project to rigorously compute parameterizations of stable and 
unstable manifolds of periodic solutions of differential equations. Once again, Roberto 
is writing all the matlab code and derived most of the necessary theory to carry out this 
work, which ultimate goal is to study and prove existence of chaotic dynamics.  
 
In my opinion, Roberto is a very independent researcher with strong qualities to become 
a fruitful mathematician. His broad interests in analysis, his strong background in 
mathematics and his enthousiasm in learning make him, in my opinion, a serious 
candidate for the post doct position in your department. 
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