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Part 1. Generalities
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The problem of integrable discretization. Hamiltonian
approach (Birkhäuser, 2003)

Consider a completely integrable flow

ẋ = f (x) = {H, x} (1)

with a Hamilton function H on a Poisson manifold P with a
Poisson bracket {·, ·}. Thus, flow (1) possesses sufficiently
many functionally independent integrals Ik (x) in involution.

The problem of integrable discretization: find a family of
diffeomorphisms P → P,

x̃ = Φ(x ; ε), (2)

depending smoothly on a small parameter ε > 0, with the
following properties:
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1. The maps (2) approximate the flow (1):

Φ(x ; ε) = x + εf (x) + O(ε2).

2. The maps (2) are Poisson w. r. t. the bracket {·, ·} or some
its deformation {·, ·}ε = {·, ·}+ O(ε).

3. The maps (2) are integrable, i.e. possess the necessary
number of independent integrals in involution,
Ik (x ; ε) = Ik (x) + O(ε).

While integrable lattice systems (like Toda or Volterra lattices)
can be discretized in a systematic way (based, e.g., on the
r -matrix structure), there is no systematic way to obtain decent
integrable discretizations for integrable systems of classical
mechanics.
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Missing in the book: Hirota-Kimura discretizations

I R.Hirota, K.Kimura. Discretization of the Euler top.
J. Phys. Soc. Japan 69 (2000) 627–630,

I K.Kimura, R.Hirota. Discretization of the Lagrange top.
J. Phys. Soc. Japan 69 (2000) 3193–3199.

Reasons for this omission: discretization of the Euler top
seemed to be an isolated curiosity; discretization of the
Lagrange top seemed to be completely incomprehensible, if not
even wrong.

Renewed interest stimulated by a talk by T. Ratiu at the
Oberwolfach Workshop “Geometric Integration”, March 2006,
who claimed that HK-type discretizations for the Clebsch
system and for the Kovalevsky top are also integrable.
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Hirota-Kimura or Kahan?

I W. Kahan. Unconventional numerical methods for
trajectory calculations (Unpublished lecture notes, 1993).

ẋ = Q(x) + Bx + c  (x̃ − x)/ε = Q(x , x̃) + B(x + x̃)/2 + c,

where B ∈ Rn×n, c ∈ Rn, each component of Q : Rn → Rn is a
quadratic form, and Q(x , x̃) = (Q(x + x̃)−Q(x)−Q(x̃))/2 is
the corresponding symmetric bilinear function. Thus,

ẋk  (x̃k − xk )/ε, x2
k  xk x̃k , xjxk  (xj x̃k + x̃jxk )/2.

Linear w.r.t. x̃ , therefore defines a rational map x̃ = Φf (x , ε).
Obvious symmetry: x ↔ x̃ , ε 7→ −ε, therefore Φf reversible:

Φ−1
f (x , ε) = Φf (x ,−ε).

In particular, Φf is birational, and deg Φf = deg Φ−1
f = n.
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Illustration: Lotka-Volterra system

Kahan’s discretization for the Lotka-Volterra system:
{

ẋ = x(1− y),

ẏ = y(x − 1),
 

{
x̃ − x = ε(x̃ + x)− ε(x̃y + xỹ),

ỹ − y = ε(x̃y + xỹ)− ε(ỹ + y).

Explicitly:




x̃ = x
(1 + ε)2 − ε(1 + ε)x − ε(1− ε)y
1− ε2 − ε(1− ε)x + ε(1 + ε)y

,

ỹ = y
(1− ε)2 + ε(1 + ε)x + ε(1− ε)y
1− ε2 − ε(1− ε)x + ε(1 + ε)y

.
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Left: three orbits of Kahan’s discretization with ε = 0.1,
right: one orbit of the explicit Euler with ε = 0.01.
I J.M. Sanz-Serna. An unconventional symplectic integrator

of W.Kahan. Applied Numer. Math. 1994, 16, 245–250.
A sort of an explanation of a non-spiralling behavior: Kahan’s
discretization is symplectic w.r.t. dx ∧ dy/(xy).
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List of integrable HK-discretizations

I M. Petrera, A. Pfadler, Yu. S. On integrability of
Hirota-Kimura type discretizations. Regular Chaotic Dyn.,
2011, 16, 245–289.

1. Reduced Nahm equations.
2. Euler top.
3. Three-wave interaction system.
4. Periodic Volterra chain of period N = 3,4:
5. Dressing chain with N = 3:
6. System of two interacting Euler tops.
7. Lagrange top.
8. Kirchhof and Clebsch cases of rigid body in an ideal fluid.
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Integral for non-integrable Kahan discretizations

I E. Celledoni, R.I. McLachlan, B. Owren, G.R.W. Quispel.
Geometric properties of Kahan’s method.
J. Phys. A, 2013, 46, 025201.

Theorem. Let f (x) = J∇H(x), with J ∈ so(n), Hamilton
function H : Rn → R of deg = 3. Then Φf (x , ε) admits a rational
integral:

H̃(x , ε) = H(x) +
ε

3
(∇H(x))T

(
I − ε

2
f ′(x)

)−1
f (x),

and an invariant volume form

dx1 ∧ . . . ∧ dxn

det
(

I − ε

2
f ′(x)

) .

Degree of denominator det(I − ε
2 f ′(x)) is n, degree of

numerator of H̃(x , ε) is n + 1.
Yuri B. Suris From geometry to dynamics



Part 2. Integrability of planar
quadratic birational maps
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Why planar?

I Planar algebraic geometry is much simpler.
I Structure of the group of birational maps of Pn is unknown

for n ≥ 3. For n = 2, generated by quadratic maps (M.
Noether theorem).

I For n ≥ 3, many new phenomena. For instance, there does
not hold necessarily that deg Φ−1 = deg Φ. (Kahan maps
have this property and thus are very special!)
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Planar birational maps

I Consider a birational map

φ : CP2 → CP2, [x : y : z] 7→ [X : Y : Z ],

X ,Y ,Z homogeneous polynomials of deg = d without a
non-trivial (polynomial) common factor.

I Indeterminacy set (finitely many points, are blown up by φ):

I(φ) = {X = Y = Z = 0}.
I Critical set (dim = 1, is blown down by φ):

C(φ) = {det ∂(X ,Y ,Z )/∂(x , y , z) = 0}.
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Illustration

Standard quadratic involution

σ : [x : y : z] 7→
[1

x
:

1
y

:
1
z

]
= [yz : xz : xy ].

Indeterminacy set:

I(σ) =
{

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]
}
.

Critical set:

C(σ) = {xyz = 0} = {x = 0} ∪ {y = 0} ∪ {z = 0}.
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Blow up and blow down

Blow up:
σ blows up [1 : 0 : 0] to the line {x = 0}. To see this, consider
images of points approaching [1 : 0 : 0] along a line with the
slope [λ : µ] ∈ P1:

σ : [1 : λt : µt ] 7→ [λµt2 : µt : λt ] = [λµt : µ : λ] −−→
t→0

[0 : µ : λ].

Limiting points comprise the line {x = 0} ⊂ P2.

Blow down:
σ blows down the line {x = 0} to [1 : 0 : 0]. Indeed,

σ : [0 : y : z] 7→ [yz : 0 : 0] = [1 : 0 : 0].
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Degree lowering and singularity confinement

A component V ⊂ C(φ) is a degree lowering curve, if for some
n ∈ N we have φn(V ) ∈ I(φ). A singularity confinement pattern
is a sequence

C(φ) ⊃ V → φ(V )→ · · · → φn(V )→ φn+1(V ) ⊂ C(φ−1).

A presence of such a curve is necessary and sufficient for
deg(φn) < (degφ)n.
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Algebraic entropy

Definition. Dynamical degree and algebraic entropy of φ are

λ1(φ) = lim
n→∞

(deg(φn))1/n ≤ d and h(φ) = log(λ1(φ)) ≤ log(d).

Inequalities strict iff there exist degree lowering curves.

How drastic can be the degree drop of iterations φn?

Definition. A birational map φ is integrable if h(φ) = 0.

Yuri B. Suris From geometry to dynamics



Birational quadratic maps of P2

A generic birational map φ : P2 99K P2 of deg = 2 can be
represented as φ = A1 ◦ σ ◦ A2, where A1,A2 ∈ Aut(P2), and

σ : [x : y : z]→ [yz : xz : xy ].

The variety of such maps has dim = 14.

A generic map from this set, not an involution, can be described
by a pair of bilinear (Kahan type) relations:

x̃ − x = a1 + a2(x + x̃) + a3(y + ỹ) + a4xx̃ + a5yỹ + a6xỹ + a7yx̃ ,
ỹ − y = b1 + b2(x + x̃) + b3(y + ỹ) + b4xx̃ + b5yỹ + b6xỹ + b7yx̃ .
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Singularities of birational quadratic maps of P2

I Singularities: I(φ) = {p1,p2,p3}, I(φ−1) = {q1,q2,q3}.
I φ blows up points p1,p2,p3 to lines (q2q3), (q1q3), (q1q2),

resp.
I φ blows down lines (p2p3), (p1p3), (p1p2) to points

q1,q2,q3, resp.
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Lifting to automorphism

Definition. Map φ is confining, if all three lines (pjpk ) are
degree lowering (i.e., participate in singularity confinement
patterns):

(pjpk )→ qi → φ(qi)→ · · · → φni−1(qi) = pσi → (qσj qσk ).

Orbit data of a confining map φ: (n1,n2,n3) and (σ1, σ2, σ3).

A confining map φ can be lifted to an automorphism φ̂ of a
surface S obtained from P2 by blowing up all participating
points.

Dynamical degree λ1(φ) can be found as the spectral radius of
the action of φ̂∗ on Pic(S).

Theorem [Bedford, Kim’ 2004]. For a confining map, λ1(φ)
depends only on the orbit data associated to φ.
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Example of integrable planar birational map: Kahan
discretization of Hamiltonian systems

For n = 2, consider f (x , y) = J∇H(x , y), with J =

(
0 1
−1 0

)
.

Φf is a birational planar map with an invariant measure and an
integral⇒ completely integrable. Integral:

H̃(x , y , ε) =
C(x , y , ε)
D(x , y , ε)

,

where deg C = 3, deg D = 2. Level sets:

Eλ =
{

(x , y) : C(x , y , ε)− λD(x , y , ε) = 0
}
,

a pencil of cubic curves, characterized by its nine base points.
On each invariant curve, Φf induces a translation (respective to
the addition law on this curve).
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Complexification, projectivization

Pencil

Ēλ =
{

[x : y : z] ∈ CP2 : C̄(x , y , z, ε)− λzD̄(x , y , z, ε) = 0
}
.

spanned by two curves,

Ē0 =
{

[x : y : z] ∈ CP2 : C̄(x , y , z, ε) = 0
}
,

assumed nonsingular, and

Ē∞ =
{

[x : y : z] ∈ CP2 : zD̄(x , y , z, ε) = 0
}

reducible, consisting of conic {D̄(x , y , z, ε) = 0} and the line at
infinity {z = 0}. Three base points at infinity:

{F1,F2,F3} = Ē0 ∩ {z = 0},

and six further base points {B1, . . .B6} = Ē0 ∩ {D̄ = 0}.
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INTEGRABLE MAPS FROM SPHERICAL GEOMETRY

1. SPHERICAL TRIANGLES

F1 F2

F3

B6
B5

B4

B3

B1

B2

B5

B2

�2F2

1
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Main result

I M. Petrera, J. Smirin, Yu. S. Geometry of the Kahan
discretizations of planar quadratic Hamiltonian systems.
Proc. R. Soc. A 476 (2019) 20180761

Theorem. A pencil of elliptic curves consists of invariant curves
for Kahan’s discretization of a planar quadratic Hamiltonian
vector field iff the hexagon through the six finite base points has
three pairs of parallel sides which pass through the three base
points at infinity.
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2 INTEGRABLE MAPS FROM SPHERICAL GEOMETRY

B6

B5

B4

B3

B1

B2

F3

F2

F1

F1 F2

F3

B6

B5

B4

B3

B1

B2
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Manin involutions for cubic curves

Definition. Consider a nonsingular cubic curve Ē in CP2.
• For a point P0 ∈ Ē , the Manin involution IĒ,P0

: Ē → Ē is
defined as follows:
I For P 6= P0, the point P̄ = IĒ,P0

(P) is the unique third
intersection point of Ē with the line (P0P);

I For P = P0, the point P̄ = IĒ,P0
(P) is the unique second

intersection point of Ē with the tangent line to Ē at P = P0.

• For two distinct points P0,P1 ∈ Ē , the Manin transformation
MĒ,P0,P1

: Ē → Ē is defined as

MĒ,P0,P1
= IĒ,P1

◦ IĒ,P0
.

With a natural addition law on Ē :

IĒ,P0
(P) = −(P0 + P), MĒ,P0,P1

(P) = P + P0 − P1.

Yuri B. Suris From geometry to dynamics



Manin involutions for cubic pencils

Definition. Consider a pencil E = {Ēλ} of cubic curves in CP2

with at least one nonsingular member.
• Let B be a base point of the pencil. The Manin involution
IE,B : CP2 99K CP2 is a birational map defined as follows. For
any P ∈ CP2, not a base point of E, let Ēλ be the unique curve
of E through P. Set

IE,B(P) = IĒλ,B(P).

• Let B1,B2 be two distinct base points of the pencil. The
Manin transformation ME,B1,B2 : CP2 99K CP2 is a birational map
defined as

ME,B1,B2 = IE,B2 ◦ IE,B1 .

Yuri B. Suris From geometry to dynamics



Manin involutions for cubic pencils

p1

p2

p3

p4

p5

p6

p7

p8

p9

p
Ip1(p)
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Direct statement. Proof.

First one shows that Kahan map Φf is a Manin transformation
in six different ways:

Φf = IE,B1 ◦ IE,F1 = IE,F1 ◦ IE,B4

= IE,B5 ◦ IE,F2 = IE,F2 ◦ IE,B2

= IE,B3 ◦ IE,F3 = IE,F3 ◦ IE,B6 .

Thus (on any invariant curve of E):

F1 − B1 = B2 − F2 = F3 − B3 = B4 − F1 = F2 − B5 = B6 − F3,

and
F1 + F2 + F3 = O.

Have, e.g.:

B1 + B2 = F1 + F2 = −F3 ⇔ B1 + B2 + F3 = O.

Thus, line (B1B2) passes through F3.
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Inverse statement. Proof.

Prescribe arbitrary nine coefficients of the side lines of the
hexagon (three slopes µ1, µ2, µ3 and six heights b1, . . . ,b6):

(B1B2) : y = µ3x + b1, (B4B5) : y = µ3x + b4,

(B2B3) : y = µ1x + b2, (B5B6) : y = µ1x + b5,

(B3B4) : y = µ2x + b3, (B6B1) : y = µ2x + b6.

This defines nine points B1, . . . ,B6 and F1,F2,F3, therefore a
pencil E of cubic curves with those nine base points. Set

Φ = IE,B1 ◦ IE,F1 = IE,F1 ◦ IE,B4

= IE,B5 ◦ IE,F2 = IE,F2 ◦ IE,B2

= IE,B3 ◦ IE,F3 = IE,F3 ◦ IE,B6 .

This is a birational map of CP2 of degree 2. Check that this is a
Kahan discretization of f = J∇H with deg H = 3.
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Inverse statement. Proof.

Explicit expression:

H(x , y) =

2µ12

b14µ23µ13

(
1
3 (µ3x − y)3 + 1

2 (b1 + b4)(µ3x − y)2 + b1b4(µ3x − y)
)

− 2µ23

b25µ12µ13

(
1
3 (µ1x − y)3 + 1

2 (b2 + b5)(µ1x − y)2 + b2b5(µ1x − y)
)

+
2µ13

b36µ12µ23

(
1
3 (µ2x − y)3 + 1

2 (b3 + b6)(µ2x − y)2 + b3b6(µ2x − y)
)
,

where bij = bi − bj , µij = µi − µj .

Geometry implies dynamics!
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Projective generalization of Hamiltonian case

Pascal configuration: six points A1, A2, A3, C1, C2, C3 on a
conic C, and three intersection points on a line `:

B1 = (A2C3)∩(A3C2), B2 = (A3C1)∩(A1C3), B3 = (A1C2)∩(A2C1).

A1
A2 A3

C1
C2

C3

B1
B2

B3

Consider pencil E of cubic curves passing through the nine
points Ai , Ci , Bi (contains a reducible cubic C ∪ `).
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Construction

Theorem [Yu. S.’ 2020]. The map

Φ = IE,A1 ◦ IE,B1 = IE,B1 ◦ IE,C1

= IE,A2 ◦ IE,B2 = IE,B2 ◦ IE,C2

= IE,A3 ◦ IE,B3 = IE,B3 ◦ IE,C3

is a birational map of degree 2 with
I I(Φ) = {C1,C2,C3}, blown up to lines c1 = (A2A3),

c2 = (A3A1), c3 = (A1A2),
I C(Φ) consisting of three lines a1 = (C2C3), a2 = (C3C1),

a3 = (C2C3), blown down to points A1, A2, A3.
Singularity confinement patterns of the map Φ:

(C2C3)→ A1 → B1 → C1 → (A2A3),

(C3C1)→ A2 → B2 → C2 → (A3A1),

(C1C2)→ A3 → B3 → C3 → (A1A2).
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Proof

To show: why the six Manin transformations correspond to one
and the same translation on any curve of the pencil:

A1 − B1 = B1 − C1 = A2 − B2 = B2 − C2 = A3 − B3 = B3 − C3.

Collinearities of Pascal configuration are translated to:

A2 + C3 + B1 = O, A3 + C2 + B1 = O,
A3 + C1 + B2 = O, A1 + C3 + B2 = O,
A1 + C2 + B3 = O, A2 + C1 + B3 = O,

and
B1 + B2 + B3 = O.
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Now: A1 + C1 = −(C2 + B3)− (A3 + B2)

= −(A3 + C2)− (B2 + B3) = B1 + B1,

which proves that A1 − B1 = B1 − C1. Similarly,

A2 + C1 = −B3 = B1 + B2,

which proves that B1 − C1 = A2 − B2.
All other equations follow in the same way.
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An early example

R. Penrose, C. Smith. A quadratic mapping with invariant cubic
curve. Math. Proc. Camb. Phyl. Soc. 89 (1981), 89–105:

Φ :




x0
x1
x2


 7→




x0(x0 + ax1 + a−1x2)
x1(x1 + ax2 + a−1x0)
x2(x2 + ax0 + a−1x1)




with

A1 = [0 : 1 : −a], C1 = [0 : a : −1], B1 = [0 : 1 : −1]

(and others cyclically). Upon a projective transformation
sending B1, B2, B3 to infinity, get a Kahan discretization of a
Hamiltonian vector field with H(x , y) = xy(1− x − y) with the
time step ε = (a− 1)/(a + 1).
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Further examples: (γ1, γ2, γ3)-family of 2d quadratic
systems

(
ẋ
ẏ

)
=

1

`γ1−1
1 `γ2−1

2 `γ3−1
3

J∇H,

where

J =

(
0 1
−1 0

)
, H(x , y) = (`1(x , y))γ1(`2(x , y))γ2(`3(x , y))γ3 ,

`i(x , y) = aix + biy are linear forms, and γ1, γ2, γ3 ∈ R.
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Origin: reduced Nahm equations for symmetric
monopoles [N. Hitchin, N. Manton, M. Murray’ 1995]

• Tetrahedral symmetry, (γ1, γ2, γ3) = (1,1,1):
{

ẋ = x2 − y2,
ẏ = −2xy ,

H1(x , y) =
y
3

(3x2 − y2).

• Octahedral symmetry, (γ1, γ2, γ3) = (1,1,2):
{

ẋ = x2 − 6y2,

ẏ = −3xy − 2y2,
H2(x , y) =

y
2

(2x + 3y)(x − y)2.

• Icosahedral symmetry, (γ1, γ2, γ3) = (1,2,3):
{

ẋ = 2x2 − y2,

ẏ = −10xy + y2,
H3(x , y) =

y
6

(3x − y)2(4x + y)3.

In all three cases level curves Hi(x , y) = c are of genus g = 1.
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The (γ1, γ2, γ3)-family: discretization

Hirota-Kimura-Kahan discretizations are integrable [M. Petrera,
A. Pfadler, Yu. S.’ 2011]:

{
x̃ − x = ε(x̃x − ỹy),
ỹ − y = −ε(x̃y + xỹ),

{
x̃ − x = ε(2x̃x − 12ỹy),
ỹ − y = −ε(3x̃y + 3xỹ + 4ỹy),

{
x̃ − x = ε(2x̃x − ỹy),
ỹ − y = ε(−5x̃y − 5xỹ + ỹy).

In all three cases, the map admits an invariant pencil of elliptic
curves, of degrees 3, 4, and 6, respectively.
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The (γ1, γ2, γ3)-family: classification of integrable
cases through discretization

Theorem [R. Zander’ 2020]. The only three cases when the
Kahan discretization of the (γ1, γ2, γ3)-system is confining, are
(γ1, γ2, γ3) = (1,1,1), (1,1,2), and (1,2,3). The orbit data in
these three cases are: (σ1, σ2, σ3) = (1,2,3) and, respectively,

(n1,n2,n3) = (3,3,3), (4,4,2), and (6,3,2).

Observe: these (n1,n2,n3) are the only positive integer
solutions of

1
n1

+
1
n2

+
1
n3

= 1.

Puzzle: what do lengths of singularity confinement patterns
have to do with tilings of the plane by congruent triangles???
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Kahan discretization for (γ1, γ2, γ3) = (1,1,2)

p1 p2p3 p4

p5

p6

p7

p8
p9

p10
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Kahan discretization for (γ1, γ2, γ3) = (1,1,2)

I Invariant pencil consists of quartic curves with two double
points: E = P(4; p1, . . . ,p8,p2

9,p
2
10).

I I(φ) = {p4,p8,p10}, I(φ−1) = {p1,p5,p9}.
I Singularity confinement patterns:

(p8p10)→ p1 → p2 → p3 → p4 → (p5p9)

(p4p10)→ p5 → p6 → p7 → p8 → (p1p9)

(p4p8)→ p9 → p10 → (p1p5)

I What is the geometric representation?
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Involutions for quartic pencils with two double points

Manin involutions for E = P(4; p1, . . . ,p8,p2
9,p

2
10):

I I(1)
k , k ∈ {9,10}: I(1)

k (p) is the third intersection point of
the quartic through p with the line (ppk ).

I I(2)
i,j , i , j ∈ {1, . . . ,8}: I(2)

i,j (p) is the sixth intersection point
of the quartic through p with the conic through p9, p10, pi ,
pj , p.

Are derived from Manin involutions for a cubic pencil upon a
quadratic Cremona transformation resolving both double points.
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Involutions for quartic pencils with two double points

p1 p2p3 p4

p5

p6

p7

p8

p9

p10 pI(1)
10 (p)

I(2)
1,5(p)
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Quadratic Manin maps for special quartic pencils

p1

p2

p3

p4

p5

p6

p7 p8

p9

p10

C

A

B

Geometry of base points of a projectively symmetric quartic
pencil with two double points E = P(4; p1, . . . ,p8,p2

9,p
2
10).
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Quadratic Manin maps for special quartic pencils

Theorem [M. Petrera, Yu. S., K. Wei, R. Zander’ 2021].

1. The projective involution σ can be represented as

σ = I(2)
1,8 = I(2)

2,7 = I(2)
3,6 = I(2)

4,5 .

2. The map

φ = I(2)
i,k ◦ I(2)

j,k = I(1)
9 ◦ σ = σ ◦ I(1)

10 ,

(i , j) ∈ {(1,2), (2,3), (3,4), (5,6), (6,7), (7,8)} and
k ∈ {1, . . . ,8} distinct from i , j , is a birational map of
degree 2, with the singularity confinement patterns:

(p8p10)→ p1 → p2 → p3 → p4 → (p5p9),

(p4p10)→ p5 → p6 → p7 → p8 → (p1p9),

(p4p8)→ p9 → p10 → (p1p5).
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Kahan discretization for (γ1, γ2, γ3) = (1,2,3)

p1 p2 p3p4 p5 p6

p7

p9

p10

p11
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Kahan discretization for (γ1, γ2, γ3) = (1,2,3)

I Invariant pencil of sextic curves with 3 double points and 2
triple points: E = P(6; p1, . . . ,p6,p2

7,p
2
8,p

2
9,p

3
10,p

3
11).

I I(φ) = {p6,p9,p11}, I(φ−1) = {p1,p7,p10}.
I Singularity confinement patterns:

(p9p11)→ p1 → p2 → p3 → p4 → p5 → p6 → (p7p10),

(p6p11)→ p7 → p8 → p9 → (p1p10),

(p6p9)→ p10 → p11 → (p1p7).

I What is the geometric representation?
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Kahan discretization for (γ1, γ2, γ3) = (1,2,3)

Manin involutions for E = P(6; p1, . . . ,p6,p2
7,p

2
8,p

2
9,p

3
10,p

3
11):

I I(4)
i,j,k , i , j ∈ {1, . . . ,6}, k ∈ {7,8,9}: e.g., I(4)

i,j,9 is defined in
terms of intersection of E with quartics of the pencil

P(4; pi ,pj ,p7,p8,p2
9,p

2
10,p

2
11).

I I(3)
i,k , i ∈ {1, . . . ,6}, k ∈ {10,11}: e.g., I(3)

i,10 is defined in
terms of intersection of E with cubics of the pencil

P(3; pi ,p7,p8,p9,p2
10,p11).

Theorem [M. Petrera, Yu. S., K. Wei, R. Zander’ 2021]. The
map φ can be represented as compositions of (suitably defined)
Manin involutions in the following ways:

φ = I(4)
i,k ,m ◦ I(4)

j,k ,m = I(3)
i,n ◦ I(3)

j,n

for any (i , j) ∈ {(1,2), (2,3), (3,4), (4,5), (5,6)},
k ∈ {1, . . . ,6} \ {i , j}, and m ∈ {7,8,9}, n ∈ {10,11}.
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Part 3. Geometric constructions of
integrable 3D birational maps

of bidegree 3:3
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Hirota-Kimura’s discrete time Euler top





ẋ1 = α1x2x3,

ẋ2 = α2x3x1,

ẋ3 = α3x1x2,

 





x̃1 − x1 = εα1(x̃2x3 + x2x̃3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2).

Features:
I Equations are linear w.r.t. x̃ = (x̃1, x̃2, x̃3)T:

A(x , ε)x̃ = x , A(x , ε) =




1 −εα1x3 −εα1x2
−εα2x3 1 −εα2x1
−εα3x2 −εα3x1 1


 ,

imply a rational map, which is reversible (therefore
birational):

x̃ = Φ(x , ε) = A−1(x , ε)x , Φ−1(x , ε) = Φ(x ,−ε).
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I Explicit formulas:




x̃1 =
x1 + 2εα1x2x3 + ε2x1(−α2α3x2

1 + α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃2 =
x2 + 2εα2x3x1 + ε2x2(α2α3x2

1 − α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃3 =
x3 + 2εα3x1x2 + ε2x3(α2α3x2

1 + α3α1x2
2 − α1α2x2

3 )

∆(x , ε)
,

where ∆(x , ε) = det A(x , ε)

= 1− ε2(α2α3x2
1 + α3α1x2

2 + α1α2x2
3 )− 2ε3α1α2α3x1x2x3.
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I Two independent integrals:

I3(x , ε) =
1− ε2α2α3x2

1

1− ε2α3α1x2
2
, I1(x , ε) =

1− ε2α3α1x2
2

1− ε2α1α2x2
3
.

I Invariant volume form:

ω =
dx1 ∧ dx2 ∧ dx3

φ(x)
, φ(x) = 1− ε2αiαjx2

k

and bi-Hamiltonian structure found in:
I M. Petrera, Yu. S. On the Hamiltonian structure of the

Hirota-Kimura discretization of the Euler top.
Math. Nachr., 2010, 283, 1654–1663.
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Geometry of the discrete time Euler top

Space P3 is foliated by joint level sets of two integrals of dET,
each being a spatial elliptic curve – an intersection of two
quadrics

C = H(λ) ∩ Z(µ),

where

H(λ) =
{

H12(x , ε) =
α1x2

2 − α2x2
1

1− ε2α1α2x2
3

= λ
}

is a hyperboloid, while

Z(µ) =
{

I3(x , ε) =
1− ε2α2α3x2

1

1− ε2α3α1x2
2

= µ
}

is a cylinder.
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Involutions on quadrics H, Z

I Through any point x ∈ C there pass two straight line
generators `1, `2 of H(λ). Their direction vectors are
rational w.r.t. x . Denote by i1(x), resp. i2(x), the second
intersection point of `1, resp. of `2, with C. This defines two
involutions i1, i2 : C → C, which lead to two birational maps
i1, i2 : P3 99K P3.

I Similarly, through any point x ∈ C there pass a straight line
generator of Z(µ) (parallel to x3-axis). Denote by σ(x) its
second intersection point with C, so that

σ(x1, x2, x3) = (x1, x2,−x3).

This is a linear projective involution σ : P3 99K P3.
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HK discrete time Euler top from involutions

Theorem [N. Smeenk, Yu. S.’ 2020]. The discrete time Euler
top can be represented as

Φ = σ ◦ i1 = i2 ◦ σ.

for case (b). Explicit calculation shows that the involutions ◆(⌫,±�) from (30) become the

birational maps

◆a(⌫,±�) : R3 ! R3, x 7! x̂ with

8
>>><
>>>:

x̂1 = f(x, ±�)1

x̂2 = f(x, ±�)2

x̂3 = �f(x, ±�)3

and

◆b(⌫,±�) : R3 ! R3, x 7! x̂ with

8
>>><
>>>:

x̂1 = �f(x, ±�)1

x̂2 = f(x, ±�)2

x̂3 = f(x, ±�)3.

The previous two cases have shown that the involutions corresponding to ⌫i = 0 and ⌫i = ⌫

are birational maps. With Theorem 5.1 we find

8
<
:
◆a(⌫,��) � ◆a(0,±�) = ◆a(0,±�) � ◆a(⌫,�) = f(·, �) for case (a)

◆b(⌫,�) � ◆b(0,±�) = ◆b(⌫±�,) � ◆b(⌫,��) = f(·, �) for case (b)

which represents the birational map f(·, �) as the composition of two birational involu-

tions. The underlying geometric interpretation is shown in Figure 11.

Figure 11: Case (a) and case (b): Setting ⌫1 = ⌫ and ⌫2 = 0 leads to H2 = C3 for case (a)
and H2 = C1 for case (b).

30
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General construction: separable pencils

Consider P3 with homogeneous coordinates [x1 : x2 : x3 : x4].
Consider two separable pencils of quadrics,

Q(λ) = {X1X2 − λX3X4 = 0}, P(µ) = {U1U2 − µU3U4 = 0},

where Xj and Uj are two quadruples of independent linear
forms on C4. Pencil Q(λ) (say) consists of all quadrics through
the base set consisting of four lines {X1 = X3 = 0},
{X1 = X4 = 0}, {X2 = X3 = 0}, {X2 = X4 = 0}.
Space P3 is foliated by elliptic curves C = Q(λ) ∩ P(µ).

Two straight line generators of Q(λ) through [X1 : X2 : X3 : X4]:

`1 =
{

[X1 : (1 + t)X2 : (1 + t)X3 : X4] : t ∈ P1
}
,

and
`2 =

{
[(1 + t)X1 : X2 : (1 + t)X3 : X4] : t ∈ P1

}
.
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General construction: involution along generators

Theorem [J. Alonso, Yu. S., K. Wei’ 2021].
• Involution i1 : C → C along generators `1 of Q(λ) is given by

i1 : [X1 : X2 : X3 : X4] 7→ [X1T2 : X2T0 : X3T0 : X4T2],

where T0, T2 are polynomials of deg = 4. Thus, i1 : P3 99K P3 is
of deg = 5.

• If four pairwise non-intersecting lines

{X1 = X4 = 0}, {X2 = X3 = 0}, {U1 = U3 = 0}, {U2 = U4 = 0}

lie on a quadric, say Q0 = 0, then T2 and T0 are divisible by Q0,
and

i1 : [X1 : X2 : X3 : X4] 7→ [X1Q2 : X2Q1 : X3Q1 : X4Q2],

with certain quadratic polynomials Q1, Q2. Thus, i1 : P3 99K P3

is of deg = 3.
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General construction: combine with a linear involution

If both pencils Q(λ) and P(µ) are invariant under a linear
projective involution σ : P3 99K P3, we obtain a birational map

φ = σ ◦ i1 : P3 99K P3

of deg = 3, with two integrals of motion,

X1(x)X2(x)

X3(x)X4(x)
= λ and

U1(x)U2(x)

U3(x)U4(x)
= µ.
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Example: discrete time Zhukovsky-Volterra gyrostat

Theorem [J. Alonso, Yu. S., K. Wei’ 2021]. Set

X1 =
√
α1x2 −

√
α2x1 − (β1/

√
α2)x4,

X2 =
√
α1x2 +

√
α2x1 + (β1/

√
α2)x4,

X3 = x4 − ε
√
α1α2x3,

X4 = x4 + ε
√
α1α2x3,

U1 =
√
α1x3 −

√
α3x1 + (β1/

√
α3)x4,

U2 =
√
α1x3 +

√
α3x1 − (β1/

√
α3)x4,

U3 = x4 − ε
√
α3α1x2,

U4 = x4 + ε
√
α3α1x2,

defining two separable pencils invariant under σ : x3 → −x3.
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Then the above construction leads to the map given, in the
inhomogeneous coordinates, by

φ :





x̃1 − x1 = εα1(x̃2x3 + x2x̃3),
x̃2 − x2 = εα2(x̃3x1 + x3x̃1) + εβ1(x̃3 + x3),
x̃3 − x3 = εα3(x̃1x2 + x1x̃2)− εβ1(x̃2 + x2),

with two integrals of motion,

H2(ε) =

α3x2
1 − α1x2

3 − 2β1x1 +
β2

1
α3

1− ε2α3α1x2
2

,

H3(ε) =
α1x2

2 − α2x2
1 − 2β1x1 −

β2
1
α2

1− ε2α1α2x2
3

.
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This is the HK discretization of a Zhukovsky-Volterra gyrostat,




ẋ1 = α1x2x3,
ẋ2 = α2x3x1 + β1x3,
ẋ3 = α3x1x2 − β1x2,

a system with two polynomial integrals of motion

H2 = α3x2
1 − α1x2

3 − 2β1x1,

H3 = α1x2
2 − α2x2

1 − 2β1x1.
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Summary

I Classification of integrable cases of Kahan discretization
for the (γ1, γ2, γ3)-family.

I Geometric construction of Manin involutions for pencils of
elliptic curves of degree 4 and 6.

I Integrable Kahan discretizations for (γ1, γ2, γ3) = (1,1,1),
(1,1,2), (1,2,3) are Manin maps for pencils of elliptic
curves of degree 3, 4, 6, resp.

I Special geometry of base points ensures deg = 2 for
certain Manin maps.

I Special geometry of base sets of two separable pencils of
quadrics ensures deg = 3 for certain integrable birational
maps in 3D defined via involutions along generators.
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