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Some notes on A. Borisov path in mechanics



Institute of Computer Science in Izhevsk

• 1997 Laboratory of Dynamical Chaos and Nonlinearity, Udmurt State University (UdSU).
• 2002 Institute of Computer Science 
• 2010 Laboratory of Nonlinear Analysis and Design of New Types of Vehicles
• 2020 Institute of Computer Science belongs to the Ural Mathematical Center



• Regular and Chaotic Dynamics (RCD) 1996 (Russian) and 1998 (English)

• Russian Journal of Nonlinear Dynamics  2005 (Russian) and 2018 (English)

• Computer Research and Modeling  2009 (Russian & English)

Alexey Borisov always took a great interest in the history of science. He regarded the results of classical works as

fundamental and read them in the original. This interest was so great that he managed to do what even large Russian

publishing houses could not: get the fundamental classical works of A.B. Basset, C. Caratheodory, E.J.Cartan,

J.G.Darboux, J.H.Jellett, S.Lie, W. Thomson and of many others translated into Russian and publish them.



Conferences Geometry, Dynamics, Integrable Systems  (in collaboration with V. Dragovich et al)
• Belgrade, Serbia, 2 – 7 September 2008;

• Belgrade – Fruska Gora, Serbia, 7 – 13 September 2010;

• Lisbon – Sintra, Portugal, 10 – 16 September 2011;

• Izhevsk, Russia, 10 – 14 June 2013;

• Trieste, Italy, 16 – 17 June 2014;

• Izhevsk, Russia, 2 – 5 June 2016;

• Moscow, Russia, 5 – 9 June, 2018;

• Zlatibor, Serbia, June 2022.

IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence, 

Moscow, Russia, August 25–30, 2006 (in collaboration with M. Sokolovskiy et al)

IUTAM Symposium on From Mechanical to Biological Systems - an Integrated Approach, 

Izhevsk, Russia, 5 – 10 June 2012

Conference Scientific Heritage of Sergey A. Chaplygin:

nonholonomic mechanics, vortex structures and hydrodynamics, Cheboksary, Russia, 2 - 6 June 2019



One cannot but mention another outstanding hobby of 
Alexey Borisov. Many will remember him as a professor and 
a musician in one person, with his numerous concerts, 
masterly play, creative charisma and charm. Alexey Borisov
loved the accordion very much and did all he could to
popularize this instrument. For many years in succession he 
held international accordion music festivals entitled 
“The Mystery of Accordeon” with famous accordion players
of Russia and Europe, such as Dmitry Dmitrienko, Emi Dragoi, 
Valery Kovtun, Ilya Ryskov, William Sabatier, Maria Selezneva, 
and Roman Zhbanov, and violinist Ksenia Blagovich.
As a result of this hobby, the publishing center started
another line of activity, namely, publication of printed music
and music manuals. 

Music



Scientific
Areas of mechanics

• Rigid body dynamics

• Celestial mechanics in spaces of constant curvature

• Figures of equilibrium and the evolution of self-
gravitating ellipsoids;

• Vortex dynamics

• Nonholonomic mechanics

Methods of analysis

• Poisson structures

• Integrable and superintegrable systems

• Explicit integration, reduction, and isomorphisms

• Bifurcation analysis and stability

• Numerical methods of investigating dynamics



Borisov A. V., Mamaev I. S., Bizyaev I. A., Historical and Critical Review of the Development of Nonholonomic Mechanics: 
the Classical Period, Regular and Chaotic Dynamics, 2016, vol. 21, no. 4, pp. 455-476

Jacobi about Euler’s work: 
“Euler’s work has the great merit that it presents, wherever possible, all cases in which problems can be solved completely

using given methods and means...Therefore, his examples always show a complete content of his method according to the
state of science of that time and, as a rule, when it is possible to add a new example to Euler’s examples, it is an enrichment
of science, for it rarely happened that a case solvable by his methods escaped his attention. . . ” 

P. Halmos: 
“The heart of mathematics consists of concrete examples and concrete problems. Big general theories are usually afterthoughts
based on small but profound insights; the insights themselves come from concrete special cases. . . ” 

E. Zehnder about J. Moser: 
“These notes owe much to Jurgen Moser’s deep insight into dynamical systems and his broad view of mathematics. 
They also reflect his specific approach to mathematics by singling out inspiring typical phenomena rather than designing
abstract theories. . . ” 



Chaplygin sphere Rolling Problem Is Hamiltonian

Borisov A. V., Mamaev I. S., Chaplygin's Ball Rolling Problem Is Hamiltonian, Mathematical Notes, 2001, vol. 70, no. 5, pp. 720-723

The condition that there be no slipping at the point of contact imposes the following nonholonomic
constraint on the system: 

The equations of motion of the system have the form 

The system has the following integrals of motion: 

Also, the system possesses an invariant measure                      with density



Two skew-symmetric representation

The equations of motion can be represented in conformal Hamiltonian form as 



Hierarchy of nonholonomic dynamics rolling of body on plane

Borisov A. V., Mamaev I. S., The rolling motion of a rigid body on a plane and a sphere. Hierarchy of dynamics, Regular and Chaotic Dynamics, 2002,
vol. 7, no. 2, pp. 177-200

Suppose that the rigid body rolls without sliding (i.e. the velocity of contact point P is equal to zero) on the fixed surface represented 
by plane. The first part of equations of motion is the vector dynamical equation of kinetic moment behavior in time with respect to the contact
point P. This equation is represented for arbitrary shapes of body and surface in the form

For equations we always have the energy integral and the geometrical integral

We consider all the known cases of existence of additional first integrals (one or two at once) and the cases of existence of invariant measure. 



Before we consider the following cases of the body’s motion, we shall present some general construction that let us to establish relations
between equations to some point one-to-one map in three-dimensional space. We present the computer analysis of this map using the
numerical integration of the indicated system at the fixed value of energy. Using this method we can find out and give a visual interpretation
to various possibilities of existence of measure and integrals in their various combinations. To construct the three-dimensional map we use 
the Andoyer–Deprit variables (L,G,H,l,g,h). The problems described above require two additional integrals of motion; therefore, it is 
necessary to use three-dimensional maps, and such maps are not necessarily possess an invariant measure (as against to Hamiltonian 
mechanics). Using the known formulas we make the transition from the variables            to the Andoyer–Deprit variables

We fix the level of energy              , then choose the intersecting plane, for example, as                           , and obtain the
three-dimensional map. induced by sequential intersections of the phase trajectory with the chosen intersecting plane. 



The three-dimensional map for the
case of Chaplygin ball. The figure
shows very clearly that all trajectories
are situated on joint level surfaces 
of two integrals. 

Some trajectories in the problem of rolling
of ellipsoid with the spherical tensor of inertia 
on plane. A random layer (which is obtained 
from one trajectory) in this case is not
situated on any surface.

One of trajectories in the problem of rolling of
unbalanced ball on plane. The figure shows clearly
that all points are situated on some surface; the 
condensations of points correspond to asymptotic
approximations of the trajectory to periodic solutions.
The trajectory goes out from the top and approaches
to the three points in lower part of surface



Hierarchy of nonholonomic dynamics

; Borisov A. V., Mamaev I. S., Kilin A. A., The rolling motion of a ball on a surface. New integrals and hierarchy of dynamics, Regular and Chaotic 
Dynamics, 2002, vol. 7, no. 2, pp. 201-219



Borisov A. V., Mamaev I. S., Kilin A. A., The rolling motion of a ball on a surface. New integrals and hierarchy of dynamics, 
Regular and Chaotic Dynamics, 2002, vol. 7, no. 2, pp. 201-219



Borisov A. V., Mamaev I. S., Bizyaev I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a
Plane and a Sphere, Regular and Chaotic Dynamics, 2013, vol. 18, no. 3, pp. 277-328

The equations of motion in the local variables are represented in the form of the Chaplygin system



Strange Attractors in Rattleback Dynamics 

Borisov A. V., Mamaev I. S., Strange Attractors in Rattleback Dynamics, Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393-403



Borisov A. V., Kilin A. A., Mamaev I. S., Generalized Chaplygin’s Transformation and Explicit Integration of a System with a Spherical 
Support, Regular and Chaotic Dynamics, 2012, vol. 17, no. 2, pp. 170-19

Borisov A. V., Kilin A. A., Mamaev I. S., Invariant Submanifolds of Genus 5 and a Cantor Staircase in the Nonholonomic Model of a 
Snakeboard, International Journal of Bifurcation and Chaos, 2019, vol. 29, no. 3, 1930008, 19 pp.



Bizyaev I. A., Borisov A. V., Mamaev I. S., The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic 
Acceleration, Regular and Chaotic Dynamics, 2017, vol. 22, no. 8, pp. 955–975; 



Bizyaev I. A., Bolotin S. V., Mamaev I. S., Normal forms and averaging in an acceleration problem in nonholonomic mechanics, 

Chaos, 2021, vol. 31, 013132, 16 pp.

We explore the dynamics of a mechanical multicomponent system with a nonholonomic constraint. The system consists of a platform, 

which slides on a horizontal plane like the Chaplygin sleigh. On this platform, n material points move according to a given law. 

The most interesting problem in the dynamics of the nonautonomous Chaplygin sleigh is that of its speed-up (acceleration). 

In this case, the problem reduces to investigating a reduced system of two first-order equations with periodic coefficients

where the coefficients are periodic functions of time τ with the same period.

In order to formulate the main result, we will need to define some average values for system. We recall that the average of a periodic 

function                             is given by

we define its periodic antiderivative with zero average by the conditions. Set

Theorem. Let                        , be the first nonzero coefficient. Assume that            . Then for any and a sufficiently small 
for any initial condition in the region

we have and                  as                  in the form



Topology and stability of integrable systems

Bolsinov A. V., Borisov A. V., Mamaev I. S., Topology and stability of integrable systems, Russian Mathematical Surveys, 2010, 
vol. 65, no. 2, pp. 259–318

Suppose that we have a Hamiltonian system with two degrees of freedom, which in canonical variables                     
is given in the form

where               is the Hamiltonian. We assume that the system has an additional first integral              and, consequently, is integrable.
Henceforth we denote a point on a manifold and phase variables by x, in particular, x = (p, q) in this case. We recall the Liouville–Arnol’d
theorem, which describes the behaviour of such systems in the general position situation. 

Theorem. Suppose that on a symplectic manifold         we are given a pair of functions H(x), F(x) in involution, that is,
Then equations can be integrated by quadratures. Let                                                               be a common level of the first integrals. 
If the functions H and F are independent on           , then
1)           is a smooth manifold that is invariant under the phase flow of the system;
2) every compact connected component of the surface           is diffeomorphic to a two-dimensional torus;
3) in a neighbourhood of a compact connected component of action-angle variables                    ,                        can be chosen

such that                             and the system (1) is represented in the form

Our goal: to find periodic solutions (closed trajectories) of the system (1) and investigate their (orbital) stability. 



We denote by the integral map of an integrable system:

In some papers this map is also called the energy–momentum map, or simply the momentum map. We define a number of objects that

play important roles in the study of periodic solutions:

1) the region of possible motion (RPM) is the full image of the phase space on the plane of first integrals (to each point

there corresponds the integral manifold of the system, which, generally speaking,

can contain several connected components);

2) the set S of critical points of the integral map,

3) the bifurcation set Σ of the first integrals — the image of the set of critical points, that is, the values of the first integrals

corresponding to the critical points of the integral map.

Definition. The bifurcation diagram of an integrable system is defined to be the region of possible motion             depicted on the plane

of first integrals          together with the image Σ of the critical set and the indication of the images      and     .

Theorem. Consider a one-parameter family of closed critical trajectories. Suppose that this family is isolated in the sense that there are
no other critical points of the integral map in a neighbourhood of this family. Suppose further that this family is mapped onto some
individual branch of the bifurcation diagram Σ which can be given as the graph of some smooth function .
Suppose that at least one trajectory in the family is non-degenerate. Then the following hold:
1) almost all the trajectories of the family are non-degenerate and have one and the same type (either elliptic or hyperbolic);
2) if one of the trajectories of the family has elliptic type, then all the trajectories of the family (both degenerate and non-degenerate)
are stable;
3) on the other hand, if at least one of the trajectories has hyperbolic type, then all the trajectories of the family (both degenerate and
non-degenerate) are unstable.

Proposition. If some family of periodic trajectories satisfies the hypotheses of Theorem and corresponds to a branch of the bifurcation
diagram that lies on the boundary of the RPM, then all the trajectories in this family are stable.



Liouville tori and a singular manifold adjoining an
unstable periodic solution. Singular leaf containing a hyperbolic trajectory with

nonorientable separatrix diagram.

The bifurcation diagram of the Goryachev–Chaplygin case. 
The darker colour marks the domain in which to each point 
there corresponds a pair of invariant tori.

The bifurcation complex of a Goryachev–Chaplygin top.
The symbol + indicates stable critical periodic solutions,
and the symbol − indicates unstable ones.



The Gaffet system is a relatively new interesting class of integrable systems of astrophysical nature, which was found by Gaffet and since
then has been investigated in detail analytically in his numerous papers. All our methods of analysis are applicable to this reduced system.
In fact, in this case they have no alternative, since the explicit solution obtained by Gaffet has an extremely complicated form, from
which it is impossible to extract any information about the dynamics of the system. Our approach enables one to qualitatively describe
the dynamics of the system and to investigate its stability. This system describes the evolution of relative sizes of an expanding gaseous
ellipsoid filled with a monatomic ideal gas. The Hamiltonian in this case has the form

where the quantities are expressed in terms of the principle semi-axes of the ellipsoid by the formulae . Thus, the
system is defined in the first quadrant of the sphere: , and for it is necessary to exclude the diagonal

. Everywhere inside the domain of definition the energy level is a compact three-dimensional manifold.
The system admits the integral of degree six



Furthermore, it is also necessary to take into account that the possible values of      must satisfy the requirement . 
Calculating the corresponding values of the first integrals, we find two curves on the bifurcation diagram in the form





The Bifurcation Analysis and the Conley Index in Mechanics

Bolsinov A. V., Borisov A. V., Mamaev I. S., The Bifurcation Analysis and the Conley Index in Mechanics, Regular and Chaotic Dynamics, 2012, vol. 17, 
no. 5, pp. 457-478

Consider a system whose Hamiltonian               is a smooth function on      depending on a parameter                     Let be its

nondegenerate singular point at              . What happens to this point under a change of the parameter? It is well known that under a small 

variation of the parameter it remains nondegenerate and its Morse index does not change (the point itself can, of course, slightly change its

location). Moreover, as long as it remains nondegenerate, its index remains the same. This easily follows from the continuity argument and the

implicit function theorem. The following natural question arises:

can the Morse index of the point change during a passage through degeneration, and if it can, what does this change imply?

Theorem. Let               be a smooth function on      smoothly depending on a parameter                      and let                be an isolated singular

point of                for each     . Let     be nondegenerate at            and let its Morse index change as    passes through zero. Then in an arbitrarily

small neighborhood of      there exist other singular points for some values of    .

Many problems in mechanics often require to find and analyze the equilibria of Hamiltonian systems depending on some parameter.

In fact, this reduces to analysis of critical points of the Hamiltonian              , which is a smooth (analytical) function of phase variables

and the parameter     . One of the most common problems is to describe the relative equilibria of a Hamiltonian system possessing a

cyclic integral (see the following section for more details). In this case one needs to find critical points of the Hamiltonian reduced by the action

of the integral, where     is the value of the cyclic integral. As a rule, for almost all values of    the critical points turn out to be nondegenerate

and form one-parameter families                                      Note that on the plane of values of the first integrals    one can construct

in a natural way the bifurcation curves      corresponding to the singular points. These curves      are given as graphs of the functions

After calculating the Morse indices of the Hamiltonian  for the corresponding families of singular points                we can place them on the 

corresponding curves      and track their change under variation of    . This diagram is called the bifurcation diagram of the system.



As an example, we consider a system describing the dynamics of three equal point vortices in a circular domain on a plane. Let us choose the
origin of a fixed coordinate system O to coincide with the center of a circle, assume the vortex intensities to be equal to 1 and let their position 
be given by polar coordinates             . Then the equations of motion are expressed in Hamiltonian form

The equations of motion for vortices admit an additional first integral of motion – the moment of vorticity, which in this case can be written as

To find relative equilibria, we carry out a reduction by symmetry; to do so, we pass to the new variables
using the formulae

where                                            , are the angle variables.



Two stationary configurations of three vortices in a circular domain are well known:
• equilateral triangle (Thomson’s configuration);
• symmetric collinear configuration.

A natural question arises:  do these configurations exhaust all possible relative equilibria in this system ? 






