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Choreographies

The eqguations of motion for the r)l-body problem are
noomi(X; — X;
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We look for 27-periodic functions ¢ : R!' —» R’ such that if
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we find a solution to Newton’s equations Z" acts on the set of
bodies and in S! by shifting to the next body

|x; = X1
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Choreographies

A choreography Is an orbit where n masses follow the

same path

e C. Moore In '93, figure-eight orbit minimizing the
action among symmetric paths

e Chenciner-Montgomery '00 proved existence
minimizing the action over paths that connect a
colinear and an I1sosceles configuration

e C. SImO large number of different choreographies



Figure eight choreography

(http://www.scholarpedia.org/article/N-body choreographies)




Variational Methods

Many important contributions started from the work of Chenciner and Montgomery '00

An obstacle that one encounters Is the existence of paths with
collisions

e Terracini-Ferrario '04 applied the principle of least action

systematically over symmetric paths to avoid collisions, using ideas
Introduced by Marchal

e Other contributions to variational approaches include (Barutello-Ferrario-

Terracini '08) (K.-C. Chen '01) (Arioli-Barutello-Terracini '03) (Ferrario '06)
(Ferrario-Portaluri '08) (Terracini-Venturelli '07)



Continuation methods

Continuation methods usually give infinitely many choreographies

Chenciner-F¢éjoz '09 observed that choreographies appear in dense sets along the
vertical Lyapunov families that arise from n<7 rotating bodies in a regular polygon
(Weinstein-Moser)

When the frequency varies along the vertical Lyapunov families, then an infinite
number of choreographies exists



Equations of motion In a rotating frame

|lze-Garcia Azpeiltia ‘13, proved the global existence of bifurcating planar and vertical
Lyapunov families using equivariant degree theory (lze-Vignoli '03)
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where the (w;, ;) € C X R are the positions of the bodies in space, and s, is defined by
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Polygonal equilibria

The circular, polygonal relative equilibrium consists of the positions

4 =
w; = e, Z; 0.

The frequency of the rotational frame is chosen to be ﬁ



Some symmetries

These equations have symmetries inherited from Newton’s equations in the inertial
frame

1. rotationsin the plane, ¢”w.

2. phaseintime

3. trandationin Zi+c



Spatial branches

Theorem (lze-Garcia Azpeitia ’13)

For n > 3 and each k such that 1< k <n/2, the polygonal relative equilibrium has one
global bifurcation of spatial periodic solutions, which start with frequency \/@ have the

Ssymmetry
(wit) = eV w,(t + jkO),  w,(1) = W,(—1)),
aswell asthe symmeltries,
7(0) = z,(t+jk¢), and w,() =w,(t+7),  z,(0) = —z,(t + 7)

1 i sin?(kjc/2) g 2
S, = — : = —.
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Spatial branches




Spatial branches

wit) = ePw,(t + k), wy (1) = w,(—1)
(1) = z,(t+jk0), and w,(H) =w,(t+n),  z,0)=—2z,(+7n)

n=4, k=2



Symmetries along the branches

The periodic orbits in a branch satisfy the following (Ize-GarciaAzpeitia’ 13)
wi(t) = e, (t + jkO)
z{(1) = z,(t + jk{)

We transfprm to the inertial frame “
wit) = ePw,(t + jkO) — qi(t) = e, (1 + jkC)

1 S
with €2 :—(k\ﬁ — 1)

n U

(...remember x(1) = q(t —j&), | = 1, ..., nwith ¢= )



Symmetries along the branches

We have that
qi(t) = eV (1 + jkE)

We chose 2 = p/q and Zand m relatively prime integers such that
¢ np+q

m kq
then

q{t) = q,(t+] (1nk§))

(1, = 1 modn) and g, 1Isa2zxm - periodic function



Symmetries along the branches

At the same time, the spatial component satisfies that
z{(t) = z,(t + JKC) = z,(t + j1,kC)
We finally conclude that

(5 )0 = (G 7)1 + jk = (kE = m)EF))

which Is the condition to have a Choreography and we can say more about
the path



Resonant periodic orbits

We say that a planar or spatial Lyapunov orbit Is £ : m resonant If its period and

frequency are
2 ([ C m
I = — ), V=4/5—,
N () #=vi
with
1%y 1 oy
Sl — Z . ) ) C — =
4 _ sin(j¢/2) n

where £ and m arerelatively prime, and such that

kO —m e n/



Choreography Theorem

Theorem

In the inertial framean £ : m resonant Lyapunov orbit isa
choreography,

x(1) = x,(t + jkO).

wherex; = (g;,z) , k = k — (k& — m)¢* with £* themrmodular inverse
of 7.



Choreography Theorem

The projection on the xy-plane of the choreography

1) symmetric by rotations of the angle 2z/m
2) winds around a center £ times

The period of the choreography is m X 1 .., where



Spatial orbits and bifurcations




Spatial orbits and bifurcations




DDE framework n
i, = = 20 /5 + s = Y i
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The solutions of Newton's equations with the symmetries uj(t) — ¢/ ‘:un(t + jk() are zeros of the
map

n—1 JJ¢ :
_ _ u, —e’~u (t+ jk
C(u,, w) = w?ii, + 2w /sJi, — sIu, + Z - A JKC) T XXR =Y

=1 Up — ejjgun(t + JkC)

defined in spaces X and Y of analytic 27-periodic functions, which we will specify later in Fourier
components.

The equation &(u,, ) = O is a delay differential equation (DDE).



Symmetries

U, — ejjéun(t + JkC)

n—1
C(u,,w) = w-ii, + Zw\ﬁfan — slu, + Z
=1 ||, — e Hou,(t + jk)

These equations have three symmetries inherited from Newton's equations so
the solutions are invariant under

1. rotations in the plane, egw

2. changes in the phase, u(t + ®)
3. translation in it

0, @, Du(t) = u(t + @) + (0,0,7),



Augmented equations

The function & is invariant under the same group actions

50,9, 0uy) = (0, 0,75, =0

We augment the equation with three Lagrange multipliers
3
G(u,w) + Z AA(u) =0
J=1

where A are the three generator fields

1. A = dlag(J 0)x; rotations in the plane
2. A, = u changes in the phase

3. A; =(0,0,1) translations in 7



Poincare Sections

The augmented equations & (u, @) + Z /IAj(u) = () together with three
equations (Poincaré sections)

27

1. 1,(u) =J u(t) - Jii'(¢) dt =
0
2T
2. L(u) = J (u(t) — @, (1)) - @, () dr = 0
0
2T
4. LI(u) :J Us(1) dt =
0

correspond conservation of translations in z, rotations, and change of phase



Automatic Differentiation

We write the DDE as a higher dimensional equation with polynomial nonlinearities
U=y
1 n—1 -
V=—|—-2w,/51Jv + s;lu — 2 wj3 (u(t) — eyt +jk£f)) + A Ju + Ay + Azes

2
Q)
j=1

wW.

= =P (V) = eFv(e + K), u(t) — e Foutt + kO ) + aw?,

supplemented with the conditions

wi(0) =

| u(0) - e i%eu(jie)




Fourier Map

Consider the Banach space

| : 4
£l = {c = (cpez el = 3, e[V < oo},

that is a Banach algebra under discrete convolution (a * b), = ) aklbkz, where a, b € f,/l.

kl k2=k
- 3 “1 o (21N3 v (21N3 o (21yn—1 -
Defining Y = C° X C"" X (£,)” X (£,)” X (£,)""" the Fourier map

F : XX R — Yis defined by
n(u)

y(u, w)
F(x,w) = f(u,v)
g(A,u,v,w, w)

h(a, u,v,w)



A Posteriori Validation of the Fourier Map

Demonstrate that a Newton-like operator Is a contraction in a closed ball centered at a numerical approximation
X.

Theorem (Radii Polynomial Approach)

xe€ X, r>0,F: X — YFréchet differentiable on the ball B(x). LetAT € B(X,Y) (approximation of DF(X))
and A € B(Y, X) (approximate inverse of DF(x)), AF: X — X, with A injective.

Let Yy, Zy, Z{, Z, > 0 be such that

[AF(X)]|x < Y,

HI—AAWB(X) < 2y,

IAIDF(X) — A"l exy < Zy.
|A[DF(% + b) — DF(®)]|l g, < Zor, ¥ b € By(0).

Define the radii polynomial p(r) = Z2r2 +Z+2Zy— Dr+Y,. If0 <ry < rsothat p(ry) <0, then
F(X) =0withx B,,O()_c)



Several existence proofs

Several existence proofs for planar and spatial choreographies use
a different setup

e Equations of motion in the phase space and CAPD (Kapela-Simo '07), (Kapela-Simo '17),
(Kapela-Zgliczynski '03)

e Functional analytic methods applied directly to periodic orbits of the Hamiltonian vector field
(Arioli-Barutello-Terracini '03)

o For spatial choreographies the dimension scales like 6n

Our approach uses automatic differentiation to reduce to a polynomial nonlinearity adding an
additional scalar equation for each body

6+(n—1)



Computer Assisted Proofs

e R. C., C. Garcia-Azpeitia, J.P. Lessard, and J.D. Mireles-James, Torus knot choreographies in the n -body problem, Nonlinearity, Volume 34, Number 1, (2021)
313-349



Computer Assisted Proofs

| l
\
\
N
.

e R. C., C. Garcia-Azpeitia, J.P. Lessard, and J.D. Mireles-James, Torus knot choreographies in the n -body problem, Nonlinearity, Volume 34, Number 1, (2021)
313-349



A conjecture of Marchal

The three body problem admits at least two choreography solutions

The symmetry group of the figure eight is a 12th-order subgroup of the equilateral
triangle

P12 is an out of plane family of periodic orbits coming out to the triangle



A conjecture of Marchal

“The three body equilateral triangle of Lagrange and the three body
figure eight are In the same continuation class”

"In rotating coordinates the three body equilateral triangle
configuration can be continued by the variation of the frequency
to a periodic orbit of the rotating problem which, when converted
back to Inertial coordinates, Is the figure eight of Moore,
Chenciner, and Montgomery."



From the heptagon to the Figure eight

0.4

0.2

-0.4 .

N ’--".—--/<‘>’<_’__,-«" s "—_\__\;_\;‘;\n\-\\
/”"”" . ‘\\\’ R
-0.2 < * R
> . )
S L ///

0.5

1.5 ‘ ) 05 0 0.5

e R. C., E. Doedel, and C. Garcia-Azpeitia, Symmetries and choreographies in families that bifurcate from the polygonal relative equilibrium of the n -body problem,
Celestial Mech. Dynam. Astronom. 130 (2018), 130:48.



From the triangle to the eight

OO

Evidence for Marchal's conjecture.

R. C., C. Garcia-Azpeitia, J.P. Lessard, and J.D. Mireles-James, From the Lagrangre polygons to the figure eight |,
Celestial Mech. Dynam. Astronom., volume 133, Article number: 10 (2021)



Many bifurcations

R.C., C.
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The eight when n > 3 Is not stable

R. C., C. Garcia-Azpeitia, J.P. Lessard, and J.D. Mireles-James, From the Lagrangre polygons to the figure eight |, Celestial Mech. Dynam. Astronom., volume 133, Article number: 10 (2021)



The eight when n = 3 Is stable
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A spatial choreography that is stable numerically

https://mym.iimas.unam.mx/renato/choreographies/index.html

R. C., C. Garcia-Azpeitia, J.P. Lessard, and J.D. Mireles-James, From the Lagrangre polygons to the figure eight |, Celestial Mech. Dynam. Astronom., volume 133, Article number: 10 (2021)


https://mym.iimas.unam.mx/renato/choreographies/index.html

An extension of the conjecture

(Generalized Marchal’s Conjecture)

For any odd number of bodies, the n-gon
choreography and the n-body figure eight are In
the same continuation class.
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Summary

e \We give mathematically rigorous proofs of the existence of torus knot choreographies

e Functional analytic and computer assisted approach

e A choreography Isthe zero of anonlinear operator on a Banach algebra

e We give aproof of the existence of atrefoil knot choreography and countably many choreographies close to it
e The method is systematic and can be applied to spatial choreographies

e \We give numerical evidence for a conjecture of Marchal

e \We extend Marchal’s conjecture

e We find numerically stable spatial choreographies withn=3



Thank you

https://mym.iimas.unam.mx/renato/choreographies/index.html

e R.C., E. Doedd, and C. Garcia-Azpeitia, Symmetries and choreographiesin familiesthat bifurcate from the polygonal
relative equilibrium of the n -body problem, Celestial Mech. Dynam. Astronom. 130 (2018), 130:48.

e R. C,, C. GarciarAzpeitia, J.P. Lessard, and J.D. Mireles-James, Torus knot choreographiesin the n -body problem,
Nonlinearity, Volume 34, Number 1, (2021) 313-349

e R. C, C. Garcia-Azpeitia, J.P. Lessard, and J.D. Mireles-James, From the L agrangre polygonsto thefigure eight |
Numerical evidence extending a conjecture of Marchal, Celestial Mechanics and Dynamical Astronomy, volume 133,
Article number: 10 (2021)
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