Broken book decompositions and Reeb dynamics in dimension 3

Ana Rechtman

in collaboration with V. Colin and P. Dehornoy

IRMA Université de Strasbourg

April 13, 2021

A closed 3-manifold (M, ξ) is a contact manifold if ξ is a plane field that is non-integrable.

Then there is a 1-form α such that $\xi = \ker(\alpha)$ and $\alpha \wedge d\alpha \neq 0$.

Observe that if *f* is a non-zero function, then $f\alpha$ defines the same plane field.

The Reeb vector field of α is defined by the equations

$$\alpha(X) = 1 \qquad \iota_X d\alpha = 0.$$

It depends on the contact form.

Image by Patrick Massot

M denotes a closed oriented 3-manifold.

Definition (Open book decomposition)

An open book decomposition of M is a pair (K, π) with K an oriented link and $\pi : M \setminus K \to S^1$ is a fibration and $\pi^{-1}(t)$ is the interior of a compact surface whose boundary is K.

E. Giroux

Every contact structure ξ is carried by an open book decomposition, *i.e* for a contact form α defining ξ the Reeb vector field is tangent to K and transverse to the pages $\pi^{-1}(t)$.

E. Giroux

Every contact structure ξ is carried by an open book decomposition, *i.e* for a contact form α defining ξ the Reeb vector field is tangent to K and transverse to the pages $\pi^{-1}(t)$.

A page is Birkhoff section for this Reeb vector field: a transverse surface with boundary, whose boundary is made of periodic orbits.

E. Giroux

Every contact structure ξ is carried by an open book decomposition, *i.e* for a contact form α defining ξ the Reeb vector field is tangent to K and transverse to the pages $\pi^{-1}(t)$.

A page is Birkhoff section for this Reeb vector field: a transverse surface with boundary, whose boundary is made of periodic orbits.

- Birkhoff proved that geodesic flows of negatively curved surfaces admit Birkhoff sections.
- There are several existence results for some classes of Reeb vector fields by Hofer, Wysocki, Zehnder, Hryniewicz, Salomão,...
- Ghys defined left-handed (or right-handed) vector fields: in these classes every collection of periodic orbits bounds a Birkhoff section.

First result

Theorem 1

Every nondegenerate Reeb vector field X is carried by a broken book decomposition of M.

Nondegenerate – that the Poincaré maps of the periodic orbits of X and their powers, have all their eigenvalues different from 1.

Definition

A broken book decomposition of *M* is a pair (K, \mathcal{F}) such that *K* is a oriented link and

- *F* is a cooriented foliation of *M* \ *K* whose leaves are properly embedded in *M* \ *K*;
- *K* = *K_r* ∪ *K_b*, near *K_r* transversely the foliation is radial, near *K_b* transversely the foliation is

Remarks

A periodic orbit of X that belongs to K can be elliptic or hyperbolic with respect to the dynamics of the flow, and with respect to the foliation \mathcal{F} . A periodic orbit that belongs to K_b has to be dynamically hyperbolic.

- The nondegeneracy implies that near *K_b* there are exactly 4 sectors foliated by hyperbolas (right hand figure).
- The monodromy along K_b is the identity or half a turn.
- If $K_b = \emptyset$, the broken book is an open book.

Definition

A leaf of \mathcal{F} is rigid if it doesn't belongs to the interior of \mathbb{R} -family of diffeomorphic leaves.

The complement of the union of the rigid pages fibers over \mathbb{R} .

Ana Rechtman (IRMA)

An application to the existence of periodic orbits Some previous results:

- Every Reeb vector field has at least two periodic orbits (Taubes 2007 for one periodic orbit, Cristofaro-Gardiner and Hutchings 2016).
- If a nondegenerate Reeb vector field has exactly two periodic orbits, then *M* is S³ or a lens space (Hutchings and Taubes 2009).
- Finite energy foliations by Hofer, Wysocky and Zehnder (2003) are broken book decompositions. They proved that every strongly nondegenerate Reeb vector field on S³ has either 2 or infinitely many periodic orbits.
- Cristofaro-Gardiner, Hutchings and Pomerleano (2018) proved the existence of 2 or infinitely many periodic orbits if the first Chern class of the contact structure is a torsion element.

An application to periodic orbits

Theorem 2

Every nondegenerate Reeb vector field has either 2 or infinitely many periodic orbits.

An application to periodic orbits

Theorem 2

Every nondegenerate Reeb vector field has either 2 or infinitely many periodic orbits.

The key are the hyperbolic periodic orbits in K_b .

An application to periodic orbits

Theorem 2

Every nondegenerate Reeb vector field has either 2 or infinitely many periodic orbits.

The key are the hyperbolic periodic orbits in K_b .

If $K_b = \emptyset$ the broken book decomposition is an open book decomposition.

Let *S* be a page. If *S* is a disk or an annulus, then *X* has either 2 or infinitely many periodic orbits. If not, we prove that the first return map to *S* has infinitely many periodic points (the result for homeomorphisms was established by Le Calvez and Sambarino).

Ana Rechtman (IRMA)

If $K_b \neq \emptyset$, the key are these orbits. We will assume that the flow is strongly nondegenerate.

If $K_b \neq \emptyset$, the key are these orbits. We will assume that the flow is strongly nondegenerate.

Lemma

The stable (unstable) manifold of an orbit $k \in K_b$ intersects the unstable (stable) manifold of another orbit in K_b .

If $K_b \neq \emptyset$, the key are these orbits. We will assume that the flow is strongly nondegenerate.

Lemma

The stable (unstable) manifold of an orbit $k \in K_b$ intersects the unstable (stable) manifold of another orbit in K_b .

Proof. Let $W^{s}(k)$ be half of the stable manifold of k and assume it does not intersects the unstable manifold of any orbit in K_{b} . It is an injectively immersed cylinder, that has to intersect one rigid page R infinitely many times. This intersection is then a infinite collection C of embedded circles in R.

Lemma

The stable (unstable) manifold of an orbit $k \in K_b$ intersects the unstable (stable) manifold of another orbit in K_b .

Proof. There are finitely many of these circles that bound a disc in *R*. Take two, c_1 and c_2 , bounding two discs D_1 and D_2 in *R*. Let $A \subset W^s(k)$ be the annulus bounded by c_1 and c_2 , then

$$0 = \int_{D_1 \cup A \cup D_2} d\alpha = \int_{D_1} d\alpha - \int_{D_2} d\alpha$$

implying that the discs have the same $d\alpha$ -area. Since \overline{R} is compact, we conclude.

Lemma

The stable (unstable) manifold of an orbit $k \in K_b$ intersects the unstable (stable) manifold of another orbit in K_b .

Proof. Hence there are infinitely many circles not bounding a disc, and we can find 2 of them bounding an annulus A' that does not contains other circles in *C*. Let now c_3 and c_4 be the bounding circles and $A'' \subset W^s(k)$ be the annulus bounded by c_3 and c_4 . Then

$$\mathbf{0} = \int_{\mathbf{A}'\cup\mathbf{A}''} \mathbf{d}\alpha = \int_{\mathbf{A}'} \mathbf{d}\alpha,$$

a contradiction.

The lemma allows to prove the existence of a heteroclinic cycle.

If all the intersections in it (or at least one) is transversal, we obtain a homoclinic intersection providing infinitely many periodic orbits of X.

The proof without the strongly nondegenerate hypothesis is quite technical:

- We first prove the result if all the stable/unstable manifolds coincide pairwise. We conclude that in this case there are infinitely many periodic orbits.
- We then prove that a stable/unstable manifold that does not coincide with another unstable/stable manifold, contains a crossing intersection.

Another application of BBD

Theorem 3

If M is a non-graphed closed 3-manifold carrying a non-degenerate Reeb vector field, then X has positive topological entropy.

Back to Theorem 1

Theorem 1

Every nondegenerate Reeb vector field X is carried by a broken book decomposition of M.

• ECH (in particular the *U*-map) together with desingularising the projected pseudoholomorphic curves, provide a section through every point $z \in M$.

Back to Theorem 1

Theorem 1

Every nondegenerate Reeb vector field X is carried by a broken book decomposition of M.

- ECH (in particular the *U*-map) together with desingularising the projected pseudoholomorphic curves, provide a section through every point $z \in M$.
- A compacity argument allows to choose a finite number of these sections that intersect all orbits. Let K be the union of their boundaries.

Back to Theorem 1

Theorem 1

Every nondegenerate Reeb vector field X is carried by a broken book decomposition of M.

- ECH (in particular the *U*-map) together with desingularising the projected pseudoholomorphic curves, provide a section through every point $z \in M$.
- A compacity argument allows to choose a finite number of these sections that intersect all orbits. Let K be the union of their boundaries.
- 3 The complement of this system of sections fibers over \mathbb{R} .

The main input from ECH-holomorphic curve theory is the following. There is a collection of periodic orbits \mathcal{P} such that,

Lemma

For every *z* in $M \setminus P$, there exists an immersed singular compact surface *u* with boundary such that:

- *z* ∈ *u*;
- ∂u is made of periodic orbits;
- has a finite number of singularities;
- away from the singular points, its interior is transverse to X.

If z belongs to \mathcal{P} , it is either in the interior of such a curve or in a boundary component.

Each surface *u* can be transformed into a (possibly disconnected) section:

Each surface *u* can be transformed into a (possibly disconnected) section:

From each projected curve, we obtain connected sections with boundary.