Symplectic invariants for structurally stable singularities of integrable systems

> Elena Kudryavtseva Moscow State University

(based on a joint work with Andrey Oshemkov)

GDM Seminar

01.02.2022

An *integrable system* on a symplectic 2*n*-manifold (M^{2n}, ω) is defined by *n* functions f_1, \ldots, f_n satisfying two properties:

- ▶ they pairwise Poisson commute: $\{f_i, f_j\} = 0$, $\{f, g\} := \omega(X_f, X_g)$, $\omega(\cdot, X_f) = df$;
- they are functionally independent on M^{2n} almost everywhere.

Integral (momentum) map $F = (f_1, \ldots, f_n) : M^{2n} \to \mathbb{R}^n$.

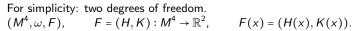
Singular Lagrangian fibration (Liouville fibration) on M, whose regular fibres are invariant tori with quasi-periodic dynamics.

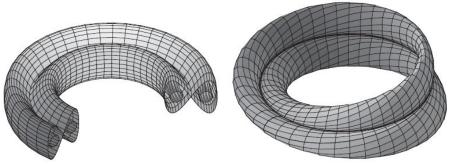
The fibres are connected components \mathcal{L}_a of integral surfaces $\mathcal{F}^{-1}(a)$. Assume that all fibres are compact.

Singular set $S = \{x \in M^{2n} \mid \text{rank } dF(x) < n\}$. Bifurcation diagram $\Sigma = F(S) \subset \mathbb{R}^n$.

Then *F* generates the Hamiltonian action of \mathbb{R}^n on M^{2n} by *F*-preserving symplectomorphisms $\phi_{X_{f_1}}^{t_1} \circ \cdots \circ \phi_{X_{f_n}}^{t_n} : M \to M, (t_1, \dots, t_n) \in \mathbb{R}^n. \mathcal{L} = \bigcup_i \mathcal{O}_i.$ A local (resp., semilocal) singularity is the fibration germ at a singular orbit \mathcal{O} (resp., singular fiber \mathcal{L}). A singularity is called structurally stable if the topology of the fibration is preserved after any (small enough) real-analytic integrable perturbation of the system.

Illustration: Liouville fibration. Singular Lagrangian fibrations





The object we want to study is just a singular Lagrangian fibration

 $\hat{F}: M^{2n} \to B^n,$

which locally can be given by commuting functions.

It is more convenient to replace the image $F(M^{2n})$ of the momentum map by the set of fibres B^n which, in general, is not a smooth manifold. However in all interesting examples, B has a structure of a stratified *n*-manifold.

Equivalent integrable systems

Given two integrable systems $F_1: M_1^{2n} \to B_1$ and $F_2: M_2^{2n} \to B_2$ (singular Lagrangian fibrations), we want to find/discuss/study conditions for the existence of *fibrewise maps* Φ between them:

 $M_1^{2n} \xrightarrow{\Phi} M_2^{2n}$

Does homeomorphic \implies symplectomorphic?

2 options for M_1 and M_2 :

- Iocal (neighbourhood of a singular point or a singular orbit);
- semilocal (neighbourhood of a singular fibre).

Two options for Φ (fibrewise map between M_1 and M_2):

- topological;
- symplectic.

Allowed types of local singularities:

non-degenerate singularities (direct products of ellyptic, hyperbolic, focus-focus, regular).

- Local
 - J. Vey 1978, H. Eliasson 1990: Non-degenerate singularities: no local symplectic invariants,
 - E. Miranda and N.T. Zung, 2004:
 - Equivariant version of this result (near a non-degenerate orbit).
- Semi-local
 - A. Fomenko and H. Zieschang, 1990: Topology of hyperbolic corank 1 singularities (2 d.f.),
 - N.T. Zung, 1996: Topology of nondegenerate singularities,
 - A.S. Lermontova, 2005: Topology of hyperbolic corank 1 singularities,
 - > J.-P. Dufour, P. Molino and A. Toulet, 1994: Simple hyperbolic singularities (1 d.f.),
 - S. Vũ Ngọc, 2007: Simple focus-focus singularities (two d.f., pinched torus),
 - H. Dullin and S. Vũ Ngọc: Hyperbolic (saddle-saddle) singularities (2 d.f.),
 - A. Bolsinov and S. Vũ Ngọc (2005, unpublished): Non-degenerate singularities.
- Global
 - A. Fomenko and H.Zieschang, 1990: Topology of fibrations on 3D isoenergy manifolds (2.d.f.),
 - > J. Duistermaat, 1987: Regular case (no singular fibres), Mishachev, 1996 (2 d.f.),
 - T. Delzant, 1988: Toric actions,
 - A. Pelayo, S. Vũ Ngọc, 2009: Semitoric manifolds (2 d.f.),
 - ▶ N.T. Zung, 2003: Very general case (topological and symplectic classifications).
- Structurally stable non-degenerate singularities
 - Local: K. 2021 (compact orbits), K. and Oshemkov (arbitrary orbits).
 - Semilocal: Oshemkov and Tuzhilin (structural stablity under "component-wise" integrable perturbations for saddle-saddle fibers satisfying connectedness condition).

Non-degenerate singularities

Definition

A singular point $x \in M^{2n}$ of rank 0 is called non-degenerate if

- be the linear operators A_{fi}, which are the linearizations of X_{fi} at x, are linearly independent, i.e. generate an *n*-dimensional subalgebra of sp(T_xM) ≈ sp(ℝ, 2n),
- there exists a linear combination $\sum \lambda_i A_{f_i}$, $\lambda_i \in \mathbb{R}$, having only simple eigenvalues.

Example: in dimension 4, there are 4 conjugacy classes of such subalgebras:

центр-центр	центр-седло	седло-седло	фокус-фокус
$\begin{pmatrix} 0 & 0 & -A & 0 \\ 0 & 0 & 0 & -B \\ A & 0 & 0 & 0 \\ 0 & B & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} -A & 0 & 0 & 0 \\ 0 & 0 & 0 & -B \\ 0 & 0 & A & 0 \\ 0 & B & 0 & 0 \end{pmatrix} .$	$\begin{pmatrix} -A & 0 & 0 & 0 \\ 0 & -B & 0 & 0 \\ 0 & 0 & A & 0 \\ 0 & 0 & 0 & B \end{pmatrix}$	$\begin{pmatrix} -A & -B & 0 & 0 \\ B & -A & 0 & 0 \\ 0 & 0 & A & -B \\ 0 & 0 & B & A \end{pmatrix}$

Example

The canonical foliation L_{can} of the Williamson type (k_e, k_h, k_f) and rank r is given by the following quadratic functions on $(\mathbb{R}^{2n}, \omega = \sum d\lambda_i \wedge d\varphi_i + \sum dx_i \wedge dy_i)$:

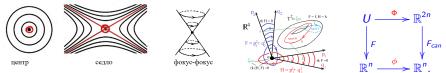
 $\begin{array}{ll} h_i = \lambda_i & (\text{regular type}), & 1 \leq i \leq r, \\ h_{r+i} = x_i^2 + y_i^2 & (\text{elliptic type}), & 1 \leq i \leq k_e, \\ h_{r+i} = x_i y_i & (\text{hyperbolic type}), & k_e + 1 \leq i \leq k_e + k_h, \\ h_{r+i} = x_i y_i + x_{i+1} y_{i+1} & (\text{focus-focus type}), & 1 \leq j \leq k_f, \ i = k_e + k_h + 2j - 1, \\ h_{r+i+1} = x_i y_{i+1} - x_{i+1} y_i. & \text{Here } k_e + k_h + 2k_f + r = n. \end{array}$

Elena Kudryavtseva Symplectic invariants for structurally stable singularities of integrable syste

Theorem 1 (J. Vey 1978, local symplectic classification)

In real-analytic case, the Liouville foliation in a neighborhood U of a non-degenerate singular point m_0 of rank r is locally symplectomorphic to a canonical foliation L_{can} . which is the direct product of basic foliations: regular, elliptic, hyperbolic, and focus-focus ones.

- regular: $h_i = \lambda_i$,
- elliptic: $h_{r+i} = x_i^2 + v_i^2$.
- hyperbolic: $h_{r+i} = x_i y_i$,
- focus-focus: $h_{r+i} = x_i y_i + x_{i+1} y_{i+1}$, $h_{r+i+1} = x_i y_{i+1} x_{i+1} y_i$, $r + k_e + k_h + 2k_f = n$.



In other words, there exist a real-analytic symplectomorphism $\Phi = (\lambda_1, \varphi_1, \dots, \lambda_r, \varphi_r, x_1, y_1, \dots, x_{n-r}, y_{n-r}) : (U, \omega) \hookrightarrow (\mathbb{R}^{2n}, \omega_{can}) \text{ and a real-analytic}$ diffeomorphism germ $\phi = (\phi_1, \dots, \phi_n) : (\mathbb{R}^n, F(m_0)) \to (\mathbb{R}^n, 0)$ s.t. $\Phi(m_0) = 0$ and $\phi \circ F \circ \Phi^{-1} = F_{can} = (h_1, \dots, h_n), \text{ where } \omega_{can} = \sum_{i=1}^r d\lambda_s \wedge d\varphi_s + \sum_{i=1}^{n-r} dx_i \wedge dy_i.$ The map $\phi \circ F = F_{can} \circ \Phi$ is called the Vey momentum map (it generates $(S^1)^n$ -action near \mathcal{O}). Elena Kudrvavtseva

Definition ([Zung 1996, Def. 6.3])

We say that a nondegenerate semilocal singularity at \mathcal{L} satisfies the non-splitting condition if the singular value set of the momentum map $F|_{U(\mathcal{L})}$ coincides with the singular value set of the momentum map $F|_{U(\mathcal{O})}$ for any compact orbit $\mathcal{O} \subset \mathcal{L}$.

Theorem (Nguyen Tien Zung, decomposition Theorem for semi-local non-degenerate singularities, 1996)

Each non-degenerate singularity satisfying the non-splitting condition is topologically equivalent to a singularity of almost-direct product type $(V_1 \times \cdots \times V_k)/G$ whose factors have one of the following four types:

- 1) an elliptic singularity V_{ell} with one degree of freedom (i.e., 2-atom A);
- 2) a hyperbolic singularity V_{hyp} with one degree of freedom (2-atom);
- 3) a focus-focus singularity V_{foc} with two degrees of freedom;
- 4) a regular Liouville foliation $V_{reg} = D^1 \times S^1$ without singularities with 1 degree of fr.

Definition

We say that a compact nondegenerate rank-r singular fiber \mathcal{L} satisfies connectedness condition if there exists a compact orbit $\mathcal{O} \subset \mathcal{L}$ of rank r such that each critical set

$$\mathbb{K}_i := \{ m \in U(\mathcal{L}) \mid \mathrm{d}(\phi_i \circ F)(m) = 0 \}, \qquad r+1 \le i \le n$$

is connected and contains all compact orbits in \mathcal{L} . Here $\phi \circ F$ is a Vey momentum map at \mathcal{O} .

Theorem 1

Suppose, for a real-analytic integrable system, \mathcal{L} is a compact nondegenerate singular fiber satisfying the connectedness condition (e.g. contains a unique compact orbit). Then the semilocal singularity at \mathcal{L} is structurally stable under real-analytic (but not necessarily under C^{∞}) integrable perturbations.

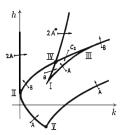
Example

Structurally stable semilocal singularities: almost-direct products of elliptic, regular,

- simple singularities $\mathcal{B} \times \mathcal{B}, \ (\mathcal{B} \times \mathcal{C}_2)/\mathbb{Z}_2, \ (\mathcal{B} \times \mathcal{D}_1)/\mathbb{Z}_2, \ (\mathcal{C}_2 \times \mathcal{C}_2)/(\mathbb{Z}_2 + \mathbb{Z}_2), \ \mathcal{B} \times \mathcal{F}_1, \ (\mathcal{B} \times \mathcal{F}_2)/\mathbb{Z}_2,$
- ▶ singularities of complexity 2: $(\mathcal{D}_1 \times \mathcal{D}_1)/\mathbb{Z}_2$, $(\mathcal{P}_4 \times \mathcal{P}_4)/D_4$, $(\mathcal{C}_2 \times \mathcal{C}_2)/\mathbb{Z}_2$, $(\mathcal{C}_1 \times \mathcal{I}_1)/\mathbb{Z}_4$, $(\mathcal{C}_2 \times \mathcal{P}_4)/(\mathbb{Z}_2 + \mathbb{Z}_2)$, $(\mathcal{C}_1 \times \mathcal{J}_1)/\mathbb{Z}_4$, $(\mathcal{K}_3 \times \mathcal{K}_3)/(\mathbb{Z}_4 + \mathbb{Z}_2)$, $(\mathcal{C}_1 \times \mathcal{K}_3)/\mathbb{Z}_4$, $(\mathcal{C}_1 \times \mathcal{P}_4)/\mathbb{Z}_4$, $(\mathcal{D}_1 \times \mathcal{C}_2)/\mathbb{Z}_2$, $(\mathcal{D}_1 \times \mathcal{F}_2)/\mathbb{Z}_2$, $(\mathcal{C}_1 \times \mathcal{F}_4)/\mathbb{Z}_4$, $(\mathcal{C}_2 \times \mathcal{F}_2)/\mathbb{Z}_2$, ... (blue = structurally stable under \mathcal{C}^∞ integrable perturb's)

Example

Structurally stable singularities in Mechanics:



 $\mathcal{B} \times \mathcal{B}$ and $(\mathcal{B} \times \mathcal{C}_2)/\mathbb{Z}_2$ appear in the Kovalevskaya top, $(\mathcal{B} \times \mathcal{D}_1)/\mathbb{Z}_2$ appears in the Goryachev-Chaplygin-Sretenskii case, non-simple $(\mathcal{C}_2 \times \mathcal{C}_2)/\mathbb{Z}_2$ occurs in the Clebsch case. Simple *focus*-focus singularity \mathcal{F}_1 appears in the Lagrange case, \mathcal{F}_2 occurs in the Clebsch case.

Thus, the saddle-saddle singularity $IV \approx (\mathcal{B} \times \mathcal{C}_2)/\mathbb{Z}_2$ (and the arrangement of singularities IV and \mathcal{C}_2) of the Kovalevskaya top is structurally stable under real-analytic integrable perturbations, but not under smooth integrable perturbations.

Principle Lemma

Under the above assumptions, every orbit $\mathcal{O}' \subseteq \mathcal{L}$ has the following properties. (a) The Vey momentum map $\phi \circ F$ at the compact orbit \mathcal{O} can serve as a Vey momentum map at \mathcal{O}' , with the same regular, elliptic, hyperbolic and focus-focus components apart from some of the hyperbolic and/or focus-focus components at \mathcal{O} which are regular components at \mathcal{O}' .

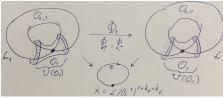
(b) The perturbed Vey momentum map $\tilde{\phi} \circ \tilde{F}$ near \mathcal{O} can serve as a perturbed Vey momentum map near \mathcal{O}' .

Semilocal symplectic invariant

Suppose \mathcal{L} is a compact non-degenerate fibre of a real-analytic 'reference system', and \mathcal{L}_1 is a compact non-degenerate fibre of a real-analytic integrable system. Suppose there exists a fiberwise homeomorphism $\Phi_1 : U(\mathcal{L}_1) \rightarrow U(\mathcal{L})$ which is fibrewise isotopic to a symplectomorphism near a compact orbit $\mathcal{O}_1 \subset \mathcal{L}_1$, $\Phi_1(\mathcal{L}_1) = \mathcal{L}$. We define a 1-cocycle [Dufour, Molino, Toulet 1994], [Zung 2003], [Vũ Ngoc 2007]

$$\mu_{\mathcal{L}_1} \in H^1(X, Z^1) \cong Hom(H_1(X), Z^1), \qquad X = \mathcal{L}/(S^1)^{r+k_e+k_f},$$
(*)

with coefficients in the group Z^1 of converging (near the origin) power series in *n* variables with real coefficients, vanishing at the origin ($\mu_{\mathcal{L}_1}$ is an obstruction for a symplectic extendability of $\Phi_1|_{U(\mathcal{O}_1)}$ to $U(\mathcal{L}_1)$, see below). We call $\mu_{\mathcal{L}_1}$ the Lagrange-Vey class of the singularity at \mathcal{L}_1 (w.r.t. the reference singularity at $\mathcal{L} = \mathcal{L}_0$).



For each directed edge $e \approx (-1, 1)$ of the reduced fiber $X = \mathcal{L}/(S^1)^{r+k_e+k_f}$, consider the corresponding orbit $\mathcal{O}_{e,i} \subset \mathcal{L}_i$, i = 0, 1, its neighbourhood $U(\mathcal{O}_{e,i}) \approx (-1, 1) \times B_e$, and two fibrewise symplectomorphisms $\Phi_{e,\pm}$: $U(\mathcal{O}_{e,1}) \rightarrow U(\mathcal{O}_{e,0})$ coinciding with Φ_1 on $(\pm(1-\varepsilon),\pm1) \times B_e \subseteq U(\mathcal{O}_{e,1}) \cap U(\partial_{\pm}\mathcal{O}_{e,1})$.

Assign $e \mapsto \Phi_{e,+} \circ \Phi_{e,-}^{-1} = \phi_{S_e \circ \phi \circ F}^1$, *F*-preserving symplectomorphism \Rightarrow the time-1 map of the Hamiltonian flow generated by a first integral (always having the form $S_e \circ \phi \circ F$, for some function S_e in *n* variables, $S_e(0) = 0$). Here $\phi \circ F$ is a Vey momentum map at $\mathcal{O}_0 = \Phi_1(\mathcal{O}_1) \subset \mathcal{L}$. Define 1-cochain $\mu_{\mathcal{L}_1} := [e + S_e]$. Lemma: $\mu_{\mathcal{L}_1}$ is a cocycle! Action variables form a complete set of semilocal symplectic invariants

Theorem 2 (Semilocal symplectic classification)

Suppose (M_k, ω_k, F_k) , k = 1, 2, are two real-analytic integrable Hamiltonian systems, and $\mathcal{L}_k \subset M_k$ a compact non-degenerate singular fiber satisfying the connectedness condition. Suppose $\Phi_k : U(\mathcal{L}_k) \to U(\mathcal{L})$ is a fiberwise homeomorphism being fibrewise isotopic to a real-analytic symplectomorphism on $U(\mathcal{O}_k)$, $\mathcal{O}_k \subset \mathcal{L}_k$, $\Phi_k(\mathcal{L}_k) = \mathcal{L}$. Then

- The fiberwise homeomorphism $\Phi = \Phi_2^{-1} \circ \Phi_1 : U(\mathcal{L}_1) \to U(\mathcal{L}_2)$ can be deformed to a real-analytic symplectomorphism in the space of fiberwise homeomorphisms if and only if $\mu_{\mathcal{L}_1} = \mu_{\mathcal{L}_2}$.
- ▶ For each 1-cocycle $\mu \in H^1(X, Z^1)$, \exists a semilocal singularity \mathcal{L}_1 s.t. $\mu_{\mathcal{L}_1} = \mu$.

Theorem 3 (On action variables)

Under the hypothesis of Theorem 2, suppose there exists a real-analytic diffeomorphism germ $\phi : (\mathbb{R}^n, F_1(\mathcal{L}_1)) \to (\mathbb{R}^n, F_2(\mathcal{L}_2))$ such that $\phi \circ F_1 = F_2 \circ \Phi$. Suppose there exists a finite-sheeted covering of a neighbourhood of \mathcal{L}_1 that is fibrewise homeomorphic to the direct product of several regular, elliptic, hyperbolic and focus-focus semilocal singularities of dimensions 2, 2, 2 and 4, resp., where all hyperbolic components (2-atoms) have genus 0. Then the fiberwise homeomorphism $\Phi : U(\mathcal{L}_1) \to U(\mathcal{L}_2)$ can be deformed to a real-analytic symplectomorphism in the space of fiberwise homeomorphisms if and only if the map $\hat{\phi}$ preserves action variables.