Problem Lypunov center theorem with symmetries The ideas of proof Applications

Lyapunov center theorem for Hamiltonian systems with symmetries

Daniel Strzelecki Nicolaus Copernicus University in Toruń

Geometry, Dynamics and Mechanics Seminar February 15, 2022

Plan

D. Strzelecki.

Periodic solutions of symmetric Hamiltonian systems.

Arch. Rational Mech. Anal., 237:921-950, 2020.

- Problem
- 2 Lypunov center theorem with symmetries
- The ideas of proof
- 4 Applications

Assume that Γ acts on \mathbb{R}^n by

$$\Gamma \times \mathbb{R}^n \ni (\gamma, z) \to \rho(\gamma)z \in \mathbb{R}^n$$

where $\rho: \Gamma \to O(n) \subset GL(n)$ is a group homomorphism. $\gamma z := \rho(\gamma)z$.

The orbit of
$$z_0\colon \Gamma(z_0)=\{\gamma z_0:\ \gamma\in\Gamma\}$$

The stabilizer of $z_0\colon \Gamma_{z_0}=\{\gamma\in\Gamma:\ \gamma z_0=z_0\}$
Invariant map: $f:\mathbb{R}^n\to\mathbb{R},\ f(\gamma z)=f(z).$
Equivariant map: $h:\mathbb{R}^n\to\mathbb{R}^n,\ h(\gamma z)=\gamma h(z)$

$$\dot{z}(t) = h(z(t))
\dot{z}(t) = \nabla f(z(t))$$
(1)

Remark

Assume that Γ acts on \mathbb{R}^n by

$$\Gamma \times \mathbb{R}^n \ni (\gamma, z) \to \rho(\gamma)z \in \mathbb{R}^n$$
,

where $\rho: \Gamma \to O(n) \subset GL(n)$ is a group homomorphism. $\gamma z := \rho(\gamma)z$.

The orbit of
$$z_0\colon \Gamma(z_0)=\{\gamma z_0:\ \gamma\in\Gamma\}$$

The stabilizer of $z_0\colon \Gamma_{z_0}=\{\gamma\in\Gamma:\ \gamma z_0=z_0\}$
Invariant map: $f:\mathbb{R}^n\to\mathbb{R},\ f(\gamma z)=f(z).$
Equivariant map: $h:\mathbb{R}^n\to\mathbb{R}^n,\ h(\gamma z)=\gamma h(z)$

$$\dot{z}(t) = h(z(t)) \tag{1}$$

$$\dot{z}(t) = \nabla f(z(t))$$

Remarl

Assume that Γ acts on \mathbb{R}^n by

$$\Gamma \times \mathbb{R}^n \ni (\gamma, z) \to \rho(\gamma)z \in \mathbb{R}^n$$
,

where $\rho : \Gamma \to O(n) \subset GL(n)$ is a group homomorphism. $\gamma z := \rho(\gamma)z$.

The orbit of
$$z_0$$
: $\Gamma(z_0) = \{ \gamma z_0 : \gamma \in \Gamma \}$
The stabilizer of z_0 : $\Gamma_{z_0} = \{ \gamma \in \Gamma : \gamma z_0 = z_0 \}$

Invariant map: $f: \mathbb{R}^n \to \mathbb{R}$, $f(\gamma z) = f(z)$.

Equivariant map: $h: \mathbb{R}^n \to \mathbb{R}^n$, $h(\gamma z) = \gamma h(z)$.

$$\dot{z}(t) = h(z(t))
\dot{z}(t) = \nabla f(z(t))$$
(1)

Remark

Assume that Γ acts on \mathbb{R}^n by

$$\Gamma \times \mathbb{R}^n \ni (\gamma, z) \to \rho(\gamma)z \in \mathbb{R}^n$$
,

where $\rho: \Gamma \to O(n) \subset GL(n)$ is a group homomorphism. $\gamma z := \rho(\gamma)z$.

The orbit of z_0 : $\Gamma(z_0) = \{ \gamma z_0 : \gamma \in \Gamma \}$

The stabilizer of z_0 : $\Gamma_{z_0} = \{ \gamma \in \Gamma : \gamma z_0 = z_0 \}$

Invariant map: $f: \mathbb{R}^n \to \mathbb{R}$, $f(\gamma z) = f(z)$.

Equivariant map: $h: \mathbb{R}^n \to \mathbb{R}^n$, $h(\gamma z) = \gamma h(z)$.

$$\dot{z}(t) = h(z(t))$$

$$\dot{z}(t) = \nabla f(z(t))$$

$$(\gamma z)' = \gamma z' = \gamma h (z \leftrightarrow z) = h (\gamma z)$$
(1)

Remark

$$\dot{x}(t) = h(x(t))$$

Noether's theorem - positive impact of symmetries

Every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law.

The problem

$$\Gamma(z_0) \approx \Gamma/\Gamma_{z_0}$$

$$\dot{x}(t) = h(x(t))$$

Noether's theorem - positive impact of symmetries

Every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law.

The problem

$$\Gamma(z_0) \approx \Gamma/\Gamma_{z_0}$$

$$\dot{x}(t) = h(x(t))$$
 $\forall f(z,) = 0$

Noether's theorem - positive impact of symmetries

Every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law.

The problem

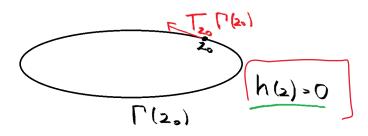
$$\dot{x}(t) = h(x(t))$$

Noether's theorem - positive impact of symmetries

Every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law.

The problem

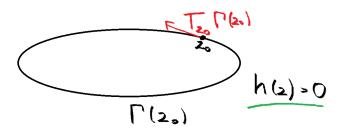
$$\Gamma(z_0) \approx \Gamma/\Gamma_{z_0}$$



$$\Gamma_{z_0}\Gamma(z_0) \subset \ker H(z_0)$$

$$\dim \Gamma(z_0) \leq \dim \ker H(z_0)$$

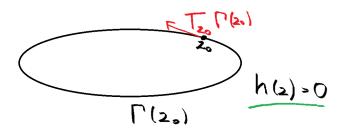
 $|h'(z_0)|=0$



$$T_{z_0}\Gamma(z_0)\subset\ker h'(z_0)$$

$$\dim \Gamma(z_0) \leq \dim \ker h'(z_0)$$

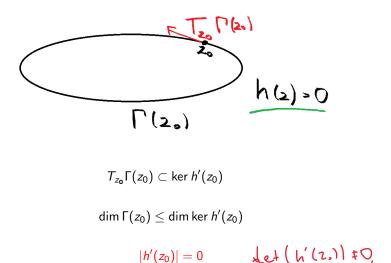
$$|h'(z_0)|=0$$



$$T_{z_0}\Gamma(z_0)\subset \ker h'(z_0)$$

$$\dim \Gamma(z_0) \leq \dim \ker h'(z_0)$$

 $|h'(z_0)|=0$



 $|h'(z_0)| = 0$

We assume that Γ acts unitary on \mathbb{R}^{2N} $(
ho:\Gamma o U(N)=Sp(2n)\cap O(2n))$

$$\dot{z}(t) = J\nabla H(z(t)),$$
 (2)

where
$$J=egin{bmatrix} 0 & Id_N \ -Id_N & 0 \end{bmatrix}$$
, $z:\mathbb{R}\to\mathbb{R}^{2N}$ and $H\in\mathcal{C}^2(\mathbb{R}^{2N},\mathbb{R})$ is

$$J\nabla H(\gamma z) = J\gamma \nabla H(z) = \gamma J\nabla H(z)$$

The goal

We assume that Γ acts unitary on \mathbb{R}^{2N} $(\rho : \Gamma \to U(N) = Sp(2n) \cap O(2n))$.

$$\dot{z}(t) = J\nabla H(z(t)), \tag{2}$$

where
$$J = \begin{bmatrix} 0 & Id_N \\ -Id_N & 0 \end{bmatrix}$$
, $z : \mathbb{R} \to \mathbb{R}^{2N}$ and $H \in \mathcal{C}^2(\mathbb{R}^{2N}, \mathbb{R})$ is Γ -invariant. $\nabla H(z_0) = 0$.

$$J\nabla H(\gamma z) = J\gamma \nabla H(z) = \gamma J\nabla H(z)$$

The goal

We assume that Γ acts unitary on \mathbb{R}^{2N} $(\rho : \Gamma \to U(N) = Sp(2n) \cap O(2n))$.

$$\dot{z}(t) = J\nabla H(z(t)), \tag{2}$$

where
$$J = \begin{bmatrix} 0 & Id_N \\ -Id_N & 0 \end{bmatrix}$$
, $z : \mathbb{R} \to \mathbb{R}^{2N}$ and $H \in \mathcal{C}^2(\mathbb{R}^{2N}, \mathbb{R})$ is Γ -invariant. $\nabla H(z_0) = 0$.

$$J\nabla H(\gamma z) = J\gamma \nabla H(z) = \gamma J\nabla H(z)$$

The goal

We assume that Γ acts unitary on \mathbb{R}^{2N} $(\rho : \Gamma \to U(N) = Sp(2n) \cap O(2n))$.

$$\dot{z}(t) = J\nabla H(z(t)), \tag{2}$$

where
$$J = \begin{bmatrix} 0 & Id_N \\ -Id_N & 0 \end{bmatrix}$$
, $z : \mathbb{R} \to \mathbb{R}^{2N}$ and $H \in \mathcal{C}^2(\mathbb{R}^{2N}, \mathbb{R})$ is Γ -invariant. $\nabla H(z_0) = 0$.

$$J\nabla H(\gamma z) = J\gamma \nabla H(z) = \gamma J\nabla H(z)$$

The goal

Motivation - Liapunov center theorem

$$\dot{z}(t) = J\nabla H(z(t))$$

D5H(0) >0

Theorem

Let $H \in C^2(\mathbb{R}^{2N}, \mathbb{R}), \nabla H(0) = 0$. If $\sigma(J\nabla^2 H(0)) = \{\pm i\beta_1, \dots, \pm i\beta_m\}$ for $\beta_j \geq 0$ then for β_{j_0} satisfying $\beta_j/\beta_{j_0} \notin \mathbb{N}$ for $j \neq j_0$ there is a smooth two-dimensional manifold passing through 0 and intersecting each energy level near 0 in a periodic trajectory with minimal period near $2\pi/\beta_{j_0}$.

- Weinstein, 1973
- Moser, 1976
- Fadell i Rabinowitz, 1978
- Szulkin, 1994
- Bartsch, 1997
- Dancer i Rybicki, 1999

with symmetries of continuous group

- Montaldi, Roberts, Stewart, 1988
- Bartsch, 1993
- Golubitsky, Marsden, Stewart,
 Dellnitz, 1995

Motivation - Liapunov center theorem

$$\dot{z}(t) = J \nabla H(z(t))$$

$\mathsf{Theorem}$

Let $H \in C^2(\mathbb{R}^{2N}, \mathbb{R}), \nabla H(0) = 0$. If $\sigma(J\nabla^2 H(0)) = \{\pm i\beta_1, \dots, \pm i\beta_m\}$ for $\beta_i \geq 0$ then for β_{i_0} satisfying $\beta_i/\beta_{i_0} \notin \mathbb{N}$ for $j \neq j_0$ there is a smooth two-dimensional manifold passing through 0 and intersecting each energy level near 0 in a periodic trajectory with minimal period near $2\pi/\beta_{in}$.

124171 #O

- Weinstein, 1973
- Moser, 1976
- Fadell i Rabinowitz, 1978
- Szulkin, 1994
- Bartsch, 1997
- Dancer i Rybicki, 1999

with symmetries of continuous group

- Montaldi, Roberts, Stewart,
- Golubitsky, Marsden, Stewart, Dellnitz, 1995

Challenges

- Study $z_0 \in (\nabla H)^{-1}(0)$ such that dim $\Gamma_{z_0} < \dim \Gamma$. Then the orbit $\Gamma(z_0)$ is at least one dimensional manifold and **critical points** from this orbit **are not isolated**.
- Allow a degeneracy of critical point det $\nabla^2 H(z_0) = 0$ (in fact dim ker $\nabla^2 H(z_0) > \dim \Gamma(z_0)$).

Challenges

- Study $z_0 \in (\nabla H)^{-1}(0)$ such that dim $\Gamma_{z_0} < \dim \Gamma$. Then the orbit $\Gamma(z_0)$ is at least one dimensional manifold and **critical points** from this orbit **are not isolated**.
- Allow a degeneracy of critical point $\det \nabla^2 H(z_0) = 0$ (in fact $\dim \ker \nabla^2 H(z_0) > \dim \Gamma(z_0)$).

Plan

- Problem
- 2 Lypunov center theorem with symmetries
- The ideas of proof
- 4 Applications

$$\dot{z}(t) = J\nabla H(z(t)) \tag{3}$$

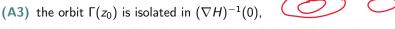
- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2 ,
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial,
- (A3) the orbit $\Gamma(z_0)$ is isolated in $(\nabla H)^{-1}(0)$
- (A4) $\pm i\beta_1, \ldots, \pm i\beta_m$, $0 < \beta_m < \ldots < \beta_1$, $m \ge 1$ are the purely imaginary eigenvalues of $J\nabla^2 H(z_0)$,
- (A5) $\deg(\nabla H_{\mid T_{20}^{\perp}\Gamma(z_0)}, B(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ
- **(A6)** β_{j_0} is such that $\beta_j/\beta_{j_0} \notin \mathbb{N}$ for all $j \neq j_0$
- (A7) $m^- \begin{pmatrix} \begin{bmatrix} -\lambda \nabla^2 H(z_0) & -J \\ J & -\lambda \nabla^2 H(z_0) \end{bmatrix} \end{pmatrix}$ changes at $\lambda = \frac{1}{\beta_{J_0}}$ when λ varies

$$\dot{z}(t) = J \nabla H(z(t))$$

- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2 ,
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial.
- (A3) the orbit $\Gamma(z_0)$ is isolated in $(\nabla H)^{-1}(0)$
- (A4) $\pm i\beta_1, \ldots, \pm i\beta_m$, $0 < \beta_m < \ldots < \beta_1$, $m \ge 1$ are the purely imaginary eigenvalues of $J\nabla^2 H(z_0)$,
- (A5) $\deg(\nabla H_{|T_{\infty}^{\perp}\Gamma(z_0)}, B(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ
- **(A6)** β_{i_0} is such that $\beta_i/\beta_{i_0} \notin \mathbb{N}$ for all $j \neq j_0$
- (A7) $m^-\begin{pmatrix} \begin{bmatrix} -\lambda \nabla^2 H(z_0) & -J \\ J & -\lambda \nabla^2 H(z_0) \end{bmatrix} \end{pmatrix}$ changes at $\lambda = \frac{1}{\beta_0}$ when λ

$$\dot{z}(t) = J\nabla H(z(t)) \tag{3}$$

- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2 ,
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial,

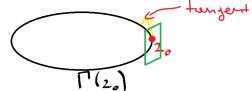


$$\dot{z}(t) = J\nabla H(z(t)) \tag{3}$$

- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2 ,
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial,
- (A3) the orbit $\Gamma(z_0)$ is isolated in $(\nabla H)^{-1}(0)$,
- (A4) $\pm i\beta_1, \ldots, \pm i\beta_m$, $0 < \beta_m < \ldots < \beta_1$, $m \ge 1$ are the purely imaginary eigenvalues of $J\nabla^2 H(z_0)$,
- (A5) $\deg(\nabla H_{\mid T_{\infty}^{\perp}\Gamma(z_0)}, B(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ
- **(A6)** β_{i_0} is such that $\beta_i/\beta_{i_0} \notin \mathbb{N}$ for all $j \neq j_0$
- (A7) $m^- \begin{pmatrix} -\lambda \nabla^2 H(z_0) & -J \\ J & -\lambda \nabla^2 H(z_0) \end{pmatrix}$ changes at $\lambda = \frac{1}{\beta_{J_0}}$ when λ

$$\dot{z}(t) = J\nabla H(z(t)) \tag{3}$$

- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2 ,
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial.
- (A3) the orbit $\Gamma(z_0)$ is isolated in $(\nabla H)^{-1}(0)$,
- (A4) $\pm i\beta_1, \ldots, \pm i\beta_m, \ 0 < \beta_m < \ldots < \beta_1, \ m \ge 1$ are the purely imaginary eigenvalues of $J\nabla^2 H(z_0)$,
- (A5) $\deg(\nabla H_{T_{2n}^{\perp}\Gamma(z_0)}, B(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ ,



$$\dot{z}(t) = J\nabla H(z(t)) \tag{3}$$

- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2 ,
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial,
- (A3) the orbit $\Gamma(z_0)$ is isolated in $(\nabla H)^{-1}(0)$,
- (A4) $\pm i\beta_1, \ldots, \pm i\beta_m$, $0 < \beta_m < \ldots < \beta_1$, $m \ge 1$ are the purely imaginary eigenvalues of $J\nabla^2 H(z_0)$,
- (A5) $\deg(\nabla H_{\mid T_{z_0}^{\perp}\Gamma(z_0)}, B(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ ,
- (A6) β_{j_0} is such that $\beta_j/\beta_{j_0} \notin \mathbb{N}$ for all $j \neq j_0$

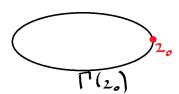
$$\dot{z}(t) = J\nabla H(z(t)) \tag{3}$$

- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2 ,
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial,
- (A3) the orbit $\Gamma(z_0)$ is isolated in $(\nabla H)^{-1}(0)$,
- (A4) $\pm i\beta_1, \ldots, \pm i\beta_m$, $0 < \beta_m < \ldots < \beta_1$, $m \ge 1$ are the purely imaginary eigenvalues of $J\nabla^2 H(z_0)$,
 - (A5) $\deg(\nabla H_{\mid T_{20}^{\perp} \Gamma(z_0)}, B(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ ,
- (A6) β_{j_0} is such that $\beta_j/\beta_{j_0} \notin \mathbb{N}$ for all $j \neq j_0$
 - (A7) $m^- \begin{pmatrix} \begin{bmatrix} -\lambda \nabla^2 H(z_0) & -J \\ J & -\lambda \nabla^2 H(z_0) \end{bmatrix} \end{pmatrix}$ changes at $\lambda = \frac{1}{\beta_{j_0}}$ when λ varies.

The most general theorem

Theorem 1.

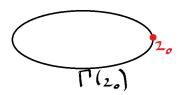
Under the assumptions (A1)–(A7) there exists a connected family of non-stationary periodic solutions of the system $\dot{z}(t) = J\nabla H(z(t))$ emanating from the stationary solution z_0 (with amplitude tending to 0) such that minimal periods of solutions in a small neighborhood of z_0 are close to $2\pi/\beta_{i0}$.

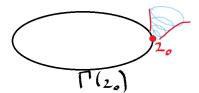


The most general theorem

Theorem 1.

Under the assumptions (A1)–(A7) there exists a connected family of non-stationary periodic solutions of the system $\dot{z}(t) = J\nabla H(z(t))$ emanating from the stationary solution z_0 (with amplitude tending to 0) such that minimal periods of solutions in a small neighborhood of z_0 are close to $2\pi/\beta_{i0}$.

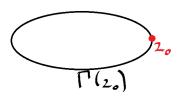


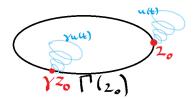


The most general theorem

Theorem 1.

Under the assumptions (A1)–(A7) there exists a connected family of non-stationary periodic solutions of the system $\dot{z}(t) = J\nabla H(z(t))$ emanating from the stationary solution z_0 (with amplitude tending to 0) such that minimal periods of solutions in a small neighborhood of z_0 are close to $2\pi/\beta_{in}$.





Modifications

(A5) Brouwer degree $\deg_B(\nabla\left(H_{|T_{z_0}^{\perp}\Gamma(z_0)}\right), B^d(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ and $d = \dim T_{z_0}^{\perp}\Gamma(z_0)$.

Fact

The assumption **(A5)** is satisfied for non-degenerate orbit i.e. under the assumption dim $\Gamma(z_0) = \dim \ker \nabla^2 H(z_0)$.

(A7)
$$m^-\begin{pmatrix} \begin{bmatrix} -\lambda \nabla^2 H(z_0) & -J \\ J & -\lambda \nabla^2 H(z_0) \end{bmatrix} \end{pmatrix}$$
 changes at $\lambda = \frac{1}{\beta_{j_0}}$ when λ

Fact

The assumption (A7) is implied by the condition (A7') $m^+(\nabla^2 H(z_0)) > N$ or $m^-(\nabla^2 H(z_0)) > N$. Moreover, under (A7') the assumption (A4) is satisfied

Modifications

(A5) Brouwer degree $\deg_B(\nabla\left(H_{|T_{z_0}^{\perp}\Gamma(z_0)}\right), B^d(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ and $d = \dim T_{z_0}^{\perp}\Gamma(z_0)$.

Fact

The assumption **(A5)** is satisfied for non-degenerate orbit i.e. under the assumption dim $\Gamma(z_0) = \dim \ker \nabla^2 H(z_0)$.

(A7)
$$m^-\begin{pmatrix} \begin{bmatrix} -\lambda \nabla^2 H(z_0) & -J \\ J & -\lambda \nabla^2 H(z_0) \end{bmatrix} \end{pmatrix}$$
 changes at $\lambda = \frac{1}{\beta_{j_0}}$ when λ

Fact

The assumption (A7) is implied by the condition (A7') $m^+(\nabla^2 H(z_0)) > N$ or $m^-(\nabla^2 H(z_0)) > N$. Moreover, under (A7') the assumption (A4) is satisfied

Modifications

(A5) Brouwer degree $\deg_B(\nabla\left(H_{\mid T_{z_0}^{\perp}\Gamma(z_0)}\right), B^d(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ and $d = \dim T_{z_0}^{\perp}\Gamma(z_0)$.

Fact

The assumption **(A5)** is satisfied for non-degenerate orbit i.e. under the assumption dim $\Gamma(z_0) \stackrel{\checkmark}{=} \dim \ker \nabla^2 H(z_0)$.

(A7)
$$m^-\begin{pmatrix} \begin{bmatrix} -\lambda \nabla^2 H(z_0) & -J \\ J & -\lambda \nabla^2 H(z_0) \end{bmatrix} \end{pmatrix}$$
 changes at $\lambda = \frac{1}{\beta_{j_0}}$ when λ

Fact

The assumption (A7) is implied by the condition (A7') $m^+(\nabla^2 H(z_0)) > N$ or $m^-(\nabla^2 H(z_0)) > N$. Moreover, under (A7') the assumption (A4) is satisfied

Modifications

(A5) Brouwer degree $\deg_B(\nabla\left(H_{|T_{z_0}^{\perp}\Gamma(z_0)}\right), B^d(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ and $d = \dim T_{z_0}^{\perp}\Gamma(z_0)$.

Fact

The assumption **(A5)** is satisfied for non-degenerate orbit i.e. under the assumption dim $\Gamma(z_0) = \dim \ker \nabla^2 H(z_0)$.

(A7)
$$m^-\left(\begin{bmatrix} -\lambda \nabla^2 H(z_0) & -J \\ J & -\lambda \nabla^2 H(z_0) \end{bmatrix}\right)$$
 changes at $\lambda = \frac{1}{\beta_{j_0}}$ when λ

Fact

The assumption (A7) is implied by the condition (A7') $m^+(\nabla^2 H(z_0)) > N$ or $m^-(\nabla^2 H(z_0)) > N$. Moreover, under (A7') the assumption (A4) is satisfied

Modifications

(A5) Brouwer degree $\deg_B(\nabla\left(H_{|T_{z_0}^{\perp}\Gamma(z_0)}\right), B^d(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ and $d = \dim T_{z_0}^{\perp}\Gamma(z_0)$.

Fact

The assumption **(A5)** is satisfied for non-degenerate orbit i.e. under the assumption dim $\Gamma(z_0) = \dim \ker \nabla^2 H(z_0)$.

(A7)
$$m^-\left(\begin{bmatrix} -\lambda \nabla^2 H(z_0) & -J \\ J & -\lambda \nabla^2 H(z_0) \end{bmatrix}\right)$$
 changes at $\lambda = \frac{1}{\beta_{j_0}}$ when λ varies.

Fact

The assumption (A7) is implied by the condition

(A7')
$$m^+(\nabla^2 H(z_0)) > N$$
 or $m^-(\nabla^2 H(z_0)) > N$.

Moreover, under (A7') the assumption (A4) is satisfied.

Modifications

Theorem 2.

Under the assumptions (A1), (A2), (A3), (A5) and (A7') there exists a connected family of non-stationary periodic solutions of the system $\dot{z}(t) = J\nabla H(z(t))$ emanating from the stationary solution z_0 with periods (not necessarily minimal) close to $2\pi/\beta_j$, where $i\beta_j$, $\beta_j > 0$ is some eigenvalue of $J\nabla^2 H(z_0)$.

$$\ddot{q}(t) = -\nabla U(q(t)) \tag{UN}$$

$$H(p,q) = \frac{1}{2}||p||^2 + U(q)$$

$$p,q) = (\gamma p, \gamma q) \text{ unitary action}$$

$$z_0 = (p_0, q_0)$$

- $\pm i\beta \in \sigma(J\nabla^2 H(z_0) \Leftrightarrow \beta^2 \in \sigma(\nabla^2 U(q_0))$
- the assumption (A7) is always satisfied!
- what about (A5)
 - non-degenerate orbit
 - q_0 is a minimum of the potential U

$$\ddot{q}(t) = -\nabla U(q(t)) \tag{UN}$$

$$H(p,q) = \frac{1}{2}||p||^2 + U(q)$$

$$\gamma(p,q) = (\gamma p, \gamma q) \text{ unitary action}$$

- $\pm i\beta \in \sigma(J\nabla^2 H(z_0) \Leftrightarrow \beta^2 \in \sigma(\nabla^2 U(q_0))$
- the assumption (A7) is always satisfied
- what about (A5)?
 - non-degenerate orbit
 - \bullet q_0 is a minimum of the potential U

$$\ddot{q}(t) = -\nabla U(q(t))$$
 (UN)
$$\mathcal{H}(p,q) = \frac{1}{2}||p||^2 + U(q)$$
 $\gamma(p,q) = (\gamma p, \gamma q)$ unitary action

$$z_0=(p_0,q_0)$$

- $\pm i\beta \in \sigma(J\nabla^2 H(z_0)) \Leftrightarrow \beta^2 \in \sigma(\nabla^2 U(q_0)) (A^{-1})$
- the assumption (A7) is always satisfied!
- what about (A5)?
 - non-degenerate orbit
 - \bullet q_0 is a minimum of the potential U

$$\ddot{q}(t)=-
abla U(q(t))$$
 (UN)
$$H(p,q)=rac{1}{2}||p||^2+U(q)$$
 $\gamma(p,q)=(\gamma p,\gamma q)$ unitary action

$$z_0=(p_0,q_0)$$

- $\pm i\beta \in \sigma(J\nabla^2 H(z_0) \Leftrightarrow \beta^2 \in \sigma(\nabla^2 U(q_0))$
- the assumption (A7) is always satisfied!
- what about (A5)?
 - non-degenerate orbit
 - ullet q_0 is a minimum of the potential U

Plan

- Problem
- 2 Lypunov center theorem with symmetries
- The ideas of proof
- Applications

Periodic solutions of the system
$$\dot{z}(t) = J \nabla H(z(t))$$

Periodic solutions of the system
$$\dot{z}(t) = J\nabla H(z(t))$$

$$\updownarrow$$

$$2\pi\text{-periodic solutions of the parameterized system } \dot{z}(t) = \lambda J\nabla H(z(t))$$

$$\updownarrow$$

$$z_0 \rightarrow \{z_0\} \times (0, \infty)$$

- Periodic solutions of the system $\dot{z}(t) = J \nabla H(z(t))$
- (z) 2π -periodic solutions of the parameterized system $\dot{z}(t) = \lambda J \nabla H(z(t))$
- Critical points of the functional $\Phi: \mathbb{H}^{1/2}(S^1,\mathbb{R}^{2N}) \times (0,\infty) \to \mathbb{R}$ given by $\Phi(z,\underline{\lambda}) = \frac{1}{2} \int_0^{2\pi} J\dot{z}(t) \cdot z(t) + \underline{\lambda} H(z(t)) \, dt$.

$$z_0 \rightarrow \{z_0\} \times (0,\infty)$$

 $(0,\infty)$

WLOG we assume a growth condition $|\nabla H(z)| \le a_1 + a_2|z|^s$ for some $a_1, a_2 > 0$ and $s \in [1, \infty)$.

Periodic solutions of the system
$$\dot{z}(t) = J\nabla H(z(t))$$

 2π -periodic solutions of the parameterized system $\dot{z}(t) = \lambda J \nabla H(z(t))$

Critical points of the functional $\Phi: \mathbb{H}^{1/2}(S^1,\mathbb{R}^{2N}) \times (0,\infty) \to \mathbb{R}$ given

by
$$\Phi(z,\lambda) = \frac{1}{2} \int_0^{2\pi} J\dot{z}(t) \cdot z(t) + \lambda H(z(t)) dt$$
.

Fakt

The space $\mathbb{H}^{1/2}(S^1,\mathbb{R}^{2N})$ is an orthogonal representation of the group $G = \Gamma \times S^1$. Φ is G-invariant.

$$z_0 \rightarrow \{z_0\} \times (0,\infty) \rightarrow G(z_0) \times (0,\infty)$$

WLOG we assume a growth condition $|\nabla H(z)| \leq a_1 + a_2|z|^s$ for some $a_1, a_2 > 0 \text{ and } s \in [1, \infty).$

$$\nabla_z \Phi(z, \lambda) = 0 \qquad (ZB)$$

Trivial set of solutions

$$\mathcal{T} = G(z_0) \times (0, \infty)$$

Let
$$\lambda_0 \in \{\frac{k}{\beta_i} : k \in \mathbb{N}\}.$$

$$\lambda$$
+

$$\setminus_0$$
 z_0

$$\lambda_{-}$$

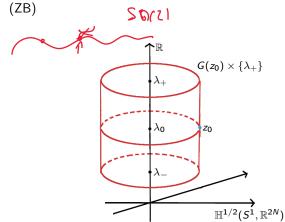
$$\mathbb{H}^{1/2}(S^1,\mathbb{R}^{2N})$$

$$\nabla_z \Phi(z,\lambda) = 0$$

Trivial set of solutions

$$\mathcal{T} = G(z_0) \times (0, \infty)$$

Let $\lambda_0 \in \{\frac{k}{\beta_i} : k \in \mathbb{N}\}.$

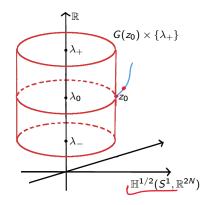


$$\nabla_z \Phi(z, \lambda) = 0$$
 (ZB)

Trivial set of solutions

$$\mathcal{T} = G(z_0) \times (0, \infty)$$

Let $\lambda_0 \in \{\frac{k}{\beta_i} : k \in \mathbb{N}\}.$

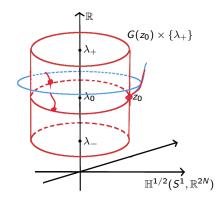


$$\nabla_z \Phi(z, \lambda) = 0$$
 (ZB)

Trivial set of solutions

$$\mathcal{T} = G(z_0) \times (0, \infty)$$

Let $\lambda_0 \in \{\frac{k}{\beta_i} : k \in \mathbb{N}\}.$



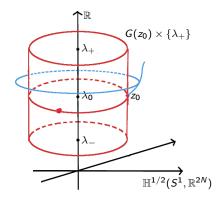
$$\nabla_z \Phi(z,\lambda) = 0$$
 (ZB)

Trivial set of solutions

$$\mathcal{T} = G(z_0) \times (0, \infty)$$

Let $\lambda_0 \in \{\frac{k}{\beta_i} : k \in \mathbb{N}\}.$

We use bifurcation theorem for degree for gradient equivariant map (Gołębiewska and Rybicki, 2011).



$$\nabla_z \Phi(z,\lambda) = 0$$
 (ZB)

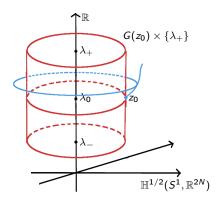
Trivial set of solutions

$$\mathcal{T} = G(z_0) \times (0, \infty)$$

Let $\lambda_0 \in \{\frac{k}{\beta_i} : k \in \mathbb{N}\}.$

We use bifurcation theorem for degree for gradient equivariant map (Gołębiewska and Rybicki, 2011).

$$\nabla_{G} - deg(\nabla \Phi, \mathcal{O}) = \Upsilon_{G}(\mathfrak{CI}_{G}(\mathcal{O}, -\nabla \Phi)).$$



$$\nabla_z \Phi(z,\lambda) = 0$$
 (ZB)

Trivial set of solutions

$$\mathcal{T} = G(z_0) \times (0, \infty)$$

Let $\lambda_0 \in \{\frac{k}{\beta_i} : k \in \mathbb{N}\}.$

We use bifurcation theorem for degree for gradient equivariant map (Gołębiewska and Rybicki, 2011).

$$\nabla_G - deg(\nabla \Phi, \mathcal{O}) = \Upsilon_G(\mathfrak{CI}_G(\mathcal{O}, -\nabla \Phi)).$$

GS - G-homotopy types of G-spectra

U(G) - Euler ring of a compact Lie group G

 $\mathfrak{CI}_G \in GS$ (Izydorek, 2002) for compact pert. of linear

 $\Upsilon_G: GS o U(G)$ (Gołębiewska i Rybicki, 2013)

$$\nabla_z \Phi(z, \lambda) = 0 \qquad (ZB)$$

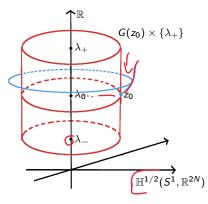
Trivial set of solutions

$$\mathcal{T}=G(z_0)\times(0,\infty)$$

Let $\lambda_0 \in \{\frac{k}{\beta_i} : k \in \mathbb{N}\}$.

We use bifurcation theorem for degree for gradient equivariant map (Gołębiewska and Rybicki, 2011).

$$\nabla_G - deg(\nabla \Phi, \mathcal{O}) = \Upsilon_G(\mathfrak{CI}_G(\mathcal{O}, -\nabla \Phi)).$$



$$\Upsilon_G\left(\mathrm{CJ}_G\left(G(z_0),-\nabla\Phi(\cdot,\lambda_+)\right)\right)\neq\Upsilon_G\left(\mathrm{CJ}_G\left(G(z_0),-\nabla\Phi(\cdot,\lambda_-)\right)\right).$$

The end of a proof

- We prove the bifurcation of solutions of $\nabla_z \Phi(z, \lambda) = 0$ on the function space $\mathbb{H}^{1/2}(S^1, \mathbb{R}^{2N})$ from any point of the orbit $G(z_0) \times \{\lambda_0\}$.
- These solutions solve the original problem $\dot{z}(t) = J\nabla H(z(t))$ with periods close to $2\pi\lambda_0$.
- The period $2\pi\lambda_0$ is minimal since there is no bifurcation on the level λ_0/k for any $k\in\mathbb{N}$.

Let $z(t) \times \{\lambda\}$ be a solution close to $z_0 \times \{\lambda_0\}$ in $\mathbb{H}^{1/2}(S^1, \mathbb{R}^{2N}) \times \mathbb{R}$. The map $z(t) \to \nabla H(z(t))$ is continuous from $L^2(S^1, \mathbb{R}^{2N})$ to $L^2(S^1, \mathbb{R}^{2N})$.

Let $\varepsilon > 0$ and we choose $0 < \delta < \varepsilon$, such that $||z - z_0||_{L^2(S^1, \mathbb{R}^{2N})} \le ||z - z_0||_{\mathbb{H}^{1/2}(S^1, \mathbb{R}^{2N})} < \delta$ implies

$$||\nabla H(z)||_{L^{2}(S^{1},\mathbb{R}^{2N})} = ||\nabla H(z) - \nabla H(z_{0})||_{L^{2}(S^{1},\mathbb{R}^{2N})} < \varepsilon.$$

Ther

$$\begin{aligned} ||z - z_0||_{L^{\infty}(S^{1}, \mathbb{R}^{2N})}^{2} &\leq c||z - z_0||_{\mathbb{H}^{1}(S^{1}, \mathbb{R}^{2N})}^{2} = \\ &= c\left(||z - z_0||_{L^{2}(S^{1}, \mathbb{R}^{2N})}^{2} + ||(z - z_0)'||_{L^{2}(S^{1}, \mathbb{R}^{2N})}^{2}\right) = \\ &= c\left(||z - z_0||_{L^{2}(S^{1}, \mathbb{R}^{2N})}^{2} + ||\lambda J \nabla H(z)||_{L^{2}(S^{1}, \mathbb{R}^{2N})}^{2}\right) \leq \\ &\leq c(1 + (\lambda_0 + \theta)^{2})\varepsilon^{2}. \end{aligned}$$

Let $z(t) \times \{\lambda\}$ be a solution close to $z_0 \times \{\lambda_0\}$ in $\mathbb{H}^{1/2}(S^1, \mathbb{R}^{2N}) \times \mathbb{R}$. The map $z(t) \to \nabla H(z(t))$ is continuous from $L^2(S^1, \mathbb{R}^{2N})$ to $L^2(S^1, \mathbb{R}^{2N})$.

Let $\varepsilon > 0$ and we choose $0 < \delta < \varepsilon$, such that $||z - z_0||_{L^2(S^1,\mathbb{R}^{2N})} \le ||z - z_0||_{\mathbb{H}^{1/2}(S^1,\mathbb{R}^{2N})} < \delta$ implies

$$||\nabla H(z)||_{L^{2}(S^{1},\mathbb{R}^{2N})} = ||\nabla H(z) - \nabla H(z_{0})||_{L^{2}(S^{1},\mathbb{R}^{2N})} < \varepsilon.$$

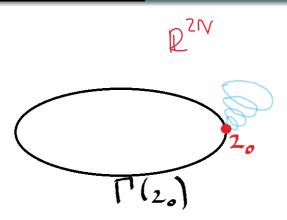
Then

$$||z - z_{0}||_{L^{\infty}(S^{1}, \mathbb{R}^{2N})}^{2} \leq c||z - z_{0}||_{L^{1}(S^{1}, \mathbb{R}^{2N})}^{2} =$$

$$= c \left(||z - z_{0}||_{L^{2}(S^{1}, \mathbb{R}^{2N})}^{2} + ||(z - z_{0})'||_{L^{2}(S^{1}, \mathbb{R}^{2N})}^{2}\right) =$$

$$= c \left(||z - z_{0}||_{L^{2}(S^{1}, \mathbb{R}^{2N})}^{2} + ||\lambda J \nabla H(z)||_{L^{2}(S^{1}, \mathbb{R}^{2N})}^{2}\right) \leq$$

$$\leq c (1 + (\lambda_{0}^{1} + \theta)^{2}) \varepsilon^{2}.$$



Plan

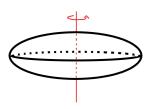
- Problem
- 2 Lypunov center theorem with symmetries
- The ideas of proof
- Applications

Quasi-periodic motions close to geostationary orbit

We study motions near the geostationary orbit of an oblate spheroid.

$$U_G(r,\theta) = -G\frac{E}{r}\left(1 - \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^n J_n P_n(\cos\theta)\right),\,$$

E - mass, R - equatorial radius, P_n - n-th Legendre polynomial, J_n - coefficients ($J_2 = 1.0826359 \cdot 10^{-3}$ for the Earth).



Quasi-periodic motions close to geostationary orbit

We study motions near the geostationary orbit of an oblate spheroid.

$$U_G(r,\theta) = -G\frac{E}{r}\left(1 - \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^n J_n P_n(\cos\theta)\right),\,$$

E - mass, R - equatorial radius, P_n - n-th Legendre polynomial, J_n -coefficients ($J_2=1.0826359\cdot 10^{-3}$ for the Earth).

Approximation:

$$U(r,\theta) = -\frac{GE}{r} \left(1 - \frac{J_2 R^2}{r^2} P_2(\cos \theta) \right).$$

By the change of coordinates $(c = \frac{1}{2}R^2J_2 > 0, d = \sqrt{r^2 + z^2})$:

$$V(r,z) = -\frac{1}{d}\left(1 - \frac{c}{d^2}\left(3\frac{z^2}{d^2} - 1\right)\right) = -\frac{1}{d} - \frac{c}{d^3} + \frac{3cz^2}{d^5},$$

Fact

Any oblate spheroid possesses exactly one geostationary orbit in a plane perpendicular to rotation axis.

https://www.everythingrf.com/community/what-is-a-geostationary-orbit

 ω - angular velocity of a particle on geostationary orbit

Hamiltonian reformulation

$$\mathcal{H}(q_1, q_2, q_3, p_1, p_2, p_3) = \underbrace{\frac{1}{2}(p_1^2 + p_2^2 + p_3^2) + \omega(q_1p_2 - q_2p_1) - \frac{1}{d} - \frac{c}{d^3} + \frac{3cq_3^2}{d^5}}_{\text{where } c = \frac{1}{2}R^2J_2 > 0, \ d = \sqrt{q_1^2 + q_2^2 + q_3^2}, \ z_0 = \underbrace{\left(d_0, 0, 0\right) \left(p_1 - \omega d_0, 0\right)}_{\text{optimize}}.$$

- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial.
- (A3) the orbit $\Gamma(z_0)$ is isolated in $(\nabla H)^{-1}(0)$,
- (A5) $\deg(\nabla H_{|T_{\infty}^{\perp}\Gamma(z_0)}, B(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ

(A7')
$$m^+(\nabla^2 H(z_0)) > N$$
 lub $m^-(\nabla^2 H(z_0)) > N$

$$m^+(\nabla^2 \mathcal{H}(z_0)) = 4, \ m^-(\nabla^2 \mathcal{H}(z_0)) = 1, \ \dim \ker \nabla^2 \mathcal{H}(z_0) = 1$$

Hamiltonian reformulation

$$\mathcal{H}(q_1, q_2, q_3, p_1, p_2, p_3) = \frac{1}{2}(p_1^2 + p_2^2 + p_3^2) + \omega(q_1 p_2 - q_2 p_1) - \frac{1}{d} - \frac{c}{d^3} + \frac{3cq_3^2}{d^5},$$
where $c = \frac{1}{2}R^2J_2 > 0$, $d = \sqrt{q_1^2 + q_2^2 + q_3^2}$, $z_0 = (d_0, 0, 0, 0, -\omega d_0, 0)$.

- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2 ,
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial,
- (A3) the orbit $\Gamma(z_0)$ is isolated in $(\nabla H)^{-1}(0)$,
- (A5) $\deg(\nabla H_{\mid T_{z_0}^{\perp} \Gamma(z_0)}, B(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ ,
- (A7') $m^+(\nabla^2 H(z_0)) > N$ lub $m^-(\nabla^2 H(z_0)) > N$.

$$m^+(\nabla^2 \mathcal{H}(z_0)) = 4, \ m^-(\nabla^2 \mathcal{H}(z_0)) = 1, \ \dim \ker \nabla^2 \mathcal{H}(z_0) = 1$$

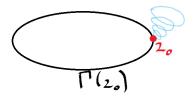
Hamiltonian reformulation

$$\mathcal{H}(q_1,q_2,q_3,p_1,p_2,p_3) = \frac{1}{2}(p_1^2 + p_2^2 + p_3^2) + \omega(q_1p_2 - q_2p_1) - \frac{1}{d} - \frac{c}{d^3} + \frac{3cq_3^2}{d^5},$$
 where $c = \frac{1}{2}R^2J_2 > 0$, $d = \sqrt{q_1^2 + q_2^2 + q_3^2}$, $z_0 = (d_0,0,0,0,-\omega d_0,0)$.

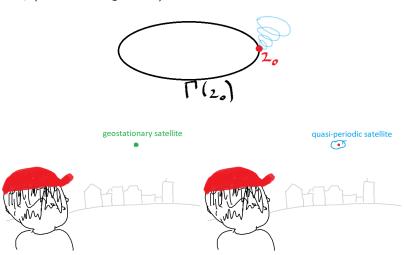
- (A1) $H: \mathbb{R}^{2N} \to \mathbb{R}$ is a Γ -invariant Hamiltonian of the class C^2 ,
- (A2) $z_0 \in \mathbb{R}^{2N}$ is a critical point of H such that the isotropy group Γ_{z_0} is trivial,
- (A3) the orbit $\Gamma(z_0)$ is isolated in $(\nabla H)^{-1}(0)$,
- (A5) $\deg(\nabla H_{|T_{z_0}^{\perp}\Gamma(z_0)}, B(z_0, \epsilon), 0) \neq 0$ for sufficiently small ϵ , \Diamond
- (A7') $m^+(\nabla^2 H(z_0)) > N$ lub $m^-(\nabla^2 H(z_0)) > N$.

$$m^+(
abla^2\mathcal{H}(z_0))=\underline{4},\ m^-(
abla^2\mathcal{H}(z_0))=1,\ \mathsf{dim}\,\mathsf{ker}\,
abla^2\mathcal{H}(z_0)=1$$

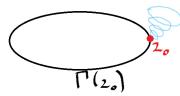
There exist a family of periodic solutions with trajectories arbitrarily close to z_0 (in the rotating frame!)



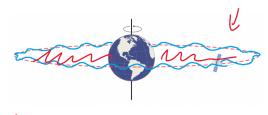
There exist a family of periodic solutions with trajectories arbitrarily close to z_0 (in the rotating frame!)



There exist a family of periodic solutions with trajectories arbitrarily close to z_0 (in the rotating frame!)



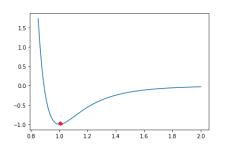
In the original problem there are <u>quasi-periodic</u>, solutions with trajectories arbitrarily close to geostationary orbit.



Lennard-Jones N-body problem

$$\ddot{q}(t) = -\nabla U(q(t))$$
 $U(q) = \sum_{1 \le i < j \le N} \left(\frac{1}{\mid q_i - q_j \mid^{12}} - \frac{2}{\mid q_i - q_j \mid^6} \right),$

where $q=(q_1,q_2,\ldots,q_N)\in(\mathbb{R}^2)^N$ and $q_i\in\mathbb{R}^2$ is a position of the *i*-th particle.



$$N = 2 i N = 3$$

$$U(q_1, q_2) = \frac{1}{\mid q_1 - q_2 \mid^{12}} - \frac{2}{\mid q_1 - q_2 \mid^6}$$

M. Corbera, J. Llibre, and E. Pérez-Chavela. Equilibrium points and central configurations for the Lennard-Jones 2- and 3-body problems Celestial Mech. Dynam. Astronom., 89(3):235–266, 2004.

- families of equilibria
- relative equilibria

Periodic solutions

- N=2: the existence of non-stationary periodic solutions emanating from equilibrium $(0, \frac{1}{2}, 0, -\frac{1}{2})$ with minimal periods close $\pi/6$.
- N=3: the existence of two families emanating from triangle equilibrium, minimal periods: $\pi/(3\sqrt{3})$ and $\pi/(3\sqrt{6})$.

N = 2 i N = 3

$$U(q_1, q_2) = \frac{1}{\mid q_1 - q_2 \mid^{12}} - \frac{2}{\mid q_1 - q_2 \mid^6}$$

M. Corbera, J. Llibre, and E. Pérez-Chavela. Equilibrium points and central configurations for the Lennard-Jones 2- and 3-body problems. Celestial Mech. Dynam. Astronom., 89(3):235–266, 2004.

- families of equilibria
- relative equilibria

Periodic solutions

- N=2: the existence of non-stationary periodic solutions emanating from equilibrium $(0,\frac{1}{2},0,-\frac{1}{2})$ with minimal periods close $\pi/6$.
- N=3: the existence of two families emanating from triangle equilibrium, minimal periods: $\pi/(3\sqrt{3})$ and $\pi/(3\sqrt{6})$.

N = 2 i N = 3

$$U(q_1, q_2) = \frac{1}{\mid q_1 - q_2 \mid^{12}} - \frac{2}{\mid q_1 - q_2 \mid^6}$$

M. Corbera, J. Llibre, and E. Pérez-Chavela. Equilibrium points and central configurations for the Lennard-Jones 2- and 3-body problems. Celestial Mech. Dynam. Astronom., 89(3):235–266, 2004.

- families of equilibria
- relative equilibria

Periodic solutions

- N=2: the existence of non-stationary periodic solutions emanating from equilibrium $(0, \frac{1}{2}, 0, -\frac{1}{2})$ with minimal periods close $\pi/6$.
- N=3: the existence of two families emanating from triangle equilibrium, minimal periods: $\pi/(3\sqrt{3})$ and $\pi/(3\sqrt{6})$.

N = 2 i N = 3

$$U(q_1, q_2) = \frac{1}{\mid q_1 - q_2 \mid^{12}} - \frac{2}{\mid q_1 - q_2 \mid^6}$$

M. Corbera, J. Llibre, and E. Pérez-Chavela. Equilibrium points and central configurations for the Lennard-Jones 2- and 3-body problems. Celestial Mech. Dynam. Astronom., 89(3):235–266, 2004.

- families of equilibria
- relative equilibria

Periodic solutions

- N=2: the existence of non-stationary periodic solutions emanating from equilibrium $(0, \frac{1}{2}, 0, -\frac{1}{2})$ with minimal periods close $\pi/6$.
- N=3: the existence of two families emanating from triangle equilibrium, minimal periods: $\pi/(3\sqrt{3})$ and $\pi/(3\sqrt{6})$.

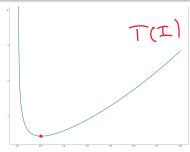
Quasi-periodic solutions, N=2

Twierdzenie, Corbera, Llibre, Pérez-Chavela, 2004

For any $I \in \left(\frac{1}{4}, \infty\right)$ the set

$$CC = \{(q_1, q_2) \in \mathbb{R}^2 \times \mathbb{R}^2 : q_2 = -q_1, |q_1 - q_2| = 2\sqrt{I}\}$$

is a family of central configurations generating periodic solutions with period $\mathcal{T}(I)$.



Quasi-periodic solutions, N = 2

Rotating frame \rightarrow SO(2)-equivariant Hamiltonian system with equilibria.

Theorem

For $I \in (\frac{1}{4}, \frac{1}{4}\sqrt[3]{\frac{5}{2}}) \setminus \{\frac{1}{4}\sqrt[3]{\frac{7}{4}}\}$ there exists a family of quasi-periodic solutions of the Lennard-Jones 2-body problem emanating from relative equilibrium.

Quasi-periodic solutions, N = 2

Rotating frame o SO(2)-equivariant Hamiltonian system with equilibria.

Theorem

For $I \in (\frac{1}{4}, \frac{1}{4}\sqrt[3]{\frac{5}{2}}) \setminus \{\frac{1}{4}\sqrt[3]{\frac{7}{4}}\}$ there exists a family of quasi-periodic solutions of the Lennard-Jones 2-body problem emanating from relative equilibrium.

D. Strzelecki.

Periodic solutions of symmetric Hamiltonian systems.

Arch. Rational Mech. Anal., 237:921-950, 2020.

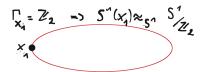
D. Strzelecki.

Bifurcations of quasi-periodic solutions from relative equlibria in the Lennard-Jones 2-body problem.

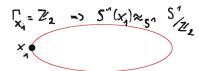
Celestial Mech. Dynam. Astronom, art. 44, 2021.

Thank you for your attention!

e-mail: danio@mat.umk.pl

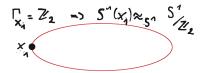


$$\int_{X_2}^{1} = \frac{1}{2} = \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot$$



$$\int_{X_2}^{1} = \frac{1}{2} = \frac{1}{2} \frac{S^4(x_2)}{x_2} \approx \frac{S^4}{2}$$

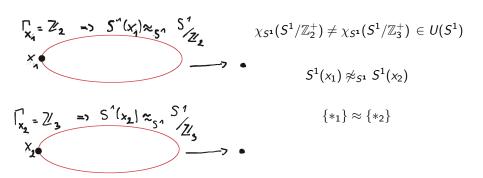
$$\chi_{S^{1}}(S^{1}/\mathbb{Z}_{2}^{+}) \neq \chi_{S^{1}}(S^{1}/\mathbb{Z}_{3}^{+}) \in U(S^{1})$$



$$\int_{x_2}^{1} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot$$

$$\chi_{S^1}(S^1/\mathbb{Z}_2^+) \neq \chi_{S^1}(S^1/\mathbb{Z}_3^+) \in U(S^1)$$

$$S^1(x_1) \not\approx_{S^1} S^1(x_2)$$



Julian I. Palmore

- J. I. Palmore, Classifying relative equilibria II, Bull. Amer. Math. Soc. 81 (1975), 489-491.
- J. I. Palmore, *Measure of degenerate relative equilibria*. *I*, Ann. of Math. (2) 104(3) (1976), 421-429.
- J. I. Palmore, Relative equilibria of vortices in two dimensions, Proc. Nat. Acad. Sci. USA 79 (1982), 716-718.

Alain Albouy, Kenneth R. Meyer i Dieter S. Schmidt

- A. Albouy, Open Problem 1: Are Palmore's "Ignored Estimates" on the Number of Planar Central Configurations Correct?, Qual. Theory Dyn. Syst. 14(2) (2015), 403–406.
- K. R. Meyer, D. S. Schmidt, *Bifurcations of relative equilibria in the 4- and 5-body problem*, Ergodic Theory Dynam. Systems 8* (1988), Charles Conley Memorial Issue, 215-225.
- K. R. Meyer, D. S. Schmidt, *Bifurcations of relative equilibria in the N-body and Kirchhoff problems*, SIAM J. Math. Anal. 19(6) (1988), 1295-1313.

Uwaga 1

Dla zwartej grupy Liego G oraz gładkiej rozmaitości M, jeżeli działanie grupy G jest **wolne**, to przestrzeń orbit M/G jest gładką rozmaitością.

Uwaga 2

Jeżeli działanie zwartej grupy Liego nie jest wolne, to spójne składowe przestrzeni orbit M/G tworzą stratyfikację Whitney'a.

J. J. Duistermaat, J. A. C. Kolk, Lie Groups, Springer-Verlag, Berlin Heidelberg, 2000.