Lyapunov center theorem for Hamiltonian systems
with symmetries

Daniel Strzelecki
Nicolaus Copernicus University in Torun

Geometry, Dynamics and Mechanics Seminar
February 15, 2022

Daniel Strzelecki Nicolaus Copernicus University in Torun


user
Ołówek


Plan

@ D. Strzelecki.
Periodic solutions of symmetric Hamiltonian systems.

© Problem
© Lypunov center theorem with symmetries
© The ideas of proof

@ Applications

Daniel Strzelecki Nicolaus Copernicus University in Torun



Symmetries in differential equations
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Symmetries in differential equations

Assume that I acts on R” by
I'<xR"> (y,2) = p(y)z € R,
where p : T %,\O,Ln\) C GL(n) is a group homomorphism. vz := p(v)z.
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Symmetries in differential equations

Assume that I acts on R” by
I'xR"> (y,2z) = p(y)z € R",
where p : ' — O(n) C GL(n) is a group homomorphism. vz := p(~)z.
The orbit of zg: () = {yz0 : v €T}
The stabilizer of zp: T,, ={y €T : yz0 = 20}

Invariant map: f: R” = R, f(yz) = f(2).
Equivariant map: h:R" — R", h(yz) = yh(z).
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Symmetries in differential equations

Assume that I acts on R” by
I'xR"> (y,2z) = p(y)z € R",
where p : ' — O(n) C GL(n) is a group homomorphism. vz := p(~)z.
The orbit of zg: () = {yz0 : v €T}
The stabilizer of zp: T,, ={y €T : yz0 = 20}

Invariant map: f: R" = R, f(vz) = f(2).
Equivariant map: h: R" — R", h(yz) = vh(z).

z(t) = h(z(t)) (1)
‘ ) z(t) = Vf(z(t))
21 = y2 xhGaa)=h(y2

If z(t) is a solution of (1) then ~z(t) is a solution for any v € T.
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What's the problem with symmetries?
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What's the problem with symmetries?

Noether's theorem - positive impact of symmetries

Every differentiable symmetry of the action of a physical system with
conservative forces has a corresponding conservation law.
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What's the problem with symmetries?

(O =hx) V() =O

Noether's theorem - positive impact of symmetries

Every differentiable symmetry of the action of a physical system with
conservative forces has a corresponding conservation law.

y

The problem

If Q(zot =0, then I'(z) C h=%(0). Critical points are not isolated in

generall

A
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What's the problem with symmetries?

Noether's theorem - positive impact of symmetries

Every differentiable symmetry of the action of a physical system with
conservative forces has a corresponding conservation law.

y

The problem

If h(z0) =0, then I'(z9) C h=1(0). Critical points are not isolated in
general!

M(z0) = T/T4

\
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T, 06

|f\(a.)>O

M (2.)

T (20) C ker b (z)
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T, 06

|f\(a.)>O

M (2.)

T2 (20) C ker ' (z0)

dim (z) < dim ker h'(zp)
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T, 06

|f\(a.)>O

M (2.)

T2 (20) C ker ' (z0)
dim (z) < dim ker h'(zp)

| (20)] =0 Lo (W) 59
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Hamiltonian systems with symmetries
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Hamiltonian systems with symmetries

We assume that " acts unitary on R?N (p: T — U(N) = Sp(2n) N O(2n)).

#(t) = JVH(=(1)), )
0

where J = [—ldN 0 ] z:R— R?M and H € C3(R*M,R) is

l-invariant. VH(z) = 0.
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Hamiltonian systems with symmetries

We assume that " acts unitary on R?N (p: T — U(N) = Sp(2n) N O(2n)).
z(t) = JVH(z(t)), (2)
0

_ 2N 2(R2N
whereJ_[_IdN O] z:R— R*" and H € C*(R*",R) is
l-invariant. VH(z) = 0.

JVHQZ) = JyVH(z) = g JVH(z2)
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Hamiltonian systems with symmetries

We assume that " acts unitary on R?N (p: T — U(N) = Sp(2n) N O(2n)).

#(t) = JVH(=(1)), )
0

where J = [—ldN 0 ] z:R— R?M and H € C3(R*M,R) is

l-invariant. VH(z) = 0.

JVH(yz) = JyVH(z) =vJVH(z)

The goal

Prove the existence of periodic solutions of the system (2) in a
neighborhood of stationary solution z.
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Motivation - Liapunov center theorem

m@@

z(t) = JVH(z(t)) V‘LH ( J) 2O

Let H € C?(R?N R), VH(0) = 0. If o(JV?H(0)) = {#iB1,...,%iBm}
for B; > 0 then for, 3, satisfying Bj/Bj, ¢ N for j # jo there is a smooth
two-dimensional manifold passing through 0 and intersecting each energy
level near 0 in a periodic trajectory with minimal period near 27/ (3}, .
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Motivation - Liapunov center theorem

Let H € C?(R?N R), VH(0) = 0. If o(JV?H(0)) = {#iB1,...,%iBm}
for B; > 0 then for (3, satisfying Bj/Bj, ¢ N for j # jo there is a smooth
two-dimensional manifold passing through 0 and intersecting each energy
level near 0 in a periodic trajectory with minimal period near 27 /(.

=D

s Weinstein, 1073 with symmetries of continuous
group 2. = |

© Moser, 1976 o Montaldi, Roberts, Stewart,
o Fadell i Rabinowitz, 1978 1988 Y

o Szulkin, 1994 @ Bartsch, 19@
[" Bartsch, 1997 @ Golubitsky, Marsden, Stewart,
o Dancer i Rybicki, 1999 Dellnitz, 1995
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Challenges

o Study zg € (VH)71(0) such that dim ., < dim . Then the orbit
(zo) is at least one dimensional manifold and critical points from
this orbit are not isolated.
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Challenges

o Study zg € (VH)71(0) such that dim ., < dim . Then the orbit
(zo) is at least one dimensional manifold and critical points from
this orbit are not isolated.

o Allow a degeneracy of critical point Eet VzH(zo! =0 (in fact
dim ker V2H(z) > dim [(2p)).
4
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Lypunov center theorem with symmetries

© Lypunov center theorem with symmetries
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Lypunov center theorem with symmetries

General assumptions

2(t) = JVH(2()) (3)

(A1) H:R2?N — R is a M-invariant Hamiltonian of the class C2,
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Lypunov center theorem with symmetries

General assumptions

n - sa /L_\ [
z(t) = JVH(z =(3)
(A1) H:R2?N — R is a M-invariant Hamiltonian of the class C2,

(A2) zy € R?N is a critical point of H such that the isotropy group I, is
trivial, —
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Lypunov center theorem with symmetries

General assumptions

2(t) = JVH(2()) (3)

(A1) H:R2?N — R is a M-invariant Hamiltonian of the class C2,
(A2) zy € R?N is a critical point of H such that the isotropy group I, is

trivial, .
(A3) the orbit ['(z) is isolated in (VH)~1(0), @ -
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Lypunov center theorem with symmetries

General assumptions

2(t) = JVH(2()) (3)

(A1) H:R2?N — R is a M-invariant Hamiltonian of the class C2,

(A2) zy € R?N is a critical point of H such that the isotropy group I, is
trivial,

(A3) the orbit ['(z) is isolated in (VH)~1(0),

(A4) £iB1,...,£iBm 0< B < ... < 61,{m > 1]are the purely
imaginary eigenvalues of JV2H(z), '
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Lypunov center theorem with symmetries

General assumptions

z(t) = JVH(z2(t)) (3)

(A1) H:R2?N — R is a M-invariant Hamiltonian of the class C2,

(A2) zy € R?N is a critical point of H such that the isotropy group I, is
trivial,

(A3) the orbit (z) is isolated in (VH)~1(0),

(Ad) +iBy,...,+ifm, 0< Bm <...< 1, m>1 are the purely
imaginary eigenvalues of JV2H(z),

(A5) deg(VH(thr(ZOD, B(zg,€),0) # 0 for sufficiently small ¢,

( L,\

Daniel Strzelecki Nicolaus Copernicus University in Torun


user
Ołówek


Lypunov center theorem with symmetries

General assumptions

2(t) = JVH(2()) (3)

(A1) H:R2?N — R is a M-invariant Hamiltonian of the class C2,

(A2) zy € R?N is a critical point of H such that the isotropy group I, is
trivial,

(A3) the orbit ['(z) is isolated in (VH)~1(0),

(A4) £iB1,...,£iBm 0< Bm < ...< f1, m>1 are the purely
imaginary eigenvalues of JV2H(z),

(A5) deg(VH, TAM(20)) B(zo, €),0) # 0 for sufficiently small ¢,
(A6) B, is such that §;/5;, & N for all j # jo
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Lypunov center theorem with symmetries

General assumptions

2(t) = JVH(2()) (3)

(A1) H:R2?N — R is a M-invariant Hamiltonian of the class C2,

(A2) zy € R?N is a critical point of H such that the isotropy group I, is
trivial,

(A3) the orbit ['(z) is isolated in (VH)~1(0),

A4) £iBy,...,%+iBm 0< fBm <...<B1, m>1 are the purely
imaginary eigenvalues of JV2H(z),

(A5) deg(VH, TAM(20)) B(zo, €),0) # 0 for sufficiently small ¢,
.(AB) Bj, is such that §;/B), & N for all j # jo
—A\V? _
(A7) m~ ({ 4{\VJH(ZO) )\V2.I{I(zo)}) changes at A = i when A
varies.
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Lypunov center theorem with symmetries

The most general theorem

Theorem 1.

Under the assumptions (A1)—(A7) there exists a connected family of
non-stationary periodic solutions of the system z(t) = JVH(z(t))
emanating from the stationary solution zy (with amplitude tending to 0)
such that minimal periods of solutions in a small neighborhood of z are
close to 27/3;,.
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Lypunov center theorem with symmetries

The most general theorem

Under the assumptions (A1)—(A7) there exists a connected family of
non-stationary periodic solutions of the system z(t) = JVH(z(t))
emanating from the stationary solution zy (with amplitude tending to 0)
such that minimal periods of solutions in a small neighborhood of z are

close to 27/3;,.
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Lypunov center theorem with symmetries

The most general theorem

Under the assumptions (A1)—(A7) there exists a connected family of
non-stationary periodic solutions of the system z(t) = JVH(z(t))
emanating from the stationary solution zy (with amplitude tending to 0)
such that minimal periods of solutions in a small neighborhood of z are

close to 27/3;,.

wi)

Yw(&]
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Modifications
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Lypunov center theorem with symmetries

Modifications

(A5) Brouwer degree degg(V (H| thr(zl))) , BY(z9,¢),0) # 0 for

sufficiently small € and d = dim T T(z).
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Lypunov center theorem with symmetries

Modifications

(A5) Brouwer degree degg(V (H| thr(zl))) , BY(z9,¢),0) # 0 for

sufficiently small € and d = dim T T(z).

The assumption (A5) 5 satisfied for non-degenerate orbit i.e. under the
assumption dim (z9) = dim ker V2H(z).
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Lypunov center theorem with symmetries

Modifications

(A5) Brouwer degree degg(V (H| thr(zl))) , BY(z9,¢),0) # 0 for

sufficiently small € and d = dim T T(z).

The assumption (Ab) is satisfied for non-degenerate orbit i.e. under the
assumption dim I(z9) = dim ker V2H(z).

_ ([-AV2H(z —J
(A7) m ({ J (20) —)\V2H(zo)}> changes at A\ = i when A

varies.
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Lypunov center theorem with symmetries

Modifications

(A5) Brouwer degree degg(V (H| thr(zl))) , BY(z9,¢),0) # 0 for

sufficiently small € and d = dim T T(z).

The assumption (Ab) is satisfied for non-degenerate orbit i.e. under the
assumption dim I(z9) = dim ker V2H(z).

_ ([-AV2H(z —J
(A7) m ({ J (20) —)\V2H(zo)}> changes at A\ = i when A

varies. l‘z

v

The assumption (A7) is implied by the condition
(A7) m*(V3H(z)) >N or m(V2H(z)) > N.
Moreover, under (A7’) the assumption (A4) is satisfied.
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Lypunov center theorem with symmetries

Modifications

Under the assumptions (A1), (A2), (A3), (A5) and (AT7’) there exists
a connected family of non-stationary periodic solutions of the system
z(t) = JVH(z(t)) emanating from the stationary solution z with
periods (not necessarily minimal) close to 27/3;, where i3;, 3; > 0 is
some eigenvalue of JV?H(z).
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Lypunov center theorem with symmetries

Newtonian systems

4(t) = =VU(q(t))
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Lypunov center theorem with symmetries

Newtonian systems

4(t) = =VU(q(t)) (UN)
H(p.a) = 5lpll> + U(q)
v(p;q) = (vp,vq) unitary action

N
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Lypunov center theorem with symmetries

Newtonian systems

G(t) = =V U(q(1)) (UN)

1
—H(p,q) = §||PH2 + U(q)

v(p, q) = (7p,q) unitary action

Zo = (P07 qo)

o +iff € o(JV2H(20) > 3 € o(V2U(q0)) (A% |
o the assumption (A7) is always satisfied!
e what about (A5)?
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Lypunov center theorem with symmetries

Newtonian systems

G(t) = =V U(q(1)) (UN)

H(p.a) = 5lpll> + U(q)

v(p, q) = (7p,q) unitary action

Zo = (P07 qo)

-~

o +iB € 0(JV2H(z) & (% € 0(V2U(qo))
o the assumption (A7) is always satisfied!
e what about (A5)?

o non-degenerate orbit
@ (o is a minimum of the potential U
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The ideas of proof

© The ideas of proof
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The ideas of proof

Variational problem

Periodic solutions of the system z(t) = JVH(z(t))

)

20
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The ideas of proof

Variational problem

Periodic solutions of the system z(t) = JVH(z(t))

2m-periodic solutions of the parameterized system z(t) = %JVH(z(t))
/

)

o — {z} x(0,00)
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The ideas of proof

Variational problem

(1) Periodic solutions of the system z(t) = JVH(z(t))
(z) 2m-periodic solutions of the parameterized system z(t) = AJVH(z(t))

)
(’b\ Critical points of the functional ® : H/2(S* R?V) x (0,00) — R given
by ®(z,A) = L [77 Jz(t) - 2(t) + AH(2(t)) dt.

Z {ZO} X (OOO) - 'l_' O

WLOG we assume a growth condition [VH(z)| < a1 + ax|z|® for some
a1, ap > 0and s € [1,00).
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The ideas of proof

Variational problem

Periodic solutions of the system z(t) = JVH(z(t))
2m-periodic solutions of the parameterized system z(t) = AJVH(z(t))

Critical points of the functional ¢ : HY/2(St, R2N) x (0,00) — R given
by ®(z,A) = L [7 Jz(t) - 2(t) + AH(2(t)) dt.

5 )QIQ_ 2(’:*6)

The space H'/2(S*,R?N) is an orthogonal representation of the group
G =T xS!. ®is G-invariant.

o — {z} x(0,00) — G(z0) x (0,00)

WLOG we assume a growth condition [VH(z)| < a; + ax|z|° for some
a1, ap > 0and s € [1,00).
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The ideas of proof

Bifurcation problem

V.0(z,A)=0  (ZB)
[ A

Trivial set of solutions

T = G(z) x (0,00)
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The ideas of proof

Bifurcation problem

V.0(z,A) =0  (ZB)

Trivial set of solutions
T = G(z0) x (0,00)

Let Ao € {£ : ke N}.
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The ideas of proof

Bifurcation problem

V.0(z,A) =0  (ZB)

Trivial set of solutions
T = G(z0) x (0,00)

LetAoe{ﬂ% . ke N}
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The ideas of proof

Bifurcation problem

V.0(z,A) =0  (ZB)

Trivial set of solutions
T = G(z0) x (0,00)

LetAoe{ﬂ% . ke N}
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The ideas of proof

Bifurcation problem

V.0(z,A) =0  (ZB)

Trivial set of solutions

T = G(2) x (0,0) G(20) x {A+}

LetAoe{ﬂ% . ke N}

We use bifurcation theorem for
degree for gradient equivariant map
(Gotebiewska

and Rybicki, 2011).

LN
H1/2(517R2N)
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The ideas of proof

Bifurcation problem

V.0(z,A) =0  (ZB)

Trivial set of solutions
T = G(z0) x (0,00)

LetAoe{ﬂ% . ke N}

We use bifurcation theorem for
degree for gradient equivariant map
(Gotebiewska

and Rybicki, 2011).

Ve —deg(V,0) = ”T((GJ@O —V))
\/_/—\_—_J
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The ideas of proof

Bifurcation problem

V. d(z,\) =0 (ZB) GS - G-homotopy types of G-
t

Trivial set of solutions spectra

T = G(z) x (0,00) U(G) - Euler ring of a compact

Lie group G

LetAoe{ﬁ% . ke N}
We use bifurcation theorem for CJs € GS (lzydorek, 2002)
degree for gradient equivariant map for compact pert. of linear
(Gotebiewska .
and Rybicki, 2011). Te: GS — U(G)

(Gotebiewska i Rybicki, 2013)
Ve—deg(VP, 0) = T4(CI(O, —Vb)).
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The ideas of proof

Bifurcation problem

V.0(z,A) =0  (ZB)

Trivial set of solutions

(T = G(20) x (0,00) G(z0) x {\+}

)

Let \o € {ﬂij . k€ N}&

We use bifurcation theorem for
degree for gradient equivariant map
(Gotebiewska

and Rybicki, 2011).

Ve—deg(V,0) = T¢(€Ig(O, —V)).

AN
@1/2(517R2N)

Te (€6 (G(20), —VO(-, A1) # T (€6 (G(z0), —VO(-, A_))).
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The ideas of proof

The end of a proof

e We prove the bifurcation of solutions of V,®(z,A) =0 on the
function space H'/2(S*,R?V) from any point of the orbit
G(Z()) X {)\0}

@ These solutions solve the original problem z(t) = JVH(z(t)) with

periods close to,27m\g.

@ The period 27\ is minimal since
Ao/ k for any k € N.

no bifurcation on the level
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The ideas of proof

Let z(t) x {\} be a solution close to zy x {)\o} in H'/?(S', R?N) x R.
The map z(t) — VH(z(t)) is continuous from L?(S5*,R?V) to
L2(S, R?N).

Let € > 0 and we choose 0 < § < ¢, such that
||Z — ZO||L2(51’R2N) < ||Z - ZOHHl/z(SI’RZN) <9 implies

[IVH(2)||12(s2 gany = [[VH(2) = VH(20)l]12(52 r2my < &
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The ideas of proof

Let z(t) x {A} be a solution close to z5 x {Ao} in %HRM) x R.
The map z(t) — VH(z(t)) is continuous from L2(S¥R2N) to
L2(51’R2N).

Let € > 0 and we choose 0 < § < ¢, such that

||Z — ZO||L2(51’R2N) < ||Z — ZOHHl/z(SI’RZN) <90 implies

[IVH(2)||12(s2 gany = [[VH(2) = VH(20)l]12(52 r2my < &
Then _
|z - ZofﬁsaRZN@V - 20||1%1_1(51,R2’V) =
= ¢ (11 = 20l3a(ss gy + 11z = 20| B gy ) =
= ¢ (112 = 20/ Ba(sa gamy + IAIVH) sn o) ) <
< c(1+ (Ao +0))e.
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The ideas of proof
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Applications

@ Applications
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Applications

Quasi-periodic motions close to geostationary orbit

We study motions near the geostationary orbit of an oblate spheroid.
E = [ R\"
=—-G—[1- - nPn )
Ug(r,0) G . ( ,,522 ( r) JnPpr(cos 9))

E - mass, R - equatorial radius, P, - n-th Legendre polynomial, J, -
coefficients (J» = 1.0826359 - 103 for the Earth).
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Applications

Quasi-periodic motions close to geostationary orbit

We study motions near the geostationary orbit of an oblate spheroid.
y g y ; p

Us(r.0) = G~ (1 -y (’f)"ann(cose)> :

n=2

A

E - mass, R - equatorial radius, P, - n-th Legendre polynomial, J, -
coefficients (J» = 1.0826359 - 103 for the Earth).
Approximation:

GE R?
U(r,0) =—— <1 - er2 P2(c059)> :

By the change of coordinates (c = 2R%?J, >0, d = Vr2 + 22):

1 c 72 1 c 3cz2
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Applications

Any oblate spheroid possesses exactly one geostationary orbit in a plane
perpendicular to rotation axis.

https://www.everythingrf.com/ ity /what-i i y-orbit

B— angular velocity of a particle on geostationary orbit
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Applications

Hamiltonian reformulation

VvV (
1 1 cca?)cqg

_ 2 2 2
H(qu, 92, G3, 1. P2, P3) = 5 (Pi+py+p3)tw(qipe=Gep1) - o= 5+ 5
where ¢ = %Rsz >0,d=+q}+¢+q3, lzi: !do,0,0jP, —wdy, 0)
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Applications

Hamiltonian reformulation

c 3cq3

1 1
H(q1, 92, 3, P, P2, p3) = 5 (PT+P3+p3) Fw(qupa—qapr) —— — 5+

where ¢ = %Rsz >0,d=+/q+¢5+ g3 20 =(do,0,0,0, —wdp, 0).

(A1) H:R?M — R is a l-invariant Hamiltonian of the class C2,
(A2) z € R?" is a critical point of H such that the isotropy group I, is trivial,
(A3) the orbit '(z) is isolated in (VH)™*(0),
(A5)

)

A5) deg(VH,71r(z), B(20,¢€),0) # 0 for sufficiently small ¢,
20

(A7) mT(V?H(z)) >N lub m=(V2H(z)) > N.
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Applications

Hamiltonian reformulation

NV =%
' c 3cq3

1 1
H(q1, G2, G3, 1, P2, p3) = = (PI+P3+P3)+w(qipa—Gep1) — = ——5+—2>
2 d B d

where ¢ = %Rsz >0,d=vq+q:+q3 20 = (g’o;0,0,0, —wdy, 0).

(A1) H:R?M — R is a l-invariant Hamiltonian of the class C2,
(A2) z € R?" is a critical point of H such that the isotropy group I, is trivial,
—
(A3) the orbit '(z) is isolated in (VH)™*(0),
(A5)
)

A5) deg (VH‘TZJér(ZO)’ B(zo,€),0) # 0 for sufficiently small v SD( ] )

(A7) m*'(V?H(z)) >N lub m (V?H(z))>N.

[m+(V2H(zo)) = 4, m~(V?*H(z0)) = 1, dimker V*H(z) = I\X
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Applications

There exist a family of periodic solutions with trajectories arbitrarily close
to zo (in the rotating frame!)
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Applications

There exist a family of periodic solutions with trajectories arbitrarily close
to zo (in the rotating frame!)

geostationary satellite quasi-periodic satellite
[
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Applications

There exist a family of periodic solutions with trajectories arbitrarily close
to zo (in the rotating frame!)

2,

( L,\

In the original problem there are quasi-periodic, solutions with trajectories
arbitrarily close to geostationary orbit.
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Applications

Lennard-Jones N-body problem

i(t) =~V U(q(t))

1 2
U = — ,
(a) Z <|Qi_qj |12 |q,'—qj |6)

1<i<j<N

where g = (q1, 92, - - -, qn) € (R?)V and g; € R? is a position of the i-th

particle.
15 A Z
1 AL (Y
N~ ('

05
00

-05

-10

DIS lIO £2 lI4 lIG £8 2,‘0
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Applications

1 2
U(q1, = —
(ql q2) | q— Qg2 |12 | q—q2 |6
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Applications

1 2
U(q1, = —
(ql q2) | q— Qg2 |12 | q—q2 |6

M. Corbera, J. Llibre, and E. Pérez-Chavela. Equilibrium points and
central configurations for the Lennard-Jones 2- and 3-body problems.
Celestial Mech. Dynam. Astronom., 89(3):235-266, 2004.

o families of equilibria

o relative equilibria
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Applications

1 2
U(q1, = —
(ql q2) | q— Qg2 |12 | q—q2 |6

M. Corbera, J. Llibre, and E. Pérez-Chavela. Equilibrium points and
central configurations for the Lennard-Jones 2- and 3-body problems.
Celestial Mech. Dynam. Astronom., 89(3):235-266, 2004.

o families of equilibria

o relative equilibria

Periodic solutions

@ N = 2: the existence of non-stationary periodic solutions emanating

from equilibrium (0, 3,0, —3) with minimal periods close /6.
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Applications

1

(Q1—CI2 _|CI1—CI2|6

M. Corbera, J. Llibre, and E. Pérez-Chavela. Equilibrium points and
central configurations for the Lennard-Jones 2- and 3-body problems.
Celestial Mech. Dynam. Astronom., 89(3):235-266, 2004.

U(qr, q2) =

o families of equilibria

o relative equilibria

Periodic solutions

@ N = 2: the existence of non-stationary periodic solutions emanating
from equilibrium (\0_;)0_9) with minimal periods cIose‘w/6.i

o N = 3: the existence of two families emanating from triangle
equilibrium, minimal periods: 7/(3v/3) and 7/(3v/6). =
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Applications

Quasi-periodic solutions, N = 2

Twierdzenie, Corbera, Llibre, Pérez-Chavela, 2004

For any / € (3,00) the set

CC={(q1,q2) ER*xR? : qo = —qu, |q1 — qo| = 2V/1}

is a family of central configurations generating periodic solutions with
period T(/).

T(T)
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Applications

Quasi-periodic solutions, N = 2

Rotating frame — SO(2)-equivariant Hamiltonian system with equilibria.
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Applications

Quasi-periodic solutions, N = 2

Rotating frame — SO(2)-equivariant Hamiltonian system with equilibria.

474 4\ 2
. S— . .
solutions of the Lennard-Jones 2-body problem emanating from relative
equilibrium.

For I € (2 l(‘/g)\ {i (/E} there exists a family of quasi-periodic
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Applications

@ D. Strzelecki.
Periodic solutions of symmetric Hamiltonian systems.

@ D. Strzelecki.
Bifurcations of quasi-periodic solutions from relative equlibria in the
Lennard-Jones 2-body problem.

Thank you for your attention!

Ye-mail: danio@mat.umk.pl \
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Applications
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Applications

T2 = S S vs:(SY/28) # xs:(SY/Z3) € U(S")
b. 4
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Applications

T2 = S S vs:(SY/28) # xs:(SY/Z3) € U(S")
b. 4

S'(x1) s S'(x)
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Applications

2z, = S xs:(S'/Z3) # xs:(S*/2) € U(S")

—_7 e

S'(x1) s S'(x)

rl ’-Z/ = SA(XLS":' a

% 2s "y {x1} = {2}
%y
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Julian 1. Palmore

J. I. Palmore, Classifying relative equilibria Il, Bull. Amer. Math. Soc. 81 (1975),
489-491.

J. I. Palmore, Measure of degenerate relative equilibria. I, Ann. of Math. (2) 104(3)
(1976), 421-429.

J. I. Palmore, Relative equilibria of vortices in two dimensions, Proc. Nat. Acad. Sci.
USA 79 (1982), 716-718.

Alain Albouy, Kenneth R. Meyer i Dieter S. Schmidt

A. Albouy, Open Problem 1: Are Palmore’s “Ignored Estimates” on the Number of
Planar Central Configurations Correct?, Qual. Theory Dyn. Syst. 14(2) (2015),
403-406.

K. R. Meyer, D. S. Schmidt, Bifurcations of relative equilibria in the 4- and 5-body
problem, Ergodic Theory Dynam. Systems 8* (1988), Charles Conley Memorial Issue,
215-225.

K. R. Meyer, D. S. Schmidt, Bifurcations of relative equilibria in the N-body and

Kirchhoff problems, SIAM J. Math. Anal. 19(6) (1988), 1295-1313.
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Applications

Dla zwartej grupy Liego G oraz gtadkiej rozmaitosci M, jezeli dziatanie
grupy G jest wolne, to przestrzen orbit M/G jest gtadka rozmaitoscia.

Jezeli dziatanie zwartej grupy Liego nie jest wolne, to spéjne sktadowe
przestrzeni orbit M/G tworza stratyfikacje Whitney'a.

J. J. Duistermaat, J. A. C. Kolk, Lie Groups, Springer-Verlag, Berlin Heidelberg, 2000.
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