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It all starts with Kepler’s third law
Remember, first two laws elliptic 

motion and speed
 the third law ties in the distances and 

rotations of the planets

Of importance: the downward swoop.  This will play an critical role

Recall: 
Ratio of the square of 

period of revolution and 
cube of semi major axis is 

the same
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Two-body problem:  Sun and planet 
in circular orbit

On to Newton

0

Smaller Ms

dissipate! 

For circular orbits,  
Kepler’s third law

How can we determine the 
mass of the Sun?

Different planets, 
different mass 

values for the Sun?
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Vera Rubin  

Next ssue is to find Mass of a galaxy

Problem:
Not enough known mass

Source of dark matter!
Dark matter = predicted - observed

Halos
The expected downward Keplerian swoop-not there!

Replace Newton’s laws with 
continuum approximation

Need to find the 
rotational 
velocities
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Here is where celestial mechanics enters

First, notice that the two-body and n-body representation agree

JPL

Rather than a star being just in two-body 
interaction, both pictures indicate there also 

is a pulling effect! 
How do we measure pulling effect in 

celestial mechanics?
Angular momentum

Finding M( r) must involve c
A first step: create the analytic solution for a 
billion body problem and show that the M( r ) 

expression does not hold.
Where is the tugging (and associated 
angular momentum) the strongest?
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A billion, or so, body central configuration
Actually, this is easy

This is Maxwell’s central 
configuration for rings of Saturn

Continue
prove existence of distances by 

fixed point theorems, 
or by Moulton’s approach, or by 

analysis 
or by …..

This defines ultimate of tugging. Placing 
configuration into circular motion, get 

analytic solution of billion body problem 
that behaves like a rigid body 

Wrong! What is missing 
is angular momentum 
So, next I indicate how 
to include it—for any 

force law!

= 0

Two rings?
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Galaxy rotation problem

Theorem
For s defined defined by given values and a rotation curve, 

another rotation curve cannot be smaller in any region 
with positive masses

Final message 
The area of celestial mechanics has a lot to offer 

to concerns from astronomy.
BUT, only if we start to look at the issues.

 Thanks for your attention!


