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Everyone has heard of “dark matter,” but nobody knows what it is!
Does it even exist?

Intent of this expository lecture is to introduce this dark matter
controversy and show how insights can come from celestial
mechanics.

In doing so, some notions from celestial mechanics, and the N-body
problem, are described
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Final message

The area of celestial mechanics has a lot to offer
to concerns from astronomy.

BUT, only if we start to look at the issues.

Thanks for your attention!




