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Def. A metric line in a metric space (Q,d)
IS an isometric image of the real line:

v:R— Qad(fy(t)afy(s)) — ‘t _ 8‘7 (\V/tas < R)

equivalently: a globally minimizing geodesic.
Def. A metric ray : isometric image of the closed halt-line [0, \infty):

Def. A minimizing geodesic : isometric image of a compact interval [a,b].
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. What are the metric lines for the N-body problem?

using the Jacobi-Maupertuis metric formulation of dynamics
to measure distances

2. What are the metric lines for homogeneous subRiemannian geometries?

commonality: like those of Riemannian geometries,
the geodesics of these geometries are generated by Hamiltonian flows

3. Scattering in the N-body problem: how do asymptotic
(Euclidean) rays
at t = -\infty get mapped to asymptotic lines at t = + \infty?



Why care?



. What are the metric lines for the N-body problem?
-> use the Jacobi-Maupertuis metric formulation of its dynamics

report on work of E Maderna and A Venturelli

thanks A Albouy , V Barutello, H Sanchez, Maderna, Venturelli

2. What are the metric lines for homogeneous subRiemannian geometries?
commonality: like those of Riemannian geometries,
the geodesics of these geometries are generated by Hamiltonian flows
with A Ardentov, G Bor, E Le Donne, Y Sachkov

report on work of A. Anzaldo-Meneses»and F. Monroy-Perez; A Doddoli

3. Scattering in the N-body problem: how do asymptotic
(Euclidean) lines
at t = -\infty get mapped to asymptotic lines at t = + \infty?

with Nathan Duignan, Rick Moeckel and Guowei Yu
thanks A Knauft, J Fejoz, T Seara, A Delshams, M Zworski, R Mazzeo



Warm-up: Kepler problem = 2-body problem

. q 1 1
q = ) = Zgl?
PIE Bla.q) = gldl” = o4
= h
Jac.-Maup. metric: 2 _9(h i da?

>0} = “Hill region’

on domain Qp ={q € R : h 7

h <O

geodesics
=solutions having
energy h, up to

a reparam.
=Kepler conics




Metric properties.

Qh IS a complete metric space.

Riem., except at the Hill boundary 02y,
and collision g=0. Solutions are metric geodesics
up until they hit the Hill boundary or collision (hit the Sun’)
beyond which instant they cannot be continued as geodesics.

The conformal factor vanishes at the Hill boundary and is infinite at
collision l

1

ds; = 2(h + W)\dq\2
q

h <0. Qh — B(Za)

h=-1/2a. No metric lines!

h>0,(orh=0). (), = R? still no metric lines.
many metric rays: all the Kepler hyperbolas (or parabolas)
up to aphelion (closest approach to “sun’)

;, Why .. 7?



cut point/ reflection argument






N-bodies, i =1, 2, .. N.

/QQZ
3

12
Fi3 = Gmims(qz — q1) /735

N=3 or greater:  conjecture: there are no metric lines

for the JM metric
(which depends on energy h).



What's known? JM metric depends on energy h :

h=0: [da Luz-Maderna [No metric lines. Many metric rays
~On the free time minimizers of the Newtonian N-body problem”

h> 0. [Maderna-Venturelli] Many metric rays.

any lines? -open.

h <0: N= 3, ang. mom zero: no metric rays, so no metric lines (*).

conjecture : no metric rays ith <0

(*) proof: “Infinitely many syzygies, II' implies cut points along any sol’n)






Set-up and egns.

q:(ql,...,qN)E *ﬂ::RNd anRd,azl,...,N

Conserved energy

1 a
E(g,4) = 544, q)m — Gy mT:b
- K(q) —U(q)
where 2K (4) = (¢, @)m = ¥ mallgsl|* =
and U(C]) _ GZ TNy



Newton's eqns: «— § = VmU(Q)

where (V. U(q), w)m = dU(q)(w)

Solutions for fixed E = h are reparam’s of geodesics for the JM -metric:

dsj, = 2(h + U(q))ldgls, o0 Q, ={q:h+U(q) >0}



)y is a complete metric space.
Riemannian except at the Hill boundary h + U(gq) =0
and at the collision locus h + U(Q) = + oC

Solutions to Newton at energy h are metric geodesics
up until they hit the Hill boundary
or the collision locus
beyond which instant they cannot be continued

as geodesics.



Dynamical implications of positive energy.

O —

A solution is bounded iff [(g(t)) is bounded.

I'=2(q,q)m + 2(¢; G)m
= 4K — 2U(q)
= 4h +2U(q)
SinceU>0: h>(0 —= ] > () along a solution.

h > 0 and defined for ¢t € [0,00) = unbounded

( periodic = bounded =— h <0 )



Def a solution is hyperbolic iff

rii (£) ~ C(if)t — 400, '/
q2

A

\‘93

q; (1)

equivalently: > A

qz(t) — Q; # 0

- - Note: then h = K(a) > 0.
ai#ajvz#] (@)



Thm: [Chazy, 1920s]: any hyperbolic solution g(t) satisfies
q(t) = at + (V,,U(a))logt + c + f(t) ast — 00

with f(t) = O(log(t)/t), and f(t) = g(1/t, log(t)), g analytic in its two variables.
and q € RV%\ { collisions }

Think of a as an asymptotic position at infinity.

Question: Givena, g 01In R d with a not a collision configuration.

Does there exist a hyperbolic solution connecting g_0 at time O to
a at time oo ?

Thm [ Maderna-Venturelli; 2019]. YES. Moreover this solution is a metric ray
for the JM metric with energy h = K(a)= (1/2) |a|A2 .



Method of proof: Weak KAM, a la Fathi
for

H(g, dS(q)) = h

so: calculus of variations + some PDE

Metric input: Buseman, Buseman functions as
solutions to the (weak) Hamilton-Jacobi egns
some (Gromov ideas re the boundary at infinity






change gears

subRiemannian geometry



2. SUbRiemannian geometry
o Y = YH(q) =—
x=%"x 861“ > Y¥(q)

smooth vector fields on an n-dim. manifold Q.

Def. A path q(t) in Qis ““horizontal” if ¢ = u1(t)X (q(t)) + uz(t)Y (q(?))

SR Geodesic problem: find the shortest horizontal path qg(t) joining g_0to g_1.

where £(q(-)) = / Jur (02 + up (D24t

Such a path, if it exists, is a SR geodesic.



[Chow-Rashevskii]

It X, Y, [X,Y], [X, [X, Y]], ... eventually span
TQ and if Q is connected then any two points
are joined by a horiz. curve and the corresponding distance function:

d(qo,q1) = inf{€(q(-)) : q(t) horizontal g joins q¢ to q1}

gives Q the same topology as the manifold topology.

and sR geodesics exist, at least locally

Geodesics: (most) are generated by

H:%(PEJFPQQ) :T70Q — R

Py :PX:ZPMXM(Q) PQZPY:ZP,LLYM(Q)



(A_T(xy) =0, A_2(x,y) = x :standard contact distribution.)






Then
1

\ _

no z's
SO pz =0
View the const. parameter Pz  as electric charge

Then His the Hamiltonian of a particle of mass 1 and this charge
moving in the xy plane under the influence of the magnetic field
B(x,y) where

Ox 0y {Pl,PQ} = _B(xyy)pz



Eqns of motion:
1) For plane curve part:

c)= (), y() = 7 (z(t), y(t), 2(£)): 7 : Q = R® — R

f(s) = AB(x(s), y(s))

s = arc length
A =p, = charge’

/i(s) — plane curvature of c(s)

2) z(t) determined from c(t) by horizontality
(by being tangent to distribution D = span(X,Y):

2(s) = 2(0) + / Ay (w,y)dz + As(z, y)dy
c(0,s])

(call (x(s), y(s), z(s)) = horizontal lift” of c(s) = (x(s), y(s). )



Observe:

Straight lines in the plane are solutions (with charge 0),
for any B(x,y)

Their horizontal lifts are always metric lines
since T:Q =R — R?
satisfies Z(’y) — fpo (7T O fy)

for any horizontal curve 7Y

Question [LeDonne]: are there any other metric lines besides those
whose projections are straight lines ?



Case B(x,y) = 1. "~"Heisenberg group” Eqgns for projected geod.: . — )\
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Theorem. No: The only metric lines for the Heisenberg group are those
projecting onto Euclidean lines in the plane.






‘Martinet case’: B(x,y) = Xx.

Geod egns: K = \x
Theorem. [Ardentov-Sachkov] Yes.

The Euler kinks correspond to the other metric lines.

These are the full list of projected geodesics.
They are the Euler elastica aligned
to have y-axis (x = 0) as directrix.

All but the kink are periodic

N the x direction
4—P>
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Elastica also arise as the projections of the geodesics for:

rolling a ball (sphere) on the plane

[Jurdjevic-Zimmerman,..]

rolling a hyperbolic plane on the Euc. plane
[Jurdjevic-Zimmerman,..]

bicycling
[Ardentov-Bor-LeDonne-M., Sachkov ]

and two Carnot groups:
Engel: (2,3,4) [Ardentov-SachkovV]
‘Cartan’: (2,3,5) [Moiseev-Sachkov]



For all of these: Q=R*xG

9 9
X = a—x+§1(x,y) Y = a_y+€2($ay)
51752 : R2 — ¢
SO WIQ%RQ

satisfies £(7v) = fr2(m o) for any horizontal curve 7Y

In all these , only Euclidean lines and Euler kinks correspond to metric lines.

(For the rolling ball not all kinks that arise as projections
correspond to metric lines upstairs)






Why do the kinks give the only additional lines?
a) exclude all the other Elastica
b) verify kinks are metric lines

a) Prop. [Hakavuouri-LeDonne] : any curve which is the horizontal lift
of a planar curve periodic in one direction,
cannot be a metric line unless the planar curve is a Euclidean line

‘periodic in x direction’ : means (x(s), y(s)) satisfies
X(s + L) =x(s), y(s+L)=a+ y(s)

All non-kink elastica are periodic in the direction orthogonal
to their directrix, ie. in the x direction for the Martinet case

Pf of Prop. : metric blow-downs .

b): By hand [ optimal synthesis’] sorting out all
cut and conjugate points
In all case
except bicycling, where we have a simple conceptual proof
inspired by "bicycling mathematics’:
by Ardentov, Bor, LeD, M-, Sachkov



Why?
a) excluding all the other Elastica
b) verifying the kinks

a)  Prop. [Hakavuouri-LeDonne] A plane curve which is
periodic in one direction cannot be the projection of a
metric line unless that plane curve is a line

c(s) = (Xx(s), y(s)) is periodic in x means that
there is a constant L > O [the x-period] such that
X(s + L) =x(s), y(s+L)=a+ y(s)

All elastica except the kink are periodic in the direction orthogonal
to their directrix.

Pt of prop. : metric blow-downs. The blow-down of a periodic
in-one-direction curve is a line NOT parameterized by arc length...

b): by hand [ optimal synthesis’]
in all case except bicycling where the proof is simple and inspired
by bicycling mathematics':
Ardentov, Bor, LeD, M-, Sachkov



Geodesics and metric for the simplest jet spaces

A. Anzaldo-Meneses-Felipe Monroy Perez, 2005;
B. Doddoli, 2019-2020



change gears

Scattering in the N body problem



Def a solution is hyperbolic iff

rii (£) ~ C(if)t — +o0, '/
q2

\‘QS

. (/
equivalently: >

of C]Z(t) — Q; # 0

&i#@j,i#j



Think ofa=(a_1, ... a N) as initial “positions” at infinity.

Question: Can we join a given a for t = -\infty to a given b for t = + \infty
by a collision-free hyperbolic solution?

Necessary conditions: 1
K(a) = K(b) [conservation of energy],
P(a) = P(b) [ conserv. of Lin. Momentum]

and a, b collision -free.

Kepler case (N=2) : Yes! aslong as a\ne \pm b.

General case: ??.
Thm. [Duignan, Moeckel, M-, Yu]
Yes, provided b lies in a small open punctured nbhd of a.
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p. 80. Geometric Scattering Theory -Melrose.

Fig. 11. Geodesic of a scattering metric,



2 _ _ 2
"Spherical * change of var’s : r = (q) — Hqu
p=1/r
dt = rdr
se S gt q=rs

q=vs+w,w Ls

1 1
p = —vp
Newton'’s = s’ = w
eqgns ,

o = w]? = pU(s)
w' = pVU(s) —vw — |w|?s
Spatial Infinity : — p= ()

- an invariant submanifold



Flow at infinity. Set p = 0.

s S~ gdN-1

1 1
Energy at infinity: §v2 - §||w||2 = h.



Flow at infinity is independent of U.

Set U = 0 to understand the dynamics at infinity.
Flow = reparam. of free motion! :

S, -S become equilibria! ; flow is gradient like between them...



Equilibria!

Only at infinity. _
Givgn by: ’ (p,s,v,w) o (07872}70)
s €S~ g
veR,v#£0
Energy of an equilibrium: h — L

QU SO () +v'2h

Equilibria = >_ U >
- branch: v< 0. Incoming. LINEARLY UNSTABLE mfd of fixed points.
+ branch: v > 0. Outgoing: LINEARLY STABLE mfd of fixed points

eigenvalues: O in the s and v directions, ie along Equilibria
-V In the w-direction.

...Inthe P direction..?



Push in to "bulk” — the real N-body phase space
by turningon P > 0.

Generalized eigenvector
2.4+ arenormally hyperbolic ! correspondingto 9 p




Summarizing :
Linearization at an equilibrium e :

e = (p,s,v,w) =(0,s,0,0) Spectrum of linearization at e: 0, -v
Un/stable manifold of an equilibrium e
Wx(e),e € X4

espace = TeZi\
Is Lagrangian in the bulk,
transverse to the equilibrium manifold

Its tangent space at e Is the nonzero
generalized eigenspace for -v at e,

dim(W=(e)) = dim(>-

) — (N = half dim of phase space.
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MARIAN GIDEA, RAFAEL DE LA LLAVE, AND TERE SEARA/
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FIGURE 1. A scattering path and a nearby orbit of the scat-
tering map.

A. Delshams, Tere Seara, R de la Llave, M Gidea, ....

Our scattering map is the same as their scattering map’!
except that their stable/unstable intersections

are (1) typically homoclinic

and (2) they have a center manifold with a slow dynamics
In place of our manifold of equilibria



Fini !



