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Def. A metric line in a metric space (Q,d) 
is an isometric image of the real line: 

equivalently: a globally minimizing geodesic. 

� : R ! Q, d(�(t), �(s)) = |t� s|, (8t, s 2 R)

Def. A metric ray : isometric image of the closed half-line  [0, \infty): 

Def. A minimizing geodesic : isometric image of a compact interval [a,b].



Euclidean space

cylinder

Hyperbolic plane

metric tree



What are the metric lines for the N-body problem?
using the Jacobi-Maupertuis metric formulation of dynamics 
        to measure distances

What are the metric lines for the N-body problem?

What are the metric lines for homogeneous subRiemannian geometries? 

commonality: like those of Riemannian geometries, 
the geodesics of these geometries are  generated by Hamiltonian  flows

I. 

2.

3. Scattering in the N-body problem: how do asymptotic 
(Euclidean) rays 
at t = -\infty get mapped to asymptotic lines at t = + \infty? 



Why care? …



What are the metric lines for the N-body problem?
-> use the Jacobi-Maupertuis metric formulation of its dynamics

What are the metric lines for the N-body problem?

What are the metric lines for homogeneous subRiemannian geometries? 
commonality: like those of Riemannian geometries, 
the geodesics of these geometries are  generated by Hamiltonian  flows

I. 

2.

3. Scattering in the N-body problem: how do asymptotic 
(Euclidean) lines
at t = -\infty get mapped to asymptotic lines at t = + \infty? 

 report on work of E Maderna and A Venturelli

 with A Ardentov, G Bor, E Le Donne, Y Sachkov

report on work of A. Anzaldo-Menesesa) and F. Monroy-Perez; A Doddoli 

 with Nathan Duignan, Rick Moeckel and Guowei Yu 

thanks A Albouy , V Barutello, H Sanchez, Maderna, Venturelli

thanks A Knauf, J Fejoz, T Seara, A Delshams, M Zworski, R Mazzeo



Warm-up: Kepler problem  = 2-body problem

q̈ = � q

|q|2 E(q, q̇) =
1

2
|q̇|2 � 1

|q|
= h

Jac.-Maup. metric: ds2h = 2(h+
1

|q| )|dq|
2

on domain

h> 0

h < 0

⌦h = {q 2 R2 : h+
1

|q| � 0} = `Hill region’ 

geodesics  
=solutions having 
energy h, up to 
a reparam. 
=Kepler conics



h  < 0.  
 h= -1/2a.    No metric lines!  

h > 0, ( or h =0).                   still  no metric lines.  
  many metric rays: all  the Kepler hyperbolas (or parabolas) 
up to aphelion (closest approach to `sun’) 

¿  Why ..  ? 

⌦h

The conformal factor vanishes at the Hill boundary and is infinite at   
collision  

ds2h = 2(h+
1

|q| )|dq|
2

Metric properties.
        is a complete metric space.  
 Riem., except at the  Hill boundary           
and collision  q=0.  Solutions are metric geodesics 
up until they hit the Hill boundary or  collision   (hit the `Sun’)  
beyond which instant they cannot be continued as geodesics.  

@⌦h

⌦h = B(2a)

⌦h = R2



cut point/ reflection argument





N-bodies, i =1, 2, .. N.

r12

q3
q2

q1

F13 = Gm1m3(q3 � q1)/r
3
13

N=3 or greater: Conjecture: there are no metric lines
for the JM metric 
(which depends on energy h).  



What’s known? 

h> 0:  [Maderna-Venturelli] Many metric rays.

h= 0:  [da Luz-Maderna ]No metric lines.  Many metric rays
``On the free time minimizers of the Newtonian N-body problem’’

h < 0: N= 3, ang. mom zero: no metric rays, so no metric lines (*). 

(*) proof: `Infinitely many syzygies, II’ implies cut points along any sol’n) 

conjecture : no metric rays  if h < 0

any lines? -open. 

JM metric   depends on energy h : 





qa 2 Rd, a = 1, . . . , Nq = (q1, . . . , qN ) 2 E := RNd

Set-up and eqns.

E(q, q̇) =
1

2
hq̇, q̇im �G

X mamb

rab
= h.

Conserved energy

K(q̇)� U(q)=

2K(q̇) = hq̇, q̇im =
X

mikq̇ik2 = kq̇k2m
where

and U(q) = G
X mamb

rab



ds2h = 2(h+ U(q))|dq|2m

Newton’s eqns: () q̈ = rmU(q)

Solutions for  fixed E = h are reparam’s of geodesics for the JM -metric:   

on  

hrmU(q), wim = dU(q)(w)where

⌦h = {q : h+ U(q) � 0}



        is a complete metric space. 
 Riemannian  except at the  Hill boundary   h + U(q) = 0         
 and at  the collision locus   h + U(q) = +     

   Solutions to Newton at energy h are metric geodesics 
up until they hit the Hill boundary 
or  the collision locus   
beyond which instant they cannot be continued 
as geodesics.  

⌦h

h � 0 =) ⌦h = RNd

1



    

Dynamical implications of positive energy.  

Ï = 2hq̇, q̇im + 2hq, q̈im
= 4K � 2U(q)

= 4h+ 2U(q)

A solution is bounded  iff I(q(t)) is  bounded. 

periodic =) bounded =) h < 0

h � 0 and defined for t 2 [0,1) =) unbounded

Since U > 0  : 

( )

h � 0 =) ⌦h = RNdI(q) = kqk2m

İ = 2hq, q̇im

h � 0 =) Ï > 0 along a solution. 



Def a solution is hyperbolic iff

r12
q3

q2

q1

rij(t) ⇠ C(ij)t ! +1,

equivalently:  qi(t)

t
! ai or

q̇i(t) ! ai 6= 0

ai 6= aj , i 6= j Note:  then h = K(a) > 0. 



Thm: [Chazy, 1920s]:  any hyperbolic solution q(t) satisfies  

q(t) = at+ (rmU(a)) log t+ c+ f(t)

with f(t) = O(log(t)/t),  and f(t) = g(1/t, log(t)),  g analytic in its two variables. 

and  a 2 RNd \ { collisions }

Think of a  as an asymptotic position at infinity.

Question: Given a , q_0 in  RNd with a not a collision configuration.
Does there exist a hyperbolic solution connecting  q_0 at time 0 to  
a at time      ?   

Thm [ Maderna-Venturelli; 2019].  YES. Moreover this solution is a metric ray 
for the JM metric with energy h = K(a)=  (1/2) |a|^2 .  

as t ! 1

1



Method of proof:  Weak KAM, a la Fathi 
for  
H(q, dS(q)) = h   

so: calculus of variations + some PDE

Metric input:  Buseman,  Buseman functions as  
solutions to the (weak) Hamilton-Jacobi eqns 
some Gromov ideas re the boundary at infinity





change gears 

subRiemannian geometry



2. SubRiemannian geometry

Y =
X

Y µ(q)
@

@qµX =
X

Xµ(q)
@

@qµ

smooth vector fields on an n-dim. manifold Q.   

q̇ = u1(t)X(q(t)) + u2(t)Y (q(t))

sR Geodesic problem:  find the shortest horizontal path q(t)

Def.  A path q(t) in Q is ``horizontal’’ if  

joining q_0 to q_1.  

`(q(·)) =
Z p

u1(t)2 + u2(t)2dtwhere

Such a path, if it exists,  is a sR geodesic.



If X, Y, [X,Y], [X, [X, Y]], … eventually span 
TQ and if Q is connected then any two points 
are joined by a horiz. curve and  the corresponding distance function: 

d(q0, q1) = inf{`(q(·)) : q(t) horizontal q joins q0 to q1}

[Chow-Rashevskii]

gives Q the same topology as the manifold topology. 

Geodesics: 

H =
1

2
(P 2

1 + P
2
2 )

(most) are generated by 

P1 = PX =
X

pµX
µ(q) P2 = PY =

X
pµY

µ(q)

: T ⇤Q ! R

and sR geodesics exist, at least locally 



X =
@

@x
+A1(x, y)

@

@z
Y =

@

@y
+A2(x, y)

@

@z

(A_1 (x,y) = 0,  A_2 (x,y)  = x  : standard contact distribution.)

Example: Q = R3





H =
1

2
{(px +A1(x, y)pz)

2 + (px +A2(x, y)pz)
2}

no z’s

so  ṗz = 0

pzView the const. parameter  as electric charge

Then H is  the Hamiltonian of a particle of mass 1 and  this charge 
moving in the xy plane under the influence of the magnetic field 
B(x,y) where 

Then

B(x, y) =
@A2

@x
� @A1

@y {P1, P2} = �B(x, y)pz



(s) = �B(x(s), y(s))

Eqns of motion: 

z(s) = z(0) +

Z

c([0,s])
A1(x, y)dx+A2(x, y)dy

(call   (x(s), y(s), z(s)) =  ``horizontal lift’’ of c(s) = (x(s), y(s). )

c(t)= (x(t), y(t)) 

2)   z(t) determined from c(t) by horizontality  
                                              (by being tangent to distribution D = span(X,Y): 

= ⇡(x(t), y(t), z(t));⇡ : Q = R3 ! R2
1) For plane curve part:

s = arc length
� = pz
(s) = plane curvature of c(s) 

= ``charge’’ 



Observe: 

Straight lines  in the plane are solutions (with charge 0), 
for any B(x,y)

 Their horizontal lifts  are always metric lines

since ⇡ : Q = R3 ! R2

satisfies  `(�) = `R2(⇡ � �)

for any horizontal curve �

Question [LeDonne]:   are there any other metric lines besides those
whose projections are straight lines   ? 
















x —>

y 

Theorem. No: The only metric lines for the Heisenberg group are those 
projecting onto Euclidean lines in the plane. 

Case B(x,y) = 1.  ``Heisenberg group’’ Eqns for projected geod.:   = �





`Martinet case’: B(x,y) = x.

 = �x
Theorem. [Ardentov-Sachkov]  Yes. 

The Euler kinks correspond to the other metric lines.

These are the full list of projected geodesics. 
They are the Euler elastica  aligned 
to have y-axis (x = 0) as directrix.

All but the kink are periodic 
 in the x direction  

Geod eqns: 





Elastica also arise as the projections of the geodesics for:  

rolling a ball (sphere) on the plane

rolling a hyperbolic plane on the Euc. plane

bicycling

and two Carnot groups: 
           Engel:  (2,3,4)       [Ardentov-Sachkov] 
           `Cartan’: (2,3,5)     [Moiseev-Sachkov] 

}
[Jurdjevic-Zimmerman,..]  

[Jurdjevic-Zimmerman,..]  

[Ardentov-Bor-LeDonne-M., Sachkov ]  



For all of these: Q = R2 ⇥G

⇡ : Q ! R2

⇠1, ⇠2 : R2 ! g

so 

satisfies  for any horizontal curve 

X =
@

@x
+ ⇠1(x, y) Y =

@

@y
+ ⇠2(x, y)

�`(�) = `R2(⇡ � �)

In all these , only Euclidean lines and  Euler kinks correspond to metric lines.   

(For the rolling ball not all kinks that arise as projections  
 correspond to metric lines upstairs) 





a)  Prop. [Hakavuouri-LeDonne] :  any curve which is the horizontal lift 
of a planar curve  periodic in one direction,  
cannot be a  metric line unless the planar curve is a Euclidean line 

`periodic in x direction’ : means (x(s), y(s))  satisfies  
          x(s + L) = x(s),  y(s + L) = a + y(s)

Why do the  kinks give the only additional lines?  
    a)  exclude all the other Elastica
    b) verify kinks are metric lines

All non-kink elastica are periodic in the direction orthogonal
to their directrix, ie. in the  x direction  for the Martinet case

Pf of Prop. : metric blow-downs .   

b): By hand [`optimal synthesis’] sorting out all 
cut and conjugate points 
    in all case  
   except bicycling, where we have a simple conceptual  proof  
inspired by `bicycling mathematics’:  
                 by Ardentov, Bor, LeD, M-, Sachkov



Why?  
    a)  excluding all the other Elastica
    b) verifying the kinks

All elastica except the kink are periodic in the direction orthogonal
to their directrix.   

Pf of prop. : metric blow-downs.   The blow-down of a periodic 
in-one-direction curve is a line NOT parameterized by arc length…  

b): by hand [`optimal synthesis’]  
    in all case except bicycling where the proof is simple and inspired  
      by `bicycling mathematics’:  
                 Ardentov, Bor, LeD, M-, Sachkov

a) Prop. [Hakavuouri-LeDonne] A plane curve which is  
periodic in one direction cannot be the projection of a 
metric line unless that plane curve is a line  

 c(s) =  (x(s), y(s)) is periodic in x  means that 
there is a constant L > 0 [the x-period]  such that    
          x(s + L) = x(s),  y(s + L) = a + y(s)



Geodesics and metric  for the simplest jet spaces
A. Anzaldo-Meneses-Felipe Monroy Perez, 2005; 
B. Doddoli, 2019-2020



change gears 

Scattering in the N body problem



Def a solution is hyperbolic iff

r12
q3

q2

q1

rij(t) ⇠ C(ij)t ! +1,

equivalently:  
or q̇i(t) ! ai 6= 0

ai 6= aj , i 6= j

qi(t)

t
! ai



Think of a = (a_1, … a_N) as initial ``positions’’  at infinity.

Question: Can we join a given a for t = -\infty to a given b  for t = + \infty 
by a collision-free hyperbolic solution? 

Necessary conditions: 
   K(a) = K(b)  [conservation of energy], 
   P(a) = P(b) [ conserv. of Lin. Momentum]  
   
and a, b collision -free.   

Kepler case (N=2) : Yes!  as long as a \ne \pm b.  

K(a) =
1

2

X
mi|ai|2

P (a) =
X

miai

General  case: ??. 
    Thm. [Duignan, Moeckel, M-, Yu] 
       Yes, provided  b lies  in a small  open punctured nbhd of a.  





p. 80. Geometric Scattering Theory -Melrose. 



`Spherical ’  change of var’s : 

Spatial Infinity : ()

ENERGY: 1

2
v2 +

1

2
kwk2 � ⇢U(s) = h.

Newton’s 
eqns 

()

r2 = I(q) = kqk2m
⇢ = 1/r

dt = rd⌧

q = rs

q̇ = vs+w,w ? s

⇢0 = �v⇢

s0 = w

v0 = |w|2 � ⇢U(s)

w0 = ⇢r̃U(s)� vw � |w|2s

, an invariant submanifold 
⇢ = 0

s 2 S ⇠= SNd�1



Flow at infinity. Set  
s0 = w

w0 = �vw � kwk2s
v0 = kwk2

Energy at infinity:
1

2
v2 +

1

2
kwk2 = h.

s 2 S ⇠= SdN�1

v 2 R, v 6= 0

⇢ = 0. 



 

Set U = 0 to understand the dynamics at  infinity. 
Flow =  reparam. of free motion! : 

Flow at infinity is independent of  U.

s, -s become equilibria! ; flow is gradient like between them…



Equilibria! 
Only at infinity.  
Given by:

Energy of an equilibrium:
v = ±

p
2h

- branch: v< 0 . Incoming.  LINEARLY UNSTABLE mfd of fixed points. 
+ branch: v > 0 . Outgoing: LINEARLY STABLE mfd of  fixed points

eigenvalues: 0 in the s  and v directions, ie along Equilibria    
                     -v in the w-direction.  

(⇢, s, v, w) = (0, s, v, 0)

s 2 S ⇠= SdN�1

v 2 R, v 6= 0

Equilibria = ⌃� [ ⌃+

so h =
1

2
v2

… in the ⇢  direction..?



Push in to ``bulk’’ — the  real  N-body phase space 
by turning on ⇢

⌃± are normally hyperbolic ! 

> 0.  

Generalized eigenvector 
corresponding to �⇢



Un/stable manifold of an equilibrium e 

W⌥(e), e 2 ⌃±
is Lagrangian in the bulk, 
transverse to the equilibrium manifold

its   tangent space at e  is the nonzero 
generalized eigenspace for -v at e, 

e =  (⇢, s, v, w) = (0, s, v, 0) Spectrum of linearization at e:  0, -v

dim(W⌥(e)) = dim(⌃±) = dN = half dim of phase space.

Linearization at an equilibrium e :  

espace = Te⌃±

Summarizing : 





Our scattering map is the same as their `scattering map’ ! 
except  that their stable/unstable intersections
are  (1) typically homoclinic
and (2) they have a center manifold with a slow dynamics 
in place of  our manifold of equilibria  

A. Delshams,  Tere Seara, R de la Llave, M Gidea, …. 



Fini ! 


