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      H., Ann. Rev. Fluid Mech. [2015]

Available results: 
 
(1) Barriers to advective transport: 
      Lagrangian coherent structures (LCS) 
 
(2) Barriers to passive scalar transport: 
      material barriers to diffusion 
             H., Karrasch & Kogelbauer, PNAS [2018], SIADS [2020] 
                Katsanoulis, Farazmand, Serra & H., JFM [2020] 

              
 
(3) Barriers to active vectorial transport? 
      surfaces impeding transport of 
      momentum, vorticity, … 
 
     Requirement: experimentally verifiable  
     àindependent of observer 
     àtheory must be objective (frame-indifferent) 

  Transport barriers: frequently discussed --  rarely defined  

de Silva, Hutchins & Marusic [2014] 

Uniform Momentum Zones (UMZ) 
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  Objectivity: indifference to the observer 

A

C

B

      H., Lagrangian Coherent Structures, Ann. Rev. Fluid Mech. [2015]

“One of the main axioms of continuum mechanics 
is the requirement that material response must be  
independent of the observer.” 
 
M. E. Gurtin, An Introduction to Continuum Mechanics. Academic Press (1981), p. 143 
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Classic views on transport barriers (as vortex boundaries)  
are not objective 

SouVR Co. 

NASA 

   
W = 1

2 ∇v − ∇v⎡⎣ ⎤⎦
T( ), S = 1

2 ∇v + ∇v⎡⎣ ⎤⎦
T( )

Spin  
Tensor 

(non-objective) 

Rate of strain 
 tensor 

(objective) 

•  Q-criterion: 
 
•  Δ-criterion: 
 
•  λ2-criterion: 

•  velocity level sets:  

    ∃j : Imλ j (W + S) ≠ 0

  λ2 W2 + S2( ) < 0

   
Q = 1

2 W
2
− S

2( ) > 0

   | v |= const., | vi |= const.

     
!x = v(x,t) = sin 4t 2 + cos4t

−2 + cos4t −sin 4t

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
x,

Example  : Exact linear 2D Navier-Stokes solution 
                       H. [2005], Pedergnana, Oettinger, Langlois & H. [2020]      

 
 
 
                    Coherent vortex by all the above principles 

Passive tracers  

F. J. Beron-Vera 
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  Available results for vorticity and momentum barriers 
40 G. Haller, S. Katsanoulis, M. Holzner, B. Frohnapfel and D. Gatti
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Figure 25. Decaying planar Navier–Stokes flow in a channel with no-slip walls at x2 = ± 1
4 .

are functions of the scalar vorticity. However, as our 2D turbulence simulation illustrates,1043

active LCS diagnostics give a more robust and detailed localization of coherent vortex1044

boundaries than level-curve identification for these numerically generated Hamiltonians.1045

Instantaneous active barriers (identified from the steady dynamical system x0 = bt
t(x)1046

provide an objective and parameter-free alternative to currently used, observer-dependent1047

flow-visualization tools, such as level surfaces of the velocity norm, of the velocity1048

components and of the Q-, �- and �2-fields. Undoubtedly, the implementation of the1049

latter tools is appealingly simple via automated level-surface visualization packages.1050

Yet such evolving surfaces are observer-dependent and non-material, thereby lacking1051

any experimental verifiability. In addition, beyond the simplicity of generating coherent1052

structure boundaries as level sets of these scalar fields, the physical meaning of such level1053

sets remains unclear.1054

Finally, the objective momentum-barrier theory described here should be able to1055

contribute to the understanding and identification of various turbulent flow structures1056

that have only been described so far in an observer- and threshold-dependent fashion1057

under a number of assumptions and approximations. Specifically, our future work will seek1058

to uncover experimentally identifiable material signatures of uniform momentum zones1059

(Adrian, Meinhart & Tomkins 2000, De Silva Hutchins & Marusic 2016) and turbulent1060

superstructures (Marusic, Mathis & Hutchins 2018 and Pandey, Scheel, & Schumacher1061

2018) based on the notion of diffusive momentum barriers developed in this paper.1062
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active transport relative to purely advective transport.1071

Appendix A. A motivating example1072

A simple example underlying the challenges of defining barriers to momentum and1073

vorticity transport is a planar, unsteady Navier–Stokes vector field representing an1074

unsteady, decaying channel-flow between two walls at x2 = ±
1
4 (see. Fig. 1). The1075

corresponding velocity and scalar vorticity fields are1076

u(x, t) = e�4⇡2⌫t (a cos 2⇡x2, 0) , !(x, t) = 2⇡ae�4⇡2⌫t sin 2⇡x2. (A 1)
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    Prior prediction for !
vorticity transport barriers

Normalized momentum and its  !
   observed transport barriers!

Normalized vorticity and its !
observed transport barriers

        Prior prediction for !
momentum transport barriers

ρu
1
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(t)
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11

−1

ω(x,t)
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Figure 1. Vorticity and momentum normalized by their maxima at an arbitrary time instance in
a decaying planar channel flow. These plots remain steady in time, with all horizontal lines (some
shown dotted) acting as barriers to the vertical redistribution of the vorticity and momentum.
Also shown are prior predictions for perfect barriers to vorticity transport in this flow by Haller,
Karrasch & Kogelbauer (2019) and for perfect barriers to momentum transport by Meyers &
Meyers & Meneveau (2013). See Appendix A for details.

locate transport barriers as material surfaces that inhibit the diffusive transport of a88

weakly diffusive scalar more than neighboring material surfaces do. Katsanoulis et al.89

(2019) use these results to locate vortex boundaries in 2D flows as outermost closed90

barriers to the diffusive transport of the scalar vorticity. These results, however, but do91

not cover barriers to the transport of dynamically active vector fields in 3D. There are92

also examples, such as the 2D decaying channel flow shown in Fig. 1, in which the passive-93

scalar-based approach to vorticity transport only captures the walls as perfect transport94

barriers in a finite-time analysis. The remaining observed barriers to the redistribution95

of the normalized vorticity (i.e., all horizontal lines) are only captured by the approach96

over an infinitely long time interval.97

More broadly speaking, a general approach to barriers to the transport of dynamically98

active quantities in 3D flows has been lacking. A notable exception is the work of Meyers &99

Meneveau (2013), who locate momentum- and energy-transport barriers as tubes tangent100

to a flux vector field formally associated with these dynamically active scalar fields. While101

insightful, this approach also has several heuristic elements. The construct depends on102

the frame of reference and the choice of a transport direction. The flow data is assumed103

statistically stationary with a well-defined mean velocity field. The proposed flux vector104

introduced in this fashion is non-unique: any divergence-free vector field could be added105

to it. Finally, the flux vector differs from the classic momentum and energy flux that it106

purports to represent. All these features of the approach prevent the detection of most107

observed barriers to momentum redistribution already in simple 2D flows, as our 2D108

decaying channel flows example in Fig. 1. Indeed, the only horizontal barrier captured109

by this approach is the symmetry axis of the channel.110

In the present work, we seek to fill the gaps in previous approaches by extending the111

transport-barrier-detection approach of Haller, Karrasch & Kogelbauer (2018, 2019) to112

Meyers	&	Meneveau,	JFM	[2013]	
																(nonobjective)	

H.,	Karrasch	&	Kogelbauer,	SIADS	[2019]	
																											(objective)	
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  Assumptions on the active vector field f(x,t)  

•  Consider general velocity field v(x,t) solving the momentum equation 
      

 

•  Assume:  - active vector field f(x,t) satisfies: 
           
                      - hvis is objective:     

     
!f = h

vis
+ h

nonvis
, ∂Tvis

h
nonvis

= 0

•  Examples: 

      f := ρv → !f =∇⋅T
vis
−∇p + q− !ρv

   ρ !v = −∇p +∇⋅Tvis + q

     x = Q(t)y + b(t) ⇒ !h
vis

= QT(t)h
vis

.

      
f := ω → !f = ν∇× 1

ρ
∇⋅T

vis( )+ ∇u( )f − ∇⋅u( )f + 1
ρ2 ∇ρ×∇p +∇× 1

ρ
q( )

•  compressible,	possibly	non-Newtonian	
•  Tvis(x,t):	viscous	stress	tensor	
•  q(x,t):		external	body	forces	
																															see,	e.g.,	Gurtin,	Fried	&	Anand	[2013]	

      f := (x− x̂)×ρv → !f = (x− x̂)×∇⋅T
vis

+ (x− x̂)× !ρu−∇p + q⎡
⎣⎢

⎤
⎦⎥

Lin. momentum: 

Ang. momentum: 

Vorticity: 
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  What is the flux of f(x,t) through a material surface         ? 

•  Vorticity flux: 
 
        - not the physical flux of vorticity (units!) 
        - not objective  à   vortex tubes are observer-dependent 
 
 
•  Momentum flux: 
 
         - not the physical flux of momentum (units!) 
         - no advection through a material surface 
         - not objective 
 
 
 
       
             

Φf M(t)( ) = !f
M(t )∫ ⋅ndA
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥vis

= h
visM(t )∫ ⋅ndA•  Diffusive flux of f:  

         - units  OK✓ 
         - objective✓ 
             

   M(t)

 v

     
M(t) = F

t0

t M
0( )

      
Flux

ω
M(t)( ) = ω

M(t )∫ ⋅ndA

      
Flux

ρv M(t)( ) = ρ
M(t )∫ v v ⋅n( )dA

      
ψ

t0

t1 M
0( ) = 1

t1−t0
h

visM(t )∫t0

t1

∫ ⋅ndAdt
à  Time-normalized 

diffusive transport of f:  

  !f
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  Active barriers: material surfaces minimizing diffusive transport of f 

Theorem 1:                                                                  
 
      with the objective Lagrangian vector field 

 
 
 

      
ψ

t0

t1 M
0( ) = b

t0

t1

M0
∫ (x

0
) ⋅n

0
(x

0
)dA

0

    
b

t0

t1 (x
0
) := det∇F

t0

t F
t0

t( )
*

h
vis

    

Notation :

( ) :=
1

t
1
− t

0

( )
t0

t1

∫ dt

F
t0

t( )
*

h
vis

= ∇F
t0

t x
0( )⎡

⎣⎢
⎤
⎦⎥
−1

h
vis

F
t0

t x
0( ),t( )

    
′x
0

= b
t0

t1 (x
0
)     Material (Lagrangian) barrier equation  

    ′x = h
vis

(x;t,v, f) Instantaneous (Eulerian) barrier equation  

•  Objective,  steady, 
       volume-preserving 
 
•  Active LCS methods: 
       passive LCS methods 
       applied to barrier equations 

Theorem 2:  Active barriers are structurally stable  2D invariant manifolds of 

M
0

x
0

n
0
(x
0
)

b
t0

t1 (x
0
)à  Perfect active barriers:=  

     robust material surfaces with pointwise zero active transport  

GH,	Katsanoulis,	Holzner,	Frohnapfel	&	Gatti,	Objective	material	barriers	to	the	transport	of	momentum	and	vorticity,	JFM,	in	revision		

Objective material barriers to the transport of momentum and vorticity 9

2D stable and unstable manifolds!
of periodic orbits 

2D stable and unstable manifolds!
of fixed points 

2D invariant tori

Figure 3. Possible geometries of material barriers to diffusive transport. Curves with arrows
indicate qualitative sketches of trajectories of the barrier equation (4.1), for which these barriers
are structurally stable, two-dimensional invariant manifolds.

streamsurface (i.e., invariant manifold) of the 3D autonomous differential equation,258

x0
0 = bt1

t0(x0), (4.1)

is a diffusive transport barrier candidate. For this reason, we refer to eq. (4.1) as259

the barrier equation, and to bt1
t0(x0) as the corresponding barrier vector field. By the260

objectivity of the vector field bt1
t0(x0), the barrier equation (4.1) is objective. Indeed,261

after a frame change of the form (2.3), we obtain the transformed barrier equation262

Q(t0)ỹ0
0 = Q(t0)b̃t

t0(y0), which gives ỹ0
0 = b̃t

t0(y0).263

Any smooth curve of initial conditions for the differential equation (4.1), however,264

generates a 2D streamsurface of trajectories for eq. (2.3). Of these infinitely many barrier265

candidates, we would like to find only the barrier surfaces with an observable impact on266

the transport of f . To this end, we formally define active transport barriers as follows:267

Definition 1. A diffusive transport barrier for the vector field f over the time interval268

[t0, t1] is a material surface B(t) ⇢ U whose initial position B0 = B(t0) is a structurally269

stable (i.e., persistent under small, smooth perturbations of u), 2D invariant manifold of270

the autonomous dynamical system (4.1).271

The required dimensionality of B(t) ensures that it divides locally the space into two 3D272

regions with minimal diffusive transport between them. The required structural stability273

of B(t) ensures that conclusions reached about transport barriers for one specific velocity274

field u remain valid under small perturbations of u as well (see Guckenheimer & Holmes275

1983).276

While a general classification of structurally stable invariant manifolds in 3D dynamical277

systems is not available, structurally stable 2D surfaces in 3D, steady volume-preserving278

flows are known to be families of neutrally stable 2D tori, 2D stable and unstable279

manifolds of structurally stable fixed points or of structurally stable periodic orbits (see,280

e.g., MacKay 1994). Such structurally stable fixed points and periodic orbits are either281

hyperbolic or are contained in no-slip boundaries and become hyperbolic after a rescaling282

of time (Surana, Grunberg & Haller 2006). In view of these results, the three possible283

diffusion barrier geometries for volume-preserving barrier equations in 3D are shown in284

Fig. 3.285

The local impact of an active transport barrier B(t) can be quantified by the increase286

in the geometric diffusive flux  t1
t0 (M0) from zero after small, localized perturbations are287

applied to B0. Probing this increase in transport under small, local deformations of B0 is288

equivalent to assessing the increase in transport under local perturbations to its surface289

normal. If the unit normal n✏(x0) = n0(x0) + ✏n1(x0) denotes an O (✏) perturbation to290

the original unit normal n0(x0) of B0, then the corresponding perturbed integrand in the291
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  Example 1:   Active barriers in directionally steady 3D Beltrami flows 

     ω = k(t)v, v(x,t) = α(t)v
0
(x).

active barriers  = classic LCS 

 e.g., unsteady ABC flow: 

     v = e−νtv
0
(x), v

0
= (Asinx

3
+C cosx

2
,B sinx

1
+ Acosx

3
,C sinx

2
+ B cosx

1
)

Theorem:  
In all directionally steady, 3D Beltrami flows: 

3D, unsteady, viscous 

GH,	Katsanoulis,	Holzner,	Frohnapfel	&	Gatti,	Objective	material	barriers	to	the	transport	of	momentum	and	vorticity,	JFM,	in	revision		

sectional streamlines vorticity norm

active Poincaré mapsvalues of the Q parameter

     

′x
0

=−
νρ k 2

t0

t1

∫ α(t)dt

t
1
− t

0

v
0
(x

0
)

′x =−νρk 2α(t)v
0
(x)

Lagrangian barrier eq.  

Eulerian barrier eq.  



10/16 

  Example 1: Active LCS methods for the ABC flow 

aPRA0,5
15 (x0;ω ) aPRA0,5

50 (x0;ω )PRA0
5(x0 )

FTLE0
5(x0 ) aFTLE0,5

10 (x0;ω ) aFTLE0,5
15 (x0;ω )

GH,	Katsanoulis,	Holzner,	Frohnapfel	&	Gatti,	Objective	material	barriers	to	the	transport	of	momentum	and	vorticity,	JFM,	in	revision		

x	
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 Example 2: Active transport barriers in 2D incompressible Navier-Stokes flows 
data set: Mohammad Farazmand (NCS) 

Eulerian momentum barriers at time t=0 

GH,	Katsanoulis,	Holzner,	Frohnapfel	&	Gatti,	Objective	material	barriers	to	the	transport	of	momentum	and	vorticity,	JFM,	in	revision		

      

′x =J∇H(x),
H(x) = νρ !ω

z
(x;t).

In	2D:	
Eulerian	momentum	barrier	eq.	
	is	an	
autonomous	Hamiltonian	system!	

yy

x

yy

x

FTLE0
0(x) FTLE0,0

0.15(x;ρu)FTLE0,0
0.05(x;ρu)yy

x

yy

x

yy

x

yy

x

PRA0,0
0.1 (x;ρu) PRA0,0

0.15(x;ρu)PRA0
0(x)
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 Example 2: Lagrangian momentum and vorticity barriers over  [t0,t1] = [0,25] 

GH,	Katsanoulis,	Holzner,	Frohnapfel	&	Gatti,	Objective	material	barriers	to	the	transport	of	momentum	and	vorticity,	JFM,	in	revision		

     

′x =J∇
0
H(x

0
),

H(x
0
) = νρ ω

z
(F

t0

t (x
0
),t).

     

′x =J∇
0
H(x

0
),

H(x
0
) = νρ[ω

z
(F

t0

t1(x
0
),t

1
)−ω

z
(x

0
,t

0
)].

yy

x

yy

x

yy

x

yy

x

yy

x

yy

x

yy

x

yy

x

yy

x

FTLE0
25(x0 ) FTLE0,25

0.35 (x0;ρu) FTLE0,25
0.05 (x0;ω )

PRA0,25
0.35 (x0;ρu)PRA0

25(x0 ) PRA0,25
0.05 (x0;ω )

In	2D:	
Lagrangian	momentum	barrier	eq.	
	is	an	
autonomous	Hamiltonian	system!	

In	2D:	
Lagrangian	vorticity	barrier	eq.	
	is	an	
autonomous	Hamiltonian	system!	
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 Example 2: Coherence of material barriers to momentum transport 

GH,	Katsanoulis,	Holzner,	Frohnapfel	&	Gatti,	Objective	material	barriers	to	the	transport	of	momentum	and	vorticity,	JFM,	in	revision		

yyyy

x

t = 0

Momentum-barrier evolution and momentum norm 

yyyy

x

t = 25 | ρu(x,t) |

yyyy

x

t = 0 yyyy

x

t = 25 | ρu(F0
t (x0 ),t) |

in Eulerian!
coordinates

in Lagrangian!
coordinates



14/16 

 Example 3: Active transport  barriers in 3D channel flow (Re=3,000) 

Objective material barriers to the transport of momentum and vorticity 33
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Figure 18. Comparison between the instantaneous limit of (a,d) the classic FTLE, (b,e) the
active FTLE with respect to ⇢u and (c,f) the active FTLE with respect to ! at t = 0 in a
cross-sectional plane at x/h = 2⇡. The panels (d-f) magnify the region denoted with a rectangle
in panels (a-c).

as perfect barriers to active transport, rather than as Lagrangian coherent structures928

acting as backbones of advected fluid-mass patterns (Haller 2015).929

Figure 20 shows the instantaneous active barrier vector field of (a) ⇢u and (b) !930

superimposed to the respective aFTLEs already shown in figure 18(e-f). Level-set curves931

of the �2(x, t) = �0.015 field (Jeong & Hussein 1995), a common visualization tool932

for coherent vortical structures in wall-bounded turbulence, are also shown. The scalar933

field �2(x, t) is defined as the instantaneous intermediate eigenvalue of the tensor field934

S2(x, t) + W2(x, t), where S is the rate-of-strain tensor (the symmetric part of the935

Eulerian active barriers at time t=0 from FTLE 
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Figure 18. Comparison between the instantaneous limit of (a,d) the classic FTLE, (b,e) the
active FTLE with respect to ⇢u and (c,f) the active FTLE with respect to ! at t = 0 in a
cross-sectional plane at x/h = 2⇡. The panels (d-f) magnify the region denoted with a rectangle
in panels (a-c).
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Figure 23. Comparison between (a,d) the classic PRA, (b,e) the active PRA with respect to
⇢u and (c,f) the active PRA with respect to ! in a cross-sectional plane at x/h = 2⇡. The
integration interval is for all cases between t0 = 0 and t1 = 3.75. The panels (d-f) magnify the
region denoted with a rectangle in panels (a-c).
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vector field, the barrier vector field bt1
t0(x0). This barrier vector field is the time-averaged1010

pull-back of the viscous terms in the evolution equation of the active vector field. For1011

t0 = t1, instantaneous limits of these material barriers to linear momentum are surfaces1012

to which the viscous forces acting on the fluid are tangent. Similarly, instantaneous limits1013

to active barriers to vorticity are surfaces tangent to the curl of viscous forces.1014

We have obtained that material and instantaneous active barriers in 3D unsteady1015

Beltrami flows coincide exactly with invariant manifolds of the Lagrangian particle1016

 Example 3: Active transport  barriers in 3D channel flow (Re=3,000) 

Lagrangian active barriers over [0,3.75]  from PRA 
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Conclusions 

•  Lagrangian and Eulerian active barriers: 
     invariant manifolds of steady, volume-preserving  
     vector fields (canonical Hamiltonians it 2D). 
 
 
•  Barriers coincide with LCS in directionally  
     steady Beltrami flows   
      
 
•  In more general flows: active barriers differ from LCS 
 
 
•  Active LCSà scale-dependent, high-resolution  
     barrier detection 

•  Need: advanced visualization for invariant manifolds in  
     3D steady, incompressible flows 
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