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Context: Oceanic heating due to global warming

Our problem statement

The oceans have absorbed 93% of atmospheric heating due to human
greenhouse gas emissions.

What will this absorbed heat do to global ocean circulation?

Besides raising sea level, will atmospheric heating change ocean currents?

What will that change in the ocean climate do to the atmospheric climate?

Wait a moment. What is climate?

Our approach

STUOD (Stochastic Transport in Upper Ocean Dynamics)
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This talk introduces part of the STUOD Synergy Project

Etienne Mémin & Darryl Holm Bertrand Chapron & Dan Crisan

https://www.imperial.ac.uk/ocean-dynamics-synergy/
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We will discuss a single stream of thought

Link ideas Lorenz → Kraichnan → McKean

What is climate? Lorenz → It’s what you expect, probabilistic.

How to make geometric mechanics stochastic?
Constrain the variations in reduced Hamilton’s principle to follow
Kraichnan → stochastic Lagrangian histories.

How to derive the dynamics of expectation?
Follow McKean → Mean field plus stochastic fluctuations.

Ed Lorenz: Climate is what you expect. (unpublished) (1995)
http://eaps4.mit.edu/research/Lorenz/Climate_expect.pdf

DDH: Variational principles for stochastic fluid dynamics.
Proc. R. Soc. A 471(2176), 20140963 (2015)
http://dx.doi.org/10.1098/rspa.2014.0963

Theo Drivas, DDH, James-Michael Leahy: Lagrangian-averaged stochastic
advection by Lie transport for fluids. J. Stat. Phys. (2020)
https://doi.org/10.1007/s10955-020-02493-4
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We discuss work with James-Michael Leahy & Theo Drivas

James-Michael Leahy Theo Drivas
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Where are we going in this talk?

1 Ed Lorenz [1995] emphasised that climate is a probabilistic concept.

2 Robert Kraichnan [1959] had postulated stochastic Lagrangian paths!

3 Our problem: Derive fluctuation dynamics around an
ensemble-averaged path. Then derive dynamics of the variances.

4 For this, we go “back to basics”: What is advection, mathematically?

5 Review role of deterministic advection in Kelvin’s Circulation Theorem.
Review proof that Kelvin-Noether Theorem ⇔ Newton’s law of motion.

6 Put McKean [1966] mean-field stochastic advection into KN Theorem.

7 We find expectation & fluctuation dynamics separate – variance evolves!

8 Worked examples of LA SALT dynamics: 3D & 2D Euler, Burgers eqn.
Ask ourselves, “Does this approach really apply to climate modelling?”
For example, “Does it say anything about extreme events?”
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Climate is a probabilistic concept. – Ed Lorenz [1995]

“Climate is what you expect. Weather is what you get.” 1

There are many questions regarding climate whose answers
remain elusive.

For example, there is the question of determinism; was it
somehow inevitable at some earlier time that the climate now
would be as it actually is?

Such questions persist as quandaries in the titles of modern papers:

On predicting climate under climate change.
Daron, J.D. and Stainforth, D.A., 2013.
Environmental Research Letters, 8(3), p.034021.

1Lorenz, E. N., 1995: Climate is what you expect. Unpublished, available at
http://eaps4.mit.edu/research/Lorenz/Climate_expect.pdf

Lorenz, E. N., 1976: Nondeterministic theories of climatic change.
Quaternary Research, 6(4), 495-506.
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If climate involves expectation, what quantity is stochastic?
And how shall we determine its probability distribution?

Here we take a cue from Kraichnan [1959], and propose that the
Lagrangian history of each fluid parcel is Lie-transported by a Stratonovich
stochastic vector field. That is, each history xt = φt(x0) is a time
dependent diffeomorphic map generated by the stochastic vector field

dxt
X

:= ut(xt) dt︸ ︷︷ ︸
DRIFT VELOCITY

+ ξ(xt) ◦ dWt︸ ︷︷ ︸
NOISE

.

Applying this vector field to material loops in the KN thm =⇒ SALT eqns.

 
 
 
 
 
 

 

The ensemble average will determine the probability distribution, while the
determination of the ξ(xt) must be accomplished from data analysis.
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What would a stochastic Lagrangian trajectory look like?
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Each Lagrangian path is stochastic. How do we represent
the fluctuations away from the ensemble-averaged path?

Suppose histories of fluctuations from the ensemble-averaged path with
velocity E [u] are diffeos Xt = Φt(X0) generated by stochastic vector field

dXt
X

:= ũ(Xt , t) := E [u] (Xt , t) dt︸ ︷︷ ︸
EXPECTED DRIFT

+
∑
k

ξk(Xt) ◦ dWk(t)︸ ︷︷ ︸
NOISE

, div ũ = 0.

Let’s substitute this ũ(Xt , t) into the material loop in Kelvin’s theorem.

 
 
 
 
 
 

 

The expectation of the drift velocity E [u] of the stochastic ensemble of
pathwise velocities {dxt} is taken at fixed Lagrangian label on the loop.
The loop persists as an ensemble of stochastic paths with a shared
expected drift velocity E [u] since the flow map Φt preserves neighbours.
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Back to basics: What is fluid advection, mathematically?

According to [Arnold1966], Lagrangian trajectories (histories) are curves
on M generated by the action xt = φt(x) of diffeomorphisms φt
parameterised by time t with x = φ0(x) at time t = 0.

The velocity along the curve is defined as d
dtφt(x) =: u(t, φt(x)).

Smooth k-form K (t, x) is advected, if φ∗tK (t, x) := K (t, φt(x)) = K (0, x)
where φ∗t is the pull-back by φt . That is, K satisfies an advection equation:

Definition (Deterministic Advection by Lie Transport (DALT))

d

dt
(φ∗tK )(t, x) :=

d

dt
K
(
t, φt(x)

)
= φ∗t

(
∂tK (t, x) + LuK (t, x)

)
= 0 .

Thus, advection is Lie transport.
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Examples of Deterministic Advection by Lie Transport

Definition (Lie derivative is defined via the chain rule)

d
dt

∣∣∣
t=0

(φ∗tK )(x) :=
d

dt

∣∣∣
t=0

K (φt(x)) =: LuK (x)

with
dφt(x)

dt

∣∣∣
t=0

= u(x).

Example (Familiar examples from fluid dynamics:)

(Functions) (∂t + Lu)b(x, t) = ∂tb + u · ∇b ,

(1-forms) (∂t + Lu)(v(x, t) · dx) =
(
∂tv + u · ∇ v + vj∇u j

)
· dx

=
(
∂tv − u× curl v +∇(u · v)

)
· dx=:

(
∂tv + LTu v) · dx ,

(2-forms) (∂t +Lu)(ω(x,t) ·dS)=
(
∂tω− curl (u×ω) +u divω

)
·dS ,

(3-forms) (∂t + Lu)(ρ(x, t) d 3x) = (∂tρ+ div ρu) d 3x .
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Deterministic advection in the Kelvin-Noether theorem

The deterministic Kelvin-Noether theorem coincides with Newton’s law for
the evolution of (momentum/mass) v concentrated on an advecting
material loop, ct = φtc0 at velocity u,

d

dt

∮
ct

v · dx =

∮
ct

(∂t + Lu)(v · dx)︸ ︷︷ ︸
Chain rule

=

∮
ct

f · dx︸ ︷︷ ︸
Newton′s Law
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Proof of the deterministic Kelvin-Noether theorem

Proof.

Consider a closed loop moving with the material flow ct = φtc0.
Its Eulerian velocity is d

dtφt(x) = φ∗tu(t, x) = u(t, φt(x)).
Compute the time derivative of the loop momentum/mass (impulse)

d

dt

∮
ct

v(t, x) · dx =

∮
c0

d

dt

(
φ∗t
(
v(t, x) · dx

))
=

∮
c0

φ∗t

(
(∂t + Lu(t,x))(v · dx)

)
︸ ︷︷ ︸

Lie derivative via chain rule

=

∮
φtc0=ct

(∂t + Lu(t,x))(v · dx)

=

∮
ct

f · dx︸ ︷︷ ︸
Newton′s Law

=

∮
c0

φ∗t

(
f · dx︸ ︷︷ ︸

Motion eqn

)
• Kelvin-Noether theorem ⇔ Newton’s Law for mass distributed on a material loop.

• KIW theorem: the proof does not change for Stratonovich stochastic vector fields.
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This ends our review of ideal deterministic fluid mechanics

End DALT (Deterministic Advection by Lie Transport).

Begin SALT (Stochastic Advection by Lie Transport).
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A Stochastic Kelvin-Noether theorem exists for
Lagrangian Averaged (LA) Drift Velocity (McKean [1966])

Suppose the divergence-free advection velocity is given by the following
stochastic vector field with a Lagrangian Averaged drift velocity:

dXt
X

:= ũ(Xt) := E [u] (x , t) dt︸ ︷︷ ︸
EXPECTED DRIFT

+
∑
k

ξk(x) ◦ dWk(t)︸ ︷︷ ︸
NOISE

, div ũ = 0.

Let v = momentum/mass. (In Hamilton’s principle, v = D−1δ`/δu.)

The stochastic Kelvin-Noether theorem represents Newton’s law
for the evolution of momentum concentrated on an advecting loop

d

∮
c(ũ)

v · dx =

∮
c(ũ)

(d + Lũ)(v · dx)︸ ︷︷ ︸
By KIW formula

=

∮
c(ũ)

f · dx︸ ︷︷ ︸
Newton′s Law
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We need a final definition before writing the LA SALT eqns

Definition (The diamond operation)

The operation � : V × V ∗ → X∗ between tensor space elements a ∈ V ∗

and b ∈ V produces an element of X(D)∗, a one-form density, defined by〈
b � a, u

〉
X

= −
∫
D
b · Lu a =:

〈
b , −Lu a

〉
V
.

D. D. Holm (Imperial College London) What can SGM do for Climate Science? GDM Seminar 14 July 2020 17 / 34



Introducing the Lagrangian Averaged (LA) SALT equations

The SALT Euler–Poincaré equations read, with ( δ`δu ∈ X∗, δ`
δa ∈ V ),

d
δ`

δu
+ Ldxt

δ`

δu
X∗
=
δ`

δa
� a dt and da + Ldxta

V ∗
= 0,

where dxt := ut(xt) dt + ξ(xt) ◦ dWt is a stochastic transport vector field.
Replace (à la McKean) the Eulerian drift velocity ut(xt) in the stochastic
transport vector field dxt by its expectation, denoted as E [ut ] (Xt), so that

dXt
X

:= E [ut ] (Xt)dt +
∑
k

ξ(k)(Xt) ◦ dW (k)
t

and let’s consider the following ‘modified’ Euler–Poincaré equations

d
δ`

δu
+ LdXt

δ`

δu
X∗
= E

[
δ`

δa

]
� a dt and da + LdXta

V ∗
= 0 .

• The above equations comprise the class of LA SALT theories.
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LA SALT preserves the SALT Lie–Poisson operator

We pass from the Lie–Poisson form of the SALT equations to the
corresponding LA SALT form by modifying variational derivatives to E [ · ]

δ(dh)

δµ
= dXt = E

[
δh

δµ

]
dt+

∑
k

ξ(k)◦dW (k)
t and E

[
δH

δa

]
= −E

[
δ`

δa

]
.

Taking these expectations transforms the LA SALT equations from their
‘modified’ Euler–Poincaré form above into their ‘Lie–Poisson form’,

d

µ
a

 = −

ad∗( · )µ ( · ) � a

L( · )a 0

E [δh/δµ] dt +
∑

k ξ
(k) ◦ dW (k)

t

E [δh/δa] dt

 .
The Lie–Poisson operators for DALT, SALT and LA SALT are shared.

• Although they share the same Casimirs and Lagrangian invariants,
the LA SALT equations are neither variational nor Hamiltonian.
That is, they are not a mean-field theory in the sense of McKean.
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The LA SALT expectation dynamics separates & closes

Upon converting LA SALT from Stratonovich into Itô form, we find

dµ+ L
E
[
δH
δµ

]µdt + Lξ(k)µdW
(k)
t =

(
1
2

∑
k

Lξ(k)(Lξ(k)µ)dt − E
[
δH

δa

]
� a
)
dt ,

da + L
E
[
δH
δµ

]adt + Lξ(k)adW
(k)
t =

1
2

∑
k

Lξ(k)(Lξ(k)a)dt .

Taking the expectation of these equations yields a PDE sub-system ,

∂tE [µ] + L
E
[
δH
δµ

]E [µ]− 1
2

∑
k

Lξ(k)(Lξ(k)E [µ]) = −E
[
δH

δa

]
� E [a] ,

∂tE [a] + L
E
[
δH
δµ

]E [a]− 1
2

∑
k

Lξ(k)(Lξ(k)E [a]) = 0 .

• This sub-system of PDEs for the expectation variables can be closed in
certain cases of physical interest, some of which we will discuss later.
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Fluctuation dynamics can be linear and closed

The fluctuation variables are defined as

µ′ := µ− E[µ] ∈ X∗, a′ := a− E[a] ∈ V .

Taking the difference between the Itô forms and the expectation equations
yields the Itô fluctuation equations

dµ′ + L
E
[
δh
δµ

]µ′dt + Lξ(k)µ dW
(k)
t =

(
1
2

∑
k

Lξ(k)(Lξ(k)µ
′)− E

[
δh

δa

]
�a′
)
dt,

da′ + L
E
[
δh
δµ

]a′dt + Lξ(k)a dW
(k)
t =

1
2

∑
k

Lξ(k)(Lξ(k)a
′)dt .

• When δh/δa & δh/δµ are linear or constant, these equations are closed.

• We will pair these two equations with corresponding dual variables to
obtain stochastic evolution equations for the resulting quadratic quantities.

D. D. Holm (Imperial College London) What can SGM do for Climate Science? GDM Seminar 14 July 2020 21 / 34



Let’s have an interim summary!

The nonlocality in probability space (à la McKean) in the LA SALT
equations simplifies the dynamics of SALT in three significant ways.

(1) While the Casimirs are still preserved by the full LA SALT dynamics,
the equations for the expected physical variables separate into a dissipative
sub-system embedded into the larger conservative system.

(2) In many cases (including for the LA SALT incompressible Euler fluid)
the fluctuation equations are linear stochastic equations whose solutions
are transported and accelerated by forces involving the expected variables.

(3) In some cases, such as the 2D LA SALT Euler–Boussinesq (EB)
equations, this linear stochastic transport property implies unique global
existence, which is not possessed by the corresponding SALT equations.

(Existence is not discussed here, for lack of time.)
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A special case of the LA SALT Euler eqn is Navier-Stokes.

The LA SALT Euler equation is given as

dut + LTE[ut ]utdt +
∑
k

LT
ξ(k)

ut ◦ dW (k)
t = (−E[∇pt ] + ft)dt,

with divE [ut ] = 0, ut |t=0 = u0(x) and (LTwut)i := w j∂jui + (∂iw
j)uj .

The Itô formulation is, with divut = 0,

dut+LTE[ut ]utdt+
∑
k

LT
ξ(k)

utdW
(k)
t =

(
1
2

∑
k

LT
ξ(k)

(LT
ξ(k)

ut)−E [∇pt ]+ft
)
dt.

Taking the expectation yields a closed equation for E [ut ] given by

∂tE [ut ] + LTE[ut ]E [ut ] =
1
2

∑
k

LT
ξ(k)

(
LT
ξ(k)

E [ut ]
)
− E [∇pt ] + ft .

This is the Lie-Laplacian Navier-Stokes equation (LL NS) for E [ut ].

Theorem (Well-posedness of LL NS)

When LL NS is well-posed, then so is its linear Itô fluctuation equation.
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Recall the fluctuation dynamics equations

The fluctuation variables are defined as

µ′ := µ− E[µ] ∈ X∗, a′ := a− E[a] ∈ V .

Taking the difference between the Itô forms and the expectation equations
yields the Itô fluctuation equations

dµ′ + L
E
[
δh
δµ

]µ′dt + Lξ(k)µ dW
(k)
t =

(
1
2

∑
k

Lξ(k)(Lξ(k)µ
′)− E

[
δh

δa

]
�a′
)
dt,

da′ + L
E
[
δh
δµ

]a′dt + Lξ(k)a dW
(k)
t =

1
2

∑
k

Lξ(k)(Lξ(k)a
′)dt .

• When δh/δa & δh/δµ are linear or constant, these equations are closed.

• We now pair these two equations with corresponding dual variables to
obtain stochastic evolution equations for the resulting quadratic quantities.
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Fluctuation variance dynamics depend on correlations

One takes expectation and integrates in space to find variance dynamics

1

2

d

dt
E
[
|µ′|2X

]
−
〈
E
[
Lµ′]µ

′
]
, E
[
δH

δµ

]〉
X

+

〈
E
[
Lµ′]a

′
]
, E
[
δH

δa

]〉
X

= −1

2

∑
k

〈
E

[
Lµ′](Lξ(k)µ

′) + L(
L
ξ(k)

µ
)]µ
]
, ξ(k)

〉
X

,

1

2

d

dt
E
[
|a′|2V

]
−
〈
E
[
â′ � a

]
, E
[
δH

δµ

]〉
X

= −1

2

∑
k

〈
E
[
â′ � (Lξ(k)a

′) + L̂ξ(k)a � a
]
, ξ(k)

〉
X
,

where µ
′] ∈ X is dual to µ

′ ∈ X∗ and â′ ∈ V ∗ is dual to a ∈ V .
• The dynamics of the variances of the stochastic system is driven by an
intricate variety of correlations among the evolving fluctuation variables.
• The solution behaviour can be seen more easily in examples.

D. D. Holm (Imperial College London) What can SGM do for Climate Science? GDM Seminar 14 July 2020 25 / 34



Example: the 2D LA SALT Euler equations

The vorticity in 2D LA SALT, understood as a scalar, is governed by the
transport law with divE [ut ] = 0 = div ξ(k)(x),

dωt + E [ut ] · ∇ωtdt +
∑
k

ξ(k)(x) · ∇ωt ◦ dW (k)
t = 0.

This equation implies the Casimirs∫
ϕ(ωt)dx =

∫
ϕ(ω0)dx ,

for any differentiable function ϕ.

In particular, one may choose ϕ(x) = xp and find that all of the Lp-norms
of the solution are conserved by the dynamics of 2D LA SALT Euler.
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Transform to Itô form of the 2D LA SALT Euler equations

In Itô form, 2D LA SALT Euler is given by

dωt + E [ut ] · ∇ωtdt +
∑
k

ξ(k)(x) · ∇ωt dW
(k)
t

=
1
2

∑
k

ξ(k)(x) · ∇
(
ξ(k)(x) · ∇ωt

)
dt.

Its expectation obeys

∂tE [ωt ] + E [ut ] · ∇E [ωt ] =
1
2

∑
k

ξ(k)(x) · ∇
(
ξ(k)(x) · ∇E [ωt ]

)
dt.

Its fluctuations satisfy

dω′t + E [ut ] · ∇ω′tdt +
∑
k

ξ(k)(x) · ∇ωtdW
(k)
t

=
1
2

∑
k

ξ(k)(x) · ∇
(
ξ(k)(x) · ∇ω′t

)
dt.
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Compute 2D LA SALT Euler vorticity variance dynamics

Let’s investigate the dynamics of the variance of the vorticity.
The enstrophy Casimir is constant, so∫

E
[
|ωt |2

]
dxdy =

∫ ∣∣E [ωt ]
∣∣2dxdy +

∫
E
[
|ω′t |2

]
dxdy .

The first term on the RHS satisfies

1

2

d

dt

∫ ∣∣E [ωt ]
∣∣2dx = −

∑
k

∫
|ξ(k)·∇E [ωt ] |2dx = −1

2

d

dt

∫
E
[
|ω′t |2

]
dxdy

• Without forcing, 2D LA SALT converts enstrophy of E [ωt ] into
variance, while preserving the total enstrophy (Casimir).
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Summary of stochastic coadjoint motion for 2D LA SALT

Remark

One may regard the expected vorticity equations for 2D LA SALT as a
dissipative system embedded into a larger conservative system.

From this viewpoint, the interaction dynamics of the two components of
the full LA SALT system dissipates the enstrophy of the expected mean
vorticity E [ωt ] by converting it into the variance of the vorticity
fluctuations, while preserving the mean total enstrophy.

This dynamics occurs because the total (mean plus fluctuation) vorticity
field is being linearly transported along the expected mean velocity, while
the 2D expected mean vorticity field decays.

The Casimirs are preserved by the full LA SALT dynamics, while the
equations for the expected dynamics contain dissipative terms which
convert Casimirs of the expected variables into variances of fluctuations.
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LA SALT regularises the SALT Burgers equations

Choosing `(ut) = 1
2

∫
S1 |ut |2 dx yields the 1D LA SALT Burgers equation

dut + E [ut ] ∂xu dt +
∑
k

ξ(k)∂xut ◦ dW (k)
t = 0 ,

dut + E [ut ] ∂xu dt +
∑
k

ξ(k)∂xutdW
(k)
t =

1
2

∑
k

ξ(k)∂x(ξ(k)∂xut).

Theorem (Regularity)

LA SALT Burgers solutions are regular. (SALT Burgers solutions are not.)

The LA SALT expectation E [ut ] satisfies a viscous Burgers equation,

∂tE [ut ] + E [ut ] ∂xE [ut ] =
1
2

∑
k

ξ(k)∂x(ξ(k)∂xE [ut ]) .

This is regularization by non-locality in probability space. The conserved
total kinetic energy

∫
S1 |ut |2 dx again converts the original expected value

kinetic energy norm
∫
S1 |E [u0] |2 dx into variance

∫
S1 E [|u′t |]

2 dx .
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Summary: Lagrangian Averaged (LA) SALT fluid dynamics

The LA SALT equations replace ut → E [ut ] in the SALT Lagrangian path∮
C
(
dxt=utdt+ξ(x)◦dWt

)ut · dx =⇒
∮
C
(
dXt=E[ut ]dt+ξ(x)◦dWt

)ut · dx .

For example, in the Euler fluid case the modified Kelvin theorem reads,

d

∮
C
(
dXt

) ut · dx =

∮
C
(
dXt

) [dut · dx + LdXt (ut · dx)
]

= 0 ,

where LdXt (ut · dx) denotes the Lie derivative of the 1-form (ut · dx) with
respect to the vector field dXt given by

dXt = E [ut ] dt +
∑
k

ξ(k)(x) ◦ dWt .

• The corresponding ‘Euler–Poincaré forms’ of the LA SALT eqns are

d
δ`

δu
+ LdXt

δ`

δu
= E

[ δ`
δa

]
� a dt and da + LdXta = 0 .
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Does LA SALT tell us anything about extreme events?

When the expected Euler–Poincaré equations are written out in Itô form ,
with µ := δ`

δu , we find generalised NS and advected-diffusive equations

∂

∂t
E [µ] + LE[dXt ]E [µ]− 1

2

∑
k

Lξ(k)(Lξ(k)E [µ]) = E
[ δ`
δa

]
� E [a] + E [Fµ] ,

∂

∂t
E [a] + LE[dXt ]E [a]− 1

2

∑
k

Lξ(k)(Lξ(k)E [a]) = E [Fa] Climate PDE .

These Climate PDE predict the expectations E [µ] and E [a] throughout

the domain of flow. The Itô Weather equations for the fluctuations are
linear drift/stochastic transport relations:

dµ+ LE[dXt ]µ+
∑
k

Lξ(k)µ dWt − 1
2

∑
k

Lξ(k)(Lξ(k)µ) dt = E
[ δ`
δa

]
�a dt + Fµ

da + LE[dXt ]a +
∑
k

Lξ(k)a dWt − 1
2

∑
k

Lξ(k)(Lξ(k)a) dt = Fa Weather .

Then the variance EVOLVES : d
dtE

[
〈 |µ− E [µ] |2〉L2

]
= RHS
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What’s next? Over to you! Any questions?

Thanks for listening!

Let’s discuss!
More papers along these lines with up-to-date references at ORCID:

https://orcid.org/0000-0001-6362-9912
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Homework: LA SALT climate of the free rigid body?

(1) ‘SALT Rigid Body’ equations comprise stochastic coadjoint motion,

dΠ = Π× ∂(dh)

∂Π
with dh(Π) = h(Π) dt + Π · ξ ◦ dWt ,

with h(Π) = 1
2Π · I−1Π and ξ ∈ so(3) ≡ R3. Discuss the solutions.

See arXiv:1601.02249 or https://doi.org/10.1007/s00332-017-9404-3.

(2) ‘LA SALT Rigid Body’ equations may be expressed as

dΠ = Π× E
[
∂h

∂Π

]
dt + Π× ξ ◦ dWt ,

for a constant ξ ∈ so(3) ≡ R3. Discuss the solutions.
See [?], arXiv:1908.11481.

Hint: d
dt |Π|

2 = 0, Π := E [Π] + Π′ with E [Π′] = 0. Then calculate

d

dt

∣∣E [Π]
∣∣2 = −

∣∣ξ × E [Π]
∣∣2 = − d

dt
E
[
|Π′|2

]
,

so the initial expectation magnitude converts into fluctuation variance.
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	Ed Lorenz [1995] emphasised that climate is a probabilistic concept.
	Robert Kraichnan [1959] had postulated stochastic Lagrangian paths! 
	Our problem: Derive fluctuation dynamics around an ensemble-averaged path. Then derive dynamics of the variances.
	For this, we go ``back to basics'': What is advection, mathematically? 
	Review role of deterministic advection in Kelvin's Circulation Theorem. Review proof that Kelvin-Noether Theorem  Newton's law of motion.
	Put McKean [1966] mean-field stochastic advection into KN Theorem.
	We find expectation & fluctuation dynamics separate – variance evolves!
	Worked examples of LA SALT dynamics: 3D & 2D Euler, Burgers eqn. Ask ourselves, ``Does this approach really apply to climate modelling?'' For example, ``Does it say anything about extreme events?"

