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Standard reverse mathematics of the axiom of choice in set theory

Three well-known equivalent presentations in set theory:

• axiom of choice (AC): any family of non-empty sets has a choice function

• Zorn’s lemma (ZL): if all chains of a non-empty partially ordered set are bounded
upwards, the set has a maximal belement

• the well-ordering principle: every set can be well-ordered

and many others:

• e.g. Teichmüller-Tukey lemma

sometimes strictly weaker:

• axiom of dependent choice (DC), axiom of countable choice (ACω), Boolean
prime ideal theorem (BPI), ultrafilter lemma (UF)

as well as variants in constructive mathematics, classically equivalent to choice or maxi-
mality principles:

• bar induction, its finite-branch version fan theorem, update induction, ...
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Some standard results about the axiom of choice

Reverse Math in Set Theory
(e.g. Jech, Rubin & Rubin, Herrlich)

Reverse Math in Constructive Arithmetic
(e.g. Kleene, Kreisel, Troelstra, Ishihara, Berger)

Reverse Math in subsystems of 2nd order Arithmetic
(e.g. Simpson)

ACABR

BPI
UF

Compl

DCserial [Bernays]
DCspread [Lévy]
ZLω [Wolk]

WKL
Complω

BI

WFTind [Coquand]
WFTstaged [Ishihara]
FTuniform [Brouwer]

BPI = Boolean Prime Ideal Theorem
UF = Ultrafilter Theorem
AC = Axiom of Choice
DC = Axiom of Dependent Choice
WKL = Weak Kőnig’s Lemma

ZLω = Countable Zorn’s Lemma
BI = Bar Induction
(W)FT = (Weak) Fan Theorem
Compl = Gödel’s Completeness Theorem

LEM

LEM
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Look at the axiom of choice and its variants from a logical and
computational perspective

The logical perspective:

• The axiom of choice and their variants assert the existence of ideal objects from
intensional properties of these objects

• See e.g. Coquand’s program of reformulating standard mathematical statements using
equivalent inductive properties to avoid the axiom of choice

↪→ some variants can indeed be seen as extensionality principles

↪→ other variants as well-foundedness of processes producing arbitrarily precise ap-
proximations of ideal objects
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Look at the axiom of choice and its variants from a logical and
computational perspective

The (long-term) computational perspective:

• Following Brouwer, we know from Kolmogorov, Kleene, Curry, Howard, and many
other that intuitionistic proofs are programs

• We know from Griffin 1990 that also classical proofs are programs, though they
use “goto”-like side effects

• We know from works in Paris that proofs by forcing are programs, using a memory

• Other effects such as Lisp’s quote are also useful to compute with some axioms (see
Krivine, Pédrot, ...)

• More generally, it can be shown (by abstract reasoning) that any consistent mathe-
matical axiom has an underlying computational content

• What is the computational content of the axiom of choice and its variants (Kriv-
ine’s research programme)?
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Contribution I

• A classification of choice and bar induction principles by means of two dual forms, seen
as extensionality principles, for T a predicate filtering the finite approximations
of functions from A to B:

Generalised Bar Induction (GBIABT )

T A-B-barred︸ ︷︷ ︸
observational

=⇒ T A-B-inductively barred︸ ︷︷ ︸
effective

Generalised Dependent Choice (GDCABT )

T coinductively A-B-approximable︸ ︷︷ ︸
effective

=⇒ T has an A-B-choice function︸ ︷︷ ︸
observational

• such that:
GBINBT denotes BIBT

GBINBoolT denotes FTT

GDCABoolT denotes BPIAT
GDCNBT has the strength of DCBR

GDCNBoolT has the strength of WKLT
GDCABT has the strength of ACABR for T “split”
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Contribution II

• A pair of dual maximality and well-foundedness principles, for T a predicate filtering
the finite approximations of functions from A to B:

Generalised Update Induction (GUIABT )
(generalising Berger’s update induction to arbitrary cardinals)

if the upwards monotone closure of T is ≺-inductive, it contains all functions from A to B

∃ Maximal Partial Choice Function (∃MPCFABT )
(a functional variant of Teichmüller-Tukey’s lemma)

if the downwards closure by restriction of T is non empty, it has a ≺-maximal partial choice function from A to B

where α ≺ β is the approximation order on partial functions from A to B.

• such that: when A is N, or B is Bool, or T is split, coinductive approximability implies
the totality of the choice function, recovering the previous statements, and dually for
barredness.

• and such that: Zorn’s Lemma, Teichmüller-Tukey’s lemma, and other maximality
principles are particular instances of ∃MPCF.
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Outline

Part A is organised around the following oppositions

• ill-founded (choice axioms) / well-founded (bar induction axioms)

• extensional (ideal object) / intensional (processus)

• closed by sequential restriction (= tree) / closed by sequential extension (= monotony)

• binary branching (B is Bool) / finite branching (B is finite) / arbitrary branching (B
is arbitrary)

Part B moves to arbitrary cardinals, so as to capture BPI and full AC

• sequential (A countable) / unordered (A arbitrary)

• closed by unordered restriction (= ideal) / closed by unordered extension (= filter)

Part C moves to maximality and well-foundedness principles
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Part A

The sequential case: Kőnig’s lemma, fan theorem, dependent choice, bar induction
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What is bar induction?

Let’s consider first different ways to define well-foundedness
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Trees (and their negative) as predicates

Let B be a domain and u ranges over the set B∗ of finite sequences of elements of B.
We write ⟨⟩ for the empty sequence and u ⋆ b for the extension with one element. For T
a predicate on B∗, we define:

T is a tree T is monotone

(closure under restriction) (closure under extension)

∀u∀a (u ⋆ a ∈ T ⇒ u ∈ T ) ∀u∀a (u ∈ T ⇒ u ⋆ a ∈ T )
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Inductive characterisation of a well-founded tree-as-predicate

T inductively well-founded is short for inductively well-founded at ⟨⟩ ∈ A∗

T inductively well-founded at u holds when:

• u /∈ T

• or, recursively, for all a, T is inductively well-founded at u ⋆ a

⟨⟩

b03

b02

b01

b01b13

b01b12

b01b12b23

b01b12b22

b01b12b21

b01b12b20

b01b11

b01b10

b00
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Observational characterisation of a well-founded tree-as-predicate

T observationally well-founded

∀β ∈ N → B. ∃n ∈ N. ¬T (β|n)

⟨⟩

b03

∥
b02

∥

b01

b01b13

∥
b01b12

b01b12b23

∥
b01b12b22

∥

b01b12b21

∥

b01b12b20

∥
b01b11

∥

b01b10

∥
b00

∥
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Two characterisations of a well-founded tree-as-predicate

• From the “effective” representation of a well-founded tree we can always construct
a predicate that is an “observational” representation of the tree

• To conversely obtain an effective representation of a tree T from its observational
representation requires an axiom:

Tobservationally well-founded =⇒ T inductively well-founded
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Bar Induction

If instead we build the negative of a tree-as-predicate and restate well-foundedness on
the negative tree, one obtains bar induction:

• T inductively well-founded is the same as ¬T inductively barred

• T observationally well-founded is the same ¬T barred

• Bar Induction says that for a type B and a tree T ,

T barred︸ ︷︷ ︸
observational

=⇒ T inductively barred︸ ︷︷ ︸
effective
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Dually: ill-foundedness

Dually, ill-foundedness of a tree T can be defined in different ways.

Let us concentrate on the finite-branching case. We have:

Effective view

T is staged infinite ≜ ∀n∃u |u| = n ∧ u ∈ T

Observational view

T has an infinite branch ≜ ∃α ∀u ≤ αT (u)

Kőnig’s Lemma is a lemma that connects the two views when B is finite:

KLT ≜ T is staged infinite ⇒ T has an infinite branch
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Ill-foundedness, coinductively

Alternatively, by dualising the notion of inductively barred we get another coinductive
definition of ill-foundedness, which we call productive. In full:

T productive is short for productive from ⟨⟩ ∈ B∗

T productive from u ∈ B∗ holds when:

• u is in T

• and, recursively, there is b ∈ B such that T is productive from u ⋆ b
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Relying on the notion of inductively barred and its dual, we obtain the
following dual pair of choice and bar induction principles

Bar induction (BIBT )

T barred ⇒ T inductively barred

Tree-Based Dependent Choice (DCprod
BT )

T productive ⇒ T has an infinite branch
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Recovering standard principles

WKLT ⇐⇒ DCprod
BoolT up to classical (actually co-intuitionistic) reasoning

WFTT ⇐⇒ BIBoolT up to intuitionistic reasoning

DCserial
BRb0

⇐⇒ DCprod
BR▷(b0)

where

u ∈ R▷(b0) ≜ case u of


⟨⟩ 7→ ⊤
b 7→ R(b0, b)

u′ ⋆ b ⋆ b′ 7→ R(b, b′)


DCserial

BRb0
≜ ∀b∃b′R(b, b′) ⇒ ∃α (α(0) = b0 ∧ ∀n R(α(n), α(n + 1)))

(one of the most standard statement of dependent choice)
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Part B

Relaxing the sequentiality
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Relaxing the sequentiality

Let A and B be domains. Let now use v to range over the set (A×B)∗ of finite sequences
of pairs of elements in A and B.

We say (a, b) ∈ v if (a, b) is one of the components of v.

We write v ≤ v′ if v is included in v′ when seen as sets.

For v ∈ (A×B)∗, we write dom(v) for the set of a such that there is some b such that
(a, b) ∈ v.

If α ∈ A → B, we write v ⊂ α and say that v is a finite approximation of α if α(a) = b
for all (a, b) ∈ v.

Let T be a predicate on (A × B)∗. We write ↓T and ↑T to mean the following inner
and outer closures with respect to ≤:

v ∈↓T ≜ ∀v′ ≤ v (v′ ∈ T )

v ∈↑T ≜ ∃v′ ≤ v (v′ ∈ T )
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Relaxing the sequentiality (effective view)

T inductively A-B-barred from v ∈ (A×B)∗ holds when:

• v is in the outer closure of T

• or, recursively, there exists a /∈ dom(v) such that for all b ∈ B, T is inductively
A-B-barred from v ⋆ (a, b)

T coinductively A-B-approximable from v ∈ (A×B)∗ holds when:

• v is in the inner closure of T

• and, recursively, for all a /∈ dom(v), there is b ∈ B such that T is coinductively
A-B-approximable from v ⋆ (a, b)
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Relaxing the sequentiality (observational view)

T A-B-barred if ∀α ∈ A → B ∃v ⊂ α (v ∈ T )

T has an A-B-choice function if ∃α ∈ A → B ∀v ⊂ α (v ∈ T )
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This leads to the following generalisation

Generalised Bar Induction (GBIABT )

T A-B-barred︸ ︷︷ ︸
observational

=⇒ T A-B-inductively barred︸ ︷︷ ︸
effective

Generalised Dependent Choice (GDCABT )

T coinductively A-B-approximable︸ ︷︷ ︸
effective

=⇒ T has an A-B-choice function︸ ︷︷ ︸
observational
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Results justifying the generalisation

GBINBT ⇐⇒ BIBT

GDCNBT ⇐⇒ DCprod
BT

25



The Boolean Prime Ideal Theorem

The specialisation to Bool of the generalisation also captures the Boolean Prime Ideal
Theorem.

Let (B,∨,∧,⊥,⊤,¬,⊢) be a Boolean algebra and I an ideal on B. We extend I on
(B × Bool)∗ by setting u ∈ I+ if (

∨
(b,0)∈u¬b) ∨ (

∨
(b,1)∈u b) ∈ I . We have:

GDCBBoolI+ ⇐⇒ BPIB,I
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The full axiom of choice

Let ACABR be ∀aA ∃bB R(a, b) ⇒ ∃αA→B ∀aAR(a, α(a))

Define the positive alignment R⊤ of R by

R⊤ ≜ λu.∀(a, b) ∈ uR(a, b)

Then, ACABR arrives as the instance GDCABR⊤
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Strength of the generalisation

Without further restrictions, GDC and GBI are inconsistent:

• Take A ≜ N → Bool

• Take B ≜ N

• Define T so that it constrains a choice function to be injective:

v ∈ T ≜ ∀ff ′n, ((f, n) ∈ v) ∧ ((f ′, n) ∈ v) ⇒ f = f ′

Then, in the case of GDC, a coinductive A-B-approximation can always be found but
an A-B-choice function would be an injective function from N → Bool to N, what is
inconsistent.
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A consistent restriction

A naive restriction is to require that:

• either A is countable

• or B is finite

• or T is prime (or split, atomic, or unary), meaning for all u and v:

– in the ill-founded case u ∈ T ∧ v ∈ T ⇒ u ∪ v ∈ T

– in the barred case u ∪ v ∈ T ⇒ u ∈ T ∨ v ∈ T

The restriction preserves the previous instantiations and makes GDC equivalent to AC
since it implies AC, and, conversely, each of its three restrictions is implied by a conse-
quence of AC.

Dually for GBI.
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Summary of main results regarding choice and bar induction

ACABR ≜ GDCABR⊤

BPIAI ≜ GDCABoolTI
Compl−AT ≜ GDCABoolT C

Compl+AT ≜ GBIABoolT C

DCserial
BRb ≜ GDCNBR▷

⊤
DC

prod
BT ≜ GDCNBT

ZLNR ≜ GBINB(¬R)∗⊥
BIBT ≜ GBINBT

WKL
prod
BT ≜ GDCNBoolT

WFTind
BT ≜ GBINBoolT

AC = Axiom of Choice
DC = Axiom of Dependent Choice
BPI = Boolean Prime Ideal Theorem
Compl− = Completeness (consistent ⇒ model)
WKL = Weak Kőnig’s Lemma

Compl+ = Completeness (valid ⇒ provable)
ZL = Zorn’s Lemma
BI = Bar Induction
WFT = Weak Fan Theorem
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Part C

Maximality and well-foundedness principles

31



A first solution to the inconsistency of the general form of GDC: requiring
only a maximal partial function

Generalised Maximal Dependent Choice

T coinductively A-B-approximable︸ ︷︷ ︸
effective

=⇒ T has a maximal partial A-B-choice function︸ ︷︷ ︸
observational

However, approximability happens to be a useless hypothesis, so we can remove it.
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∃ Maximal Partial Choice Function (∃MPCFABT )

∃ Maximal Partial Choice Function

T non-empty =⇒ T has a maximal partial A-B-choice function

This happens to be very close to Teichmüller-Tukey Lemma and its contrapositive to
Berger’s update induction.
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Different possible definitions of a partial function α : A ⇀ B

(non constructively equivalent though)

- a (non-necessarily left-total) functional relation (leading to ∃MPCFrel)

- a total function to a codomain extended with an element ⊥ standing for undefinedness
(leading to ∃MPCFdec)

Then, we can define in each case a relation β ≺ α standing for β is strictly more defined
than α
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Teichmüller-Tukey Lemma

Let T be a predicate over A∗. We define its powerset closure by downwards restriction
⟨T ⟩ as:

⟨T ⟩ ≜ λαP(A).∀uA∗
(u ⊂ α → u ∈ T )

Then, we say that a predicate P over predicates over A is of finite character if there
is T such that P = ⟨T ⟩.

Then, we can conversely rebuild T from ⟨T ⟩ by setting

û ≜ λxA. x ∈ u

⌊P ⌋ ≜ λuA
∗
. û ∈ P

so that T = ⌊⟨T ⟩⌋ and so that P is of finite character iff P = ⟨⌊P ⌋⟩.
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Teichmüller-Tukey Lemma

Teichmüller-Tukey TTL is the statement that any non-empty predicate of finite character
(thus derived from some T : P(A)) has a maximal element with respect to inclusion.

We have:

TTLAT ≃ ∃MPCFrel
A1(T◦π1)

TTL(A×B)T ≃ ∃MPCFrel
ABT

And, incidentally, for an appropriate construction C<E:

TTLAC<E
⇐⇒ ZLA<E

TTLAT ⇐⇒ ZLP(A)⊂⟨T ⟩

36



∃MPCFdec
NBT is the contrapositive of Berger’s update induction, and

conversely, update induction can be generalised to arbitrary domains

P is of finite character over partial functions from N to B is the same as ¬P open
predicate in Berger’s sense. This leads to the following:

Generalised Update Induction (GUIdecABT )
if the upwards monotone closure of T is ≺-inductive, it contains all partial functions from A to B

where the upwards monotone closure of T is:

⟨T ⟩◦ ≜ λαP(A×B).∃u(A×B)∗(u ⊂ α ∧ u ∈ T )

Clarifying the whole picture around ∃MPCF, TTL, their relational or decidable versions,
their sequential version, as well as the contrapositive picture around GUI, is however left
for future work...
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