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Approximation of functions in Reproducing Kernel Hilbert Spaces (RKHS) is very attrac-
tive, as those spaces naturally cover traditional spline or certain Sobolev-spaces. At the same
time, generic data-based approximation algorithms can be formulated and analyzed. In par-
ticular meshless (random/scattered) data can be used for generating the approximants. This
makes the algorithms less prone to the curse-of-dimensionality from a computational viewpoint
and very widely applicable. In the current presentation, we consider the vectorial kernel or-
thogonal greedy algorithm (VKOGA) [1], which is motivated by aiming at extreme sparseness
of an approximate kernel expansion. The resulting approximants then allow very rapid eval-
uation and are potentially suited for real-time or multi-query settings [2]. From a theoretical
viewpoint, convergence rates have been obtained for different versions of the VKOGA [1, 3]. We
applied VKOGA in various settings and present results for function approximation in multiscale
modelling [4], uncertainty quantification [5] as well as forecasting for implicit ODE integration
[6].
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