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Introduction
In the theory of doctrines the tight link between equality and quotients is
expressed by the following (co)monadicities:

QElDoct ElDoct PrDoct

Alg(T′) CoAlg(T)

>
∼

∼

>

T′

T

> >

where the 2-comonad T is colax-idempotent and it induces the 2-monad T′.
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Elementary fibrations I
A fibration p: E −→→ B is elementary if

1. it has finite products,
2. for every Z,X in B and A ∈ EZ×X, there is a cocartesian lift at A over pr1,2,2

A
δZA � E

Z,XA

Z × X
pr1,2,2

// Z × X × X
3. and cocartesian arrows over the parametrised diagonals pr1,2,2 are

product-stable and pairable.
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C′ ∧ A′oo
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_
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_
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_
C C∧ B′oo // B′ _? B

� p
//

Z × X
f × X

//

pr1,2,2
��

V × X

pr1,2,2
��

Z×X×X
f×X×X

// V×X×X



Elementary fibrations - Examples

1. The fibration of predicates over contexts for a first-order language with
equality. More generally, elementary doctrines are (essentially) faithful
elementary fibrations.

2. The fibrations SubC and VarC , when C has finite products and (weak)
pullbacks.

3. The fibration cod: M −→→ C , when (E ,M ) is a (suitable) orthogonal
factorisation system on C .

4. The fibration Fam(C ) −→→ Set , when C has finite products and a strict initial
object.

5. The fibration cod: C 2 −→→ C , when C has finite limits.

6. cod: SCIsoFib −→→ Cat , where SCIsoFib = split isofibrations and morphisms
preserving the cleavage on the nose.



Elementary fibrations II

p: E −→→ B an elementary fibration.

The cocartesian lift at A ∈ EZ×X is determined by that at >X:

A

?�

Aoo

δZA
_

// >Z×X

_

_? >X

δX
_

pr1,2
∗A

E

Z,XAoo // pr2,3
∗IX _? IX

� p
//

Z × X
pr2 //

pr1,2,2
��

X

pr1,1
��

Z×X×X pr2,3
// X×X

Then E

Z,X(A) ∼= pr1,2
∗A∧ pr2,3

∗IX = A×X IX
and WLOG

δZA = 〈idA, δX◦!A〉:A→ A×X IX
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Groupoids from elementary fibrations

p: E −→→ B an elementary fibration.
Then IX ∈ EX×X has a groupoid structure with unit the loop δX and

>X

δX �

δX � IX
invX

vvIX

X
pr1,1 ((

pr1,1 // X × X
pr2,1uu

X × X

IX

id ((

δXIX � IX ×X IX
cmpX
uuIX

X × X

id ))

pr1,2,2 // X × X × X

pr1,3uu

X × X

where IX ×X IX = pr1,2
∗IX ∧ pr2,3

∗IX.

Groupoid equations hold since they hold on “reflexivities” δ(−).



Groupoids in fibrations with products
p: E −→→ B a fibration with products.

A p-groupoid X on X ∈ B is a groupoid in E on the fibred terminal object >X,
sitting over the codiscrete groupoid on X:

E >X X̄ X̄ ×X X̄

B X X × X X × X × Xpr1,1

pr1

pr2

pr1,2

pr2,3

pr1,3

p-groupoids form a category Gpd(p) fibred over B via Ob:X 7→ X.

Examples:
1. If p is elementary, then IX = (X, IX) is a p-groupoid.
2. If C has pullbacks and p = cod: C 2 −→→ C , then Gpd(p) = Gpd(C ).
3. For (V ,⊗, I), if p = Fam(V ) −→→ Set , then Gpd(p) = V -Gpd .



Actions of p-groupoids

An action of a p-groupoid X = (X, X̄,unX,cmpX, invX) is given by A ∈ EX and

A×X X̄
α // A

X × X
pr2 // X

making two diagrams commute:

A

A×X X̄ A

〈idA,unX◦!A〉

id

α

A× XX̄× XX̄ A×X X̄

A×X X̄ A

id×cmpX

α×id

α

α

over pr2 ◦ pr1,1 = id and pr2 ◦ pr1,3 = pr2 ◦ pr2,3.

If p is elementary, Act (IX) ∼= EX since δZA = 〈idA, δX◦!A〉:A � A×X IX is cocartesian.
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The reader comonad

B a category with finite products.
The reader comonad (−)× X: B → B induces a monad MX on its Kleisli category

B ⊥
RX

//

(−)× X
// Bkl

X

LXoo MX
oo

with unit

Z
idZ×X

// Z × X � LX // Z × X
pr1,2,2

// Z × X × X

and multiplication

Z × X × X
pr1,2

// Z × X � LX // Z × X × X × X
pr1,2,4

// Z × X × X



The (fibred) reader comonad

B a category with finite products.

B × B Bkl

B

pr2

(Z,X) 7→(Z×X,X)

R

>

S

〈L,S〉

MB

S is a split fibration, called the simple fibration on B .

The fibre of S over X is the Kleisli category of the reader comonad (−)× X.

On a side: Coalg((−)× X) ∼= B/X, but cod is not a fibration in general.



A monad for p-groupoid actions

Ekl

Bkl

Ekl

Gpd(p) Bkl E

B B

P1 H

X,A 7→A×X X̄

S

M
P1

pkl

P2

Ob S L p

The pair (M,H) is a monad in Fib on pkl over Ob: Gpd(p) −→→ B .
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A fibration of p-groupoid actions
Obtain a commutative square of fibrations

Act (p)

Alg (H) Gpd(p)

B

Alg (M) B

Ob

Algebras of M are triples (Z,X, v:Z × X × X→ Z) such that
z : Z, x : X | v(z, x, x) = z,

z : Z, x1 : X, x2 : X, x3 : X | v(v(z, x1, x2), x2, x3) = v(z, x1, x3).

Actions of a p-groupoid X are over

X × X X L
�

1,X, 1× X × X 1
�pr2 =

!X×X
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A fibration of p-groupoid actions - Examples

1. When p is faithful (∼ primary doctrine), p: Act (p) −→→ Gpd(p) is (∼) the
doctrine of descent data over p-equivalence relations.

2. When p = Set // 1, Gpd(p) = Grp and Act (p)G = SetG is the topos of G-sets.

3. When p = Top // 1, Gpd(p) = TopGrp and Act (p)G is the category of
continuous G-actions.

4. For C with finite limits and p = cod: C 2 // C , Gpd(p) = Gpd(C ) and objects
of Act (p) are internal actions:1

A

��

A×G0 G1oo a //

��

A

��

G0

ø

G1
domGoo

codG // G0

1G. Janelidze, W. Tholen. Facets of Descent II. Appl. Categ. Struct. 5, 1997



Monadic p-groupoid actions

p: E −→→ B an existential elementary doctrine and X a p-groupoid.

The monad on HX induces a monad structure on EX EX×X EX
HX ΣX

and
Alg (ΣXHX) ∼= Act (p)X

For every f :X→ Y, there are
É a p-groupoid (X, κf ) where κf = (f × f )∗IY (the kernel p-groupoid), and
É a functor σf : EX // EY such that f∗σf = ΣXHκf .

If B has pullbacks and p has BC for all pullbacks, then Act (p)κf
∼= Des(f ) and the

Bénabou–Roubaud Theorem follows:2 an arrow f is of e�ective descent if and
only if f∗ is monadic.

2J. Bénabou, J. Roubaud. Monades et descente. C. R. Acad. Sc. Paris 270, 1970
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A 2-comonad for elementary fibrations I

The function p: E −→→ B 7→ p: Act (p) −→→ Gpd(p) lifts to a (strict) 2-functor
(−): PrdFib // PrdFib.

A morphism of fibrations p→ p′ induces
É a lax morphism of monads (MB ,Hp)→ (MB ′ ,Hp′), which induces
É a morphism of fibrations Alg (MB ,Hp)→ Alg (MB ′ ,Hp′), which restricts to
É a morphism of fibrations p→ p′.

Similarly for 2-cells.

Theorem (E.–Pasquali–Rosolini)
The 2-functor (−) has the structure of a colax-idempotent comonad on PrdFib.



A 2-comonad for elementary fibrations I

The function p: E −→→ B 7→ p: Act (p) −→→ Gpd(p) lifts to a (strict) 2-functor
(−): PrdFib // PrdFib.

A morphism of fibrations p→ p′ induces
É a lax morphism of monads (MB ,Hp)→ (MB ′ ,Hp′), which induces
É a morphism of fibrations Alg (MB ,Hp)→ Alg (MB ′ ,Hp′), which restricts to
É a morphism of fibrations p→ p′.

Similarly for 2-cells.

Theorem (E.–Pasquali–Rosolini)
The 2-functor (−) has the structure of a colax-idempotent comonad on PrdFib.



A 2-comonad for elementary fibrations II

Theorem (E.–Pasquali–Rosolini)
The 2-functor (−) has the structure of a colax-idempotent comonad on PrdFib.

The counit ϵ: (−) +3 IdPrdFib is given on p by

Act (p)

p
����

// E
p
����

(A, α: HXA→ A)
� // A

Gpd(p) // B X
� // X

A coalgebra equips p with the elementary structure.

Theorem (E.–Pasquali–Rosolini)

1. The 2-functor (−) lands in ElFib.
2. It provides a left 2-adjoint to the forgetful ElFib // PrdFib.
3. The canonical comparison 2-functor is a 2-equivalence.



A 2-monad for fibrations “with quotients” I
The comonadic 2-adjunction

ElFib PrdFib>
(−)

induces a lax-idempotent 2-monad on ElFib with underlying 2-functor (−).

For p elementary, the unit ηp is the coalgebra on p.

An algebra is
Act (p) E

Gpd(p) B

p

P

p

Q

such that (Q,P) is a reflector for ηp, i.e. (Q,P)

>

ηp with invertible counit.
In particular: Q(X, IX) ∼= X, naturally in X.
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A 2-monad for fibrations “with quotients” II

For (f , f̄ ):X→ (Y, IY), the adjunction Q

>

((−), I(−)) gives us that the left-hand
square commutes i� the right-hand one does:

Q(X, IX) X

Q(X) Y

Q(id,ιX̄)

∼

f

(f ,f̄ )#

(X, IX) (X, IX)

X (Y, IY)

(id,ιX̄)

id

(f ,If )

(f ,f̄ )

i.e. a bijection between morphisms of groupoids (f , f̄ ) as above and arrows
g:Q(X)→ Y such that g ◦ qX = f .

Moreover:
1. The groupoid X is the kernel p-groupoid of q, i.e. X ∼= (q× q)∗IQ(X).
2. Every qX is of e�ective descent, i.e. EQ(X)

∼= Act (p)X.
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Another 2-comonad

Define a p-setoid as a p-groupoid but dropping the equations. Then:
É Can construct the endomorphism (M,H) but not able to show that it is a

monad (the groupoid equations seems to be needed).

É Can still construct a 2-functor d(−) on PrdFib and show that it is a
2-comonad. But not able to show that it is colax-idempotent (the groupoid
equations seems to be needed).
É What are the coalgebras?
É Similarly, the 2-monad induced on the coalgebras is not lax-idempotent.
É What are the algebras?

A cofree coalgebra for d(−) appears in:
[B. van den Berg, I. Moerdijk. Exact completion of path categories and Algebraic Set
Theory. Part I. J. Pure Appl. Algebra 222, 2018.]
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