Elementary fibrations and quotients of groupoids

Jacopo Emmenegger

Università di Genova

joint work with Fabio Pasquali and Pino Rosolini

Workshop on Doctrines and Fibrations Padova, 31 May 2023

Introduction

In the theory of doctrines the tight link between equality and quotients is expressed by the following (co)monadicities:

where the 2-comonad T is colax-idempotent and it induces the 2-monad T'.

M.E. Maietti, G. Rosolini. Elementary quotient completion. *Theory Appl. Categ.* 27, 2013.
F. Pasquali. A co-free construction for elementary doctrines. *Appl. Categ. Structures* 23, 2015.
D. Trotta. Existential completion and pseudo-distributive laws. Ph.D. thesis, U. Trento, 2019.
J.E., F. Pasquali, G. Rosolini. Elementary doctrines as coalgebras. *J. Pure Appl. Algebra* 224, 2020.

Elementary fibrations I

A fibration $p: \mathcal{E} \longrightarrow \mathcal{B}$ is elementary if

- 1. it has finite products,
- 2. for every Z, X in \mathcal{B} and $A \in \mathcal{E}_{Z \times X}$, there is a cocartesian lift at A over $\operatorname{pr}_{1,2,2}$

Elementary fibrations - Examples

- 1. The fibration of predicates over contexts for a first-order language with equality. More generally, elementary doctrines are (essentially) faithful elementary fibrations.
- 2. The fibrations Sub_C and Var_C, when C has finite products and (weak) pullbacks.
- 3. The fibration cod: $\mathcal{M} \longrightarrow \mathcal{C}$, when $(\mathcal{E}, \mathcal{M})$ is a (suitable) orthogonal factorisation system on \mathcal{C} .
- The fibration Fam(C) → Set, when C has finite products and a strict initial object.
- 5. The fibration cod: $C^2 \longrightarrow C$, when C has finite limits.
- 6. cod: SCIsoFib *Cat*, where SCIsoFib = split isofibrations and morphisms preserving the cleavage on the nose.

Elementary fibrations II

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ an elementary fibration.

The cocartesian lift at $A \in \mathcal{E}_{Z \times X}$ is determined by that at T_X :

Elementary fibrations II

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ an elementary fibration.

The cocartesian lift at $A \in \mathcal{L}_{Z \times X}$ is determined by that at T_X :

Then

$$\exists_{Z,X}(A) \cong \operatorname{pr}_{1,2}^* A \wedge \operatorname{pr}_{2,3}^* I_X = A \times_X I_X$$

and WLOG

$$\delta_A^Z = \langle \mathrm{id}_A, \, \delta_X \circ !_A \rangle : A \to A \times_X \mathrm{I}_X$$

Groupoids from elementary fibrations

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ an elementary fibration. Then $I_X \in \mathcal{E}_{X \times X}$ has a groupoid structure with unit the loop δ_X and

where $I_X \times_X I_X = \operatorname{pr}_{1,2}^* I_X \wedge \operatorname{pr}_{2,3}^* I_X$.

Groupoid equations hold since they hold on "reflexivities" $\delta_{(-)}$.

Groupoids in fibrations with products

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ a fibration with products.

A *p*-groupoid X on $X \in \mathcal{B}$ is a groupoid in \mathcal{E} on the fibred terminal object T_X , sitting over the codiscrete groupoid on X:

$$\begin{array}{cccc} \mathcal{E} & & & \mathsf{T}_{X} & \overleftarrow{\qquad} & \bar{X} & \overleftarrow{\qquad} & \bar{X} \times_{X} \bar{X} \\ \downarrow & & & \\ \mathcal{B} & & & X & \overleftarrow{\qquad} & \overset{\mathrm{pr}_{1,2}}{\underset{\mathrm{pr}_{2}}{\longrightarrow}} & X \times X & \overleftarrow{\qquad} & \overset{\mathrm{pr}_{1,2}}{\underset{\mathrm{pr}_{2,3}}{\longrightarrow}} & X \times X \times X \end{array}$$

p-groupoids form a category Gpd(p) fibred over \mathcal{B} via Ob: $\mathbb{X} \mapsto X$.

Examples:

- 1. If p is elementary, then $I_X = (X, I_X)$ is a p-groupoid.
- **2.** If C has pullbacks and $p = \operatorname{cod} C^2 \longrightarrow C$, then $\operatorname{Gpd}(p) = \operatorname{Gpd}(C)$.
- 3. For $(\mathcal{V}, \otimes, I)$, if $p = \operatorname{Fam}(\mathcal{V}) \longrightarrow \operatorname{Set}$, then $\operatorname{Gpd}(p) = \mathcal{V} \operatorname{-} \operatorname{Gpd}$.

Actions of *p*-groupoids

An action of a *p*-groupoid $\mathbb{X} = (X, \overline{X}, \operatorname{un}_{\mathbb{X}}, \operatorname{cmp}_{\mathbb{X}}, \operatorname{inv}_{\mathbb{X}})$ is given by $A \in \mathcal{E}_X$ and

$$A \times_X \bar{X} \longrightarrow A$$

$$X \times X \xrightarrow{\operatorname{pr}_2} X$$

making two diagrams commute:

over $\operatorname{pr}_2 \circ \operatorname{pr}_{1,1} = \operatorname{id}$

and

$$\begin{array}{ccc} A \times_X \bar{X} \times_X \bar{X} & \xrightarrow{\alpha \times \mathrm{id}} & A \times_X \bar{X} \\ & & & & & \downarrow^{\alpha} \\ & & & & \downarrow^{\alpha} \\ & & & & A \times_X \bar{X} & \xrightarrow{\alpha} & & A \end{array}$$

 $\operatorname{pr}_2 \circ \operatorname{pr}_{1,3} = \operatorname{pr}_2 \circ \operatorname{pr}_{2,3}.$

Actions of *p***-groupoids**

An action of a *p*-groupoid $\mathbb{X} = (X, \overline{X}, un_{\mathbb{X}}, cmp_{\mathbb{X}}, inv_{\mathbb{X}})$ is given by $A \in \mathcal{E}_X$ and

$$A \times_X \bar{X} \longrightarrow A$$

$$X \times X \xrightarrow{\operatorname{pr}_2} X$$

making two diagrams commute:

If p is elementary, $\mathcal{A}ct(I_X) \cong \mathcal{E}_X$ since $\delta_A^Z = \langle id_A, \delta_X \circ !_A \rangle : A \longrightarrow A \times_X I_X$ is cocartesian.

The reader comonad

 $\mathcal B$ a category with finite products.

The reader comonad $(-) \times X: \mathcal{B} \to \mathcal{B}$ induces a monad M_X on its Kleisli category

with unit

$$Z \xrightarrow{id_{Z \times X}} Z \times X \qquad \longmapsto \qquad L_X \qquad \qquad Z \times X \xrightarrow{pr_{1,2,2}} Z \times X \times X$$

and multiplication

$$Z \times X \times X \xrightarrow{\operatorname{pr}_{1,2}} Z \times X \quad \longmapsto \quad \begin{array}{c} L_X \\ & \longrightarrow \\ \end{array} \xrightarrow{} Z \times X \times X \times X \times X \xrightarrow{\operatorname{pr}_{1,2,4}} Z \times X \times X \xrightarrow{} X \xrightarrow{} Z \xrightarrow{} Z \xrightarrow{} Z \xrightarrow{} Z \xrightarrow{} X \xrightarrow{} X \xrightarrow{} X \xrightarrow{} X \xrightarrow{} X \xrightarrow{} Z \xrightarrow{} Z \xrightarrow{} X \xrightarrow$$

The (fibred) reader comonad

 $\ensuremath{\mathcal{B}}$ a category with finite products.

S is a split fibration, called the simple fibration on \mathcal{B} .

The fibre of S over X is the Kleisli category of the reader comonad $(-) \times X$.

On a side: $Coalg((-) \times X) \cong \mathcal{B}/X$, but cod is not a fibration in general.

A monad for *p*-groupoid actions

A monad for *p*-groupoid actions

The pair (M, H) is a monad in **Fib** on p^{kl} over Ob: $Gpd(p) \longrightarrow \mathcal{B}$.

A fibration of *p*-groupoid actions

Obtain a commutative square of fibrations

A fibration of *p*-groupoid actions

Obtain a commutative square of fibrations

Algebras of M are triples $(Z, X, v: Z \times X \times X \rightarrow Z)$ such that

$$z: Z, x: X | v(z, x, x) = z,$$

$$z: Z, x_1: X, x_2: X, x_3: X | v(v(z, x_1, x_2), x_2, x_3) = v(z, x_1, x_3).$$

Actions of a *p*-groupoid X are over

$$X \times X \xrightarrow{\operatorname{pr}_2} X = L(1, X, 1 \times X \times X \xrightarrow{I_{X \times X}} 1)$$

A fibration of *p*-groupoid actions

Obtain a commutative square of fibrations

Algebras of M are triples $(Z, X, v: Z \times X \times X \rightarrow Z)$ such that

$$z: Z, x: X | v(z, x, x) = z,$$

z: Z, x₁: X, x₂: X, x₃: X | v(v(z, x₁, x₂), x₂, x₃) = v(z, x₁, x₃)

Actions of a *p*-groupoid X are over

$$X \times X \xrightarrow{pr_2} X = L(1, X, 1 \times X \times X \xrightarrow{l_{X \times X}} 1)$$

A fibration of *p*-groupoid actions - Examples

- When p is faithful (~ primary doctrine), p̄: Act(p) → Gpd(p) is (~) the doctrine of descent data over p-equivalence relations.
- **2.** When $p = Set \longrightarrow 1$, Gpd(p) = Grp and $Act(p)_G = Set^G$ is the topos of G-sets.
- 3. When $p = Top \longrightarrow 1$, Gpd(p) = TopGrp and $Act(p)_G$ is the category of continuous G-actions.
- 4. For *C* with finite limits and $p = \text{cod}: C^2 \longrightarrow C$, Gpd(p) = Gpd(C) and objects of Act(p) are internal actions:¹

¹G. Janelidze, W. Tholen. Facets of Descent II. Appl. Categ. Struct. 5, 1997

Monadic *p*-groupoid actions

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ an existential elementary doctrine and X a *p*-groupoid.

The monad on H_X induces a monad structure on $\mathcal{E}_X \xrightarrow{H_X} \mathcal{E}_{X \times X} \xrightarrow{\Sigma_X} \mathcal{E}_X$ and $\mathcal{Alg}(\Sigma_X H_X) \cong \mathcal{A}ct(p)_X$

Monadic *p*-groupoid actions

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ an existential elementary doctrine and X a *p*-groupoid.

The monad on H_X induces a monad structure on $\mathcal{E}_X \xrightarrow{H_X} \mathcal{E}_{X \times X} \xrightarrow{\Sigma_X} \mathcal{E}_X$ and $\mathcal{Alg}(\Sigma_X H_X) \cong \mathcal{A}ct(p)_X$

For every $f: X \rightarrow Y$, there are

- ▶ a *p*-groupoid (*X*, κ_f) where $\kappa_f = (f \times f)^* I_Y$ (the kernel *p*-groupoid), and
- a functor $\sigma_f : \mathcal{E}_X \longrightarrow \mathcal{E}_Y$ such that $f^* \sigma_f = \Sigma_X H_{\kappa_f}$.

Monadic *p*-groupoid actions

 $p: \mathcal{E} \longrightarrow \mathcal{B}$ an existential elementary doctrine and X a *p*-groupoid.

The monad on H_X induces a monad structure on $\mathcal{E}_X \xrightarrow{H_X} \mathcal{E}_{X \times X} \xrightarrow{\Sigma_X} \mathcal{E}_X$ and $\mathcal{Alg}(\Sigma_X H_X) \cong \mathcal{A}ct(p)_X$

For every $f: X \rightarrow Y$, there are

- ▶ a *p*-groupoid (*X*, κ_f) where $\kappa_f = (f \times f)^* I_Y$ (the kernel *p*-groupoid), and
- a functor $\sigma_f : \mathcal{E}_X \longrightarrow \mathcal{E}_Y$ such that $f^* \sigma_f = \Sigma_X H_{\kappa_f}$.

If \mathcal{B} has pullbacks and p has BC for *all* pullbacks, then $\mathcal{A}ct(p)_{\kappa_f} \cong \mathcal{D}es(f)$ and the Bénabou–Roubaud Theorem follows:² an arrow f is of effective descent if and only if f^* is monadic.

²J. Bénabou, J. Roubaud. Monades et descente. C. R. Acad. Sc. Paris 270, 1970

A 2-comonad for elementary fibrations I

The function $p: \mathcal{E} \longrightarrow \mathcal{B} \mapsto \overline{p}: \mathcal{A}ct(p) \longrightarrow \mathcal{G}pd(p)$ lifts to a (strict) 2-functor $\overline{(-)}: \mathbf{PrdFib} \longrightarrow \mathbf{PrdFib}.$

A morphism of fibrations $p \rightarrow p'$ induces

- ▶ a lax morphism of monads $(M_{\mathcal{B}}, H_p) \rightarrow (M_{\mathcal{B}'}, H_{p'})$, which induces
- ▶ a morphism of fibrations $\mathcal{Alg}(M_{\mathcal{B}}, H_p) \rightarrow \mathcal{Alg}(M_{\mathcal{B}'}, H_{p'})$, which restricts to
- a morphism of fibrations $\overline{p} \rightarrow \overline{p'}$.

Similarly for 2-cells.

A 2-comonad for elementary fibrations I

The function $p: \mathcal{E} \longrightarrow \mathcal{B} \mapsto \overline{p}: \mathcal{A}ct(p) \longrightarrow \mathcal{G}pd(p)$ lifts to a (strict) 2-functor $\overline{(-)}: \mathbf{PrdFib} \longrightarrow \mathbf{PrdFib}.$

A morphism of fibrations $p \rightarrow p'$ induces

- ▶ a lax morphism of monads $(M_{\mathcal{B}}, H_p) \rightarrow (M_{\mathcal{B}'}, H_{p'})$, which induces
- ▶ a morphism of fibrations $\mathcal{Alg}(M_{\mathcal{B}}, H_p) \rightarrow \mathcal{Alg}(M_{\mathcal{B}'}, H_{p'})$, which restricts to
- a morphism of fibrations $\overline{p} \rightarrow \overline{p'}$.

Similarly for 2-cells.

Theorem (E.-Pasquali-Rosolini)

The 2-functor $\overline{(-)}$ has the structure of a colax-idempotent comonad on **PrdFib**.

A 2-comonad for elementary fibrations II

Theorem (E.-Pasquali-Rosolini)

The 2-functor $\overline{(-)}$ has the structure of a colax-idempotent comonad on **PrdFib**.

The counit $\varepsilon: \overline{(-)} \Longrightarrow \operatorname{Id}_{\operatorname{PrdFib}}$ is given on p by

A coalgebra equips p with the elementary structure.

Theorem (E.-Pasquali-Rosolini)

- 1. The 2-functor $\overline{(-)}$ lands in **ElFib**.
- 2. It provides a left 2-adjoint to the forgetful $\mathbf{ElFib} \longrightarrow \mathbf{PrdFib}$.
- 3. The canonical comparison 2-functor is a 2-equivalence.

A 2-monad for fibrations "with quotients" I

The comonadic 2-adjunction

induces a lax-idempotent 2-monad on **ElFib** with underlying 2-functor $\overline{(-)}$. For *p* elementary, the unit η_p is the coalgebra on *p*.

A 2-monad for fibrations "with quotients" I

The comonadic 2-adjunction

induces a lax-idempotent 2-monad on **ElFib** with underlying 2-functor $\overline{(-)}$. For *p* elementary, the unit η_p is the coalgebra on *p*. An algebra is

such that (Q, P) is a reflector for η_p , *i.e.* $(Q, P) \dashv \eta_p$ with invertible counit. In particular: $Q(X, I_X) \cong X$, naturally in X.

A 2-monad for fibrations "with quotients" II

For $(f, \overline{f}): X \to (Y, I_Y)$, the adjunction $Q \to ((-), I_{(-)})$ gives us that the left-hand square commutes iff the right-hand one does:

A 2-monad for fibrations "with quotients" II

For (f, \overline{f}) : $X \to (Y, I_Y)$, the adjunction $Q \to ((-), I_{(-)})$ gives us that the left-hand square commutes iff the right-hand one does:

i.e. a bijection between morphisms of groupoids (f, \overline{f}) as above and arrows $g: Q(\mathbb{X}) \to Y$ such that $g \circ q_{\mathbb{X}} = f$.

Moreover:

- 1. The groupoid X is the kernel *p*-groupoid of *q*, *i.e.* $X \cong (q \times q)^* I_{Q(X)}$.
- 2. Every q_X is of effective descent, *i.e.* $\mathcal{E}_{Q(X)} \cong \mathcal{A}ct(p)_X$.

Another 2-comonad

Define a *p*-setoid as a *p*-groupoid but dropping the equations. Then:

- Can construct the endomorphism (M, H) but not able to show that it is a monad (the groupoid equations seems to be needed).
- Can still construct a 2-functor (-) on **PrdFib** and show that it is a 2-comonad. But not able to show that it is colax-idempotent (the groupoid equations seems to be needed).
- What are the coalgebras?
- Similarly, the 2-monad induced on the coalgebras is not lax-idempotent.
- What are the algebras?

Another 2-comonad

Define a *p*-setoid as a *p*-groupoid but dropping the equations. Then:

- Can construct the endomorphism (M, H) but not able to show that it is a monad (the groupoid equations seems to be needed).
- Can still construct a 2-functor (-) on **PrdFib** and show that it is a 2-comonad. But not able to show that it is colax-idempotent (the groupoid equations seems to be needed).
- What are the coalgebras?
- Similarly, the 2-monad induced on the coalgebras is not lax-idempotent.
- What are the algebras?

A cofree coalgebra for $\widehat{(-)}$ appears in:

[B. van den Berg, I. Moerdijk. Exact completion of path categories and Algebraic Set Theory. Part I. *J. Pure Appl. Algebra* 222, 2018.]

Università di **Genova**