Bidirectional models of Radically Synthetic Differential Geometry

Matías Menni

Conicet and Universidad Nacional de La Plata
Argentina
1st June, 2023
(1) Euler reals
(2) Models

"Radically synthetic" smooth geometry

In SDG, a ring R is postulated and

$$
D=\left\{h \in R \mid h^{2}=0\right\} \rightarrow R
$$

plays a key role.

"Radically synthetic" smooth geometry

In SDG, a ring R is postulated and

$$
D=\left\{h \in R \mid h^{2}=0\right\} \rightarrow R
$$

plays a key role.
From Lawvere's Euler's Continuum Functorially Vindicated:

"Radically synthetic" smooth geometry

In SDG, a ring R is postulated and

$$
D=\left\{h \in R \mid h^{2}=0\right\} \rightarrow R
$$

plays a key role.
From Lawvere's Euler's Continuum Functorially Vindicated:
"I show below that reciprocally R can be constructed from a non-coordinatized version T of D,

"Radically synthetic" smooth geometry

In SDG, a ring R is postulated and

$$
D=\left\{h \in R \mid h^{2}=0\right\} \rightarrow R
$$

plays a key role.
From Lawvere's Euler's Continuum Functorially Vindicated:
"I show below that reciprocally R can be constructed from a non-coordinatized version T of D, thus achieving a foundation for smooth geometry that is even 'radically synthetic' in the sense that all algebraic structure is derived from constructions on the geometric spaces rather than assumed. [...]

"Radically synthetic" smooth geometry

In SDG, a ring R is postulated and

$$
D=\left\{h \in R \mid h^{2}=0\right\} \rightarrow R
$$

plays a key role.
From Lawvere's Euler's Continuum Functorially Vindicated:
"I show below that reciprocally R can be constructed from a
non-coordinatized version T of D, thus achieving a foundation for smooth geometry that is even 'radically synthetic' in the sense that all algebraic structure is derived from constructions on the geometric spaces rather than assumed. [...]

Therefore we postulate a pointed space T and call the map space X^{T} the tangent bundle of any space X, with evaluation at the point inducing the bundle $\operatorname{map} X^{T} \rightarrow X$."

The subspace of Euler reals

"[...] we define by pullback

the subspace R of Euler reals.

The subspace of Euler reals

"[...] we define by pullback

the subspace R of Euler reals.
The object T^{T} has an intrinsic multiplication arising from composition, and

The subspace of Euler reals

"[...] we define by pullback

the subspace R of Euler reals.
The object T^{T} has an intrinsic multiplication arising from composition, and the subspace R is clearly closed under it, so we automatically get 'multiplication of reals' as an operation $R \times R \rightarrow R$. [...]

The subspace of Euler reals

"[...] we define by pullback

the subspace R of Euler reals.
The object T^{T} has an intrinsic multiplication arising from composition, and the subspace R is clearly closed under it, so we automatically get 'multiplication of reals' as an operation $R \times R \rightarrow R$. [...]

Thus R has the intrinsic structure of a monoid with 0 . Moreover, it has always been commutative."

Connected components (cont.)

To continue with the axiomatic development a subcategory with a reflector $X \rightarrow \pi_{0}(X)$ satisfying

$$
\begin{gathered}
\pi_{0}(X \times Y) \cong \pi_{0}(X) \times \pi_{0}(Y) \\
\pi_{0}(1) \cong 1
\end{gathered}
$$

is assumed.
"Typically such a components functor π_{0} exists; in particular, any algebraic structure that a space might carry is reflected as a similar structure on its 'set' of components."

Proposition 1

Connected components (cont.)

To continue with the axiomatic development a subcategory with a reflector $X \rightarrow \pi_{0}(X)$ satisfying

$$
\begin{gathered}
\pi_{0}(X \times Y) \cong \pi_{0}(X) \times \pi_{0}(Y) \\
\pi_{0}(1) \cong 1
\end{gathered}
$$

is assumed.
"Typically such a components functor π_{0} exists; in particular, any algebraic structure that a space might carry is reflected as a similar structure on its 'set' of components."

Proposition 1

$\pi_{0}\left(X^{T}\right)=\pi_{0}(X)$ for all X iff $\pi_{0}(R)=1$.

Bidirectionality

"Assume $\pi_{0}(R)=1$ (i.e. R is connected).

Bidirectionality

"Assume $\pi_{0}(R)=1$ (i.e. R is connected). But that leaves many possibilities for $\pi_{0}(U)$ where $U \subset R$ is the subgroup of invertible elements.

Bidirectionality

"Assume $\pi_{0}(R)=1$ (i.e. R is connected). But that leaves many possibilities for $\pi_{0}(U)$ where $U \subset R$ is the subgroup of invertible elements.

The above construction would also provide a basis for complex-analytic geometry and analysis; in that case we would have $\pi_{0}(U)=1$.

Bidirectionality

"Assume $\pi_{0}(R)=1$ (i.e. R is connected). But that leaves many possibilities for $\pi_{0}(U)$ where $U \subset R$ is the subgroup of invertible elements.

The above construction would also provide a basis for complex-analytic geometry and analysis; in that case we would have $\pi_{0}(U)=1$.

However the intuition for the the real case involves a line which is bi-directional, so that

$$
\pi_{0}(U)=Z_{2}
$$

a multiplicative group of two elements.

Bidirectionality

"Assume $\pi_{0}(R)=1$ (i.e. R is connected). But that leaves many possibilities for $\pi_{0}(U)$ where $U \subset R$ is the subgroup of invertible elements.

The above construction would also provide a basis for complex-analytic geometry and analysis; in that case we would have $\pi_{0}(U)=1$.

However the intuition for the the real case involves a line which is bi-directional, so that

$$
\pi_{0}(U)=Z_{2}
$$

a multiplicative group of two elements.
In all cases, we can consider U_{+}defined as the kernel of the natural homomorphism $U \rightarrow \pi_{0}(U)$ (i.e. the component of the identity) as the group of positive elements of R."

The subgroup of positive units

(Lawvere discusses axioms implying that R has an intrinsic addition but let us assume that R has an addition.)

The subgroup of positive units

(Lawvere discusses axioms implying that R has an intrinsic addition but let us assume that R has an addition.)

Define

$$
\begin{gathered}
A=\left\{a \in R \mid a+U_{+} \subseteq U_{+}\right\} \\
R_{+}=\{\lambda \in R \mid \lambda A \subseteq A\}
\end{gathered}
$$

Proposition 2 (more general in the paper)

The subgroup of positive units

(Lawvere discusses axioms implying that R has an intrinsic addition but let us assume that R has an addition.)

Define

$$
\begin{gathered}
A=\left\{a \in R \mid a+U_{+} \subseteq U_{+}\right\} \\
R_{+}=\{\lambda \in R \mid \lambda A \subseteq A\}
\end{gathered}
$$

Proposition 2 (more general in the paper)

A is an additive monoid and hence R_{+}is a subrig of R.

The (pre-)order

The relation defined by

$$
r \leq s \text { iff } \exists\left(m \in R_{+}\right)[r+m=s]
$$

has the expected properties of an ordering.
"The elements h for which

$$
0 \leq h \quad \& \quad h \leq 0
$$

constitute an ideal that contains all nilpotent quantities."

Summary, starting from $0: 1 \rightarrow T$

$X^{\top} \times R \longrightarrow X^{\top}$
$U \longrightarrow R$

Summary, starting from $0: 1 \rightarrow T$

$$
X^{\top} \times R \longrightarrow X^{\top}
$$

$$
U \longrightarrow R
$$

${ }^{(*)}$ Needs $(R,+)$.

Models

Models of SDG

(1) (Classical Algebraic Geometry) $\pi_{0} U$ connected.
(2) ('well-adapted' models) Not clear what is π_{0}.

C^{∞} rings

The (algebraic) theory of C^{∞}-rings is the category (with finite products) of spaces \mathbb{R}^{n} (n finite) and C^{∞} functions between them.

C^{∞} rings

The (algebraic) theory of C^{∞}-rings is the category (with finite products) of spaces \mathbb{R}^{n} (n finite) and C^{∞} functions between them.

The category of C^{∞}-rings is the associated category of models. (I.e. the cat of Set-valued \times-preserving functors from the theory.)

Proposition (¿Folk?)

C^{∞} rings

The (algebraic) theory of C^{∞}-rings is the category (with finite products) of spaces \mathbb{R}^{n} (n finite) and C^{∞} functions between them.

The category of C^{∞}-rings is the associated category of models. (I.e. the cat of Set-valued \times-preserving functors from the theory.)

Proposition (¿Folk?)

(Just as the cat of K-algebras for a ring K,) the cat of C^{∞}-rings is coextensive.

Hence:

C^{∞} rings

The (algebraic) theory of C^{∞}-rings is the category (with finite products) of spaces \mathbb{R}^{n} (n finite) and C^{∞} functions between them.

The category of C^{∞}-rings is the associated category of models. (I.e. the cat of Set-valued \times-preserving functors from the theory.)

Proposition (¿Folk?)

(Just as the cat of K-algebras for a ring K,) the cat of C^{∞}-rings is coextensive.

Hence: we may use the techniques to build toposes 'of spaces' as in Algebraic Geometry. But...

C^{∞} rings

The (algebraic) theory of C^{∞}-rings is the category (with finite products) of spaces \mathbb{R}^{n} (n finite) and C^{∞} functions between them.

The category of C^{∞}-rings is the associated category of models. (I.e. the cat of Set-valued \times-preserving functors from the theory.)

Proposition (¿Folk?)

(Just as the cat of K-algebras for a ring K,) the cat of C^{∞}-rings is coextensive.

Hence: we may use the techniques to build toposes 'of spaces' as in Algebraic Geometry. But... the 'classical' well-adapted models do not have a well-understood π_{0}, so we need to adapt their construction.

C^{∞} rings

The (algebraic) theory of C^{∞}-rings is the category (with finite products) of spaces \mathbb{R}^{n} (n finite) and C^{∞} functions between them.

The category of C^{∞}-rings is the associated category of models.
(I.e. the cat of Set-valued \times-preserving functors from the theory.)

Proposition (¿Folk?)

(Just as the cat of K-algebras for a ring K,) the cat of C^{∞}-rings is coextensive.

Hence: we may use the techniques to build toposes 'of spaces' as in Algebraic Geometry. But... the 'classical' well-adapted models do not have a well-understood π_{0}, so we need to adapt their construction.
"To clarify the above considerations, generalize to [extensive] categories and seek philosophical guidance."

Connectedness

In an extensive category we may consider connected objects and also objects that are finite coproducts of connected objects.

Connectedness

In an extensive category we may consider connected objects and also objects that are finite coproducts of connected objects.

If the category has a terminal object then we may consider the objects that have a point.

Connectedness

In an extensive category we may consider connected objects and also objects that are finite coproducts of connected objects.

If the category has a terminal object then we may consider the objects that have a point.

If \mathcal{A} is extensive with 1 , let $\mathcal{C} \rightarrow \mathcal{A}$ be the full subcategory of connected objects that have a point.

Corollary ($\widehat{\mathcal{C}}$ has π_{0})

$\widehat{\mathcal{C}} \rightarrow$ Set is pre-cohesive. In particular, the canonical Set $\rightarrow \widehat{\mathcal{C}}$ has a left adjoint that preserves finite products.

A pre-cohesive topos with a bidirectional ring of Euler reals

Let \mathcal{A} be the opposite of the category of finitely generated C^{∞}-rings (affine C^{∞} schemes).
\mathcal{A} is extensive and has terminal object.
Let $\mathcal{C} \rightarrow \mathcal{A}$ be the subcategory determined by the connected objects with some point. (So that $\widehat{\mathcal{C}}$ has π_{0}.)
Let T in $\widehat{\mathcal{C}}$ be the object determined by $\mathbb{R}[x] /\left(x^{2}\right)=\mathbb{R}[\epsilon]$.
(T has a unique point.)

Proposition

A pre-cohesive topos with a bidirectional ring of Euler reals

Let \mathcal{A} be the opposite of the category of finitely generated C^{∞}-rings (affine C^{∞} schemes).
\mathcal{A} is extensive and has terminal object.
Let $\mathcal{C} \rightarrow \mathcal{A}$ be the subcategory determined by the connected objects with some point. (So that $\widehat{\mathcal{C}}$ has π_{0}.)
Let T in $\widehat{\mathcal{C}}$ be the object determined by $\mathbb{R}[x] /\left(x^{2}\right)=\mathbb{R}[\epsilon]$.
(T has a unique point.)

Proposition

$\widehat{\mathcal{C}}$ embeds the the category of connected manifolds.
The ring of Euler reals determined by T in $\widehat{\mathcal{C}}$ coincides with \mathbb{R} and it is bidirectional.

What is $M \rightarrow R$?

A second model

Manifolds with boundary

From [Kock's SDG, III.9]:

Manifolds with boundary

From [Kock's SDG, III.9]: "To get toposes in which the category of manifolds with boundary is nicely and fully embedded, it seems necessary to construct 'smaller' well-adapted models, by choosing suitable full subcategories [of the standard site] as our site of definition.

coW-determined objects

Let \mathcal{A} be an extensive category with 1 .
We can consider the objects X such that
(1) X has a point or
(2) (coW) X has exactly one point or

3 ('coW-determined') The family of maps with codomain X and co-W domain is jointly epic.
Let $\mathcal{D} \rightarrow \mathcal{C} \rightarrow \mathcal{A}$ be the subcategory of (connected, with some point, and) co-W-determined objects.

A second model

In particular: Let \mathcal{A} be the opposite of the category of finitely generated C^{∞}-rings (affine C^{∞}-schemes).

Let $\mathcal{D} \rightarrow \mathcal{C} \rightarrow \mathcal{A}$ be the subcategory of (connected, with some point, and) co-W-determined objects.

'Proposition'

The assignment $K \mapsto C^{\infty}(K)$ is 'good' when considered from connected manifolds-with-boundary to \mathcal{D}.

Theorem

The ring R of Euler reals determined by T in $\widehat{\mathcal{D}}$ coincides with \mathbb{R} and it is bidirectional. Also,

A second model

In particular: Let \mathcal{A} be the opposite of the category of finitely generated C^{∞}-rings (affine C^{∞}-schemes).

Let $\mathcal{D} \rightarrow \mathcal{C} \rightarrow \mathcal{A}$ be the subcategory of (connected, with some point, and) co-W-determined objects.

'Proposition'

The assignment $K \mapsto C^{\infty}(K)$ is 'good' when considered from connected manifolds-with-boundary to \mathcal{D}.

Theorem

The ring R of Euler reals determined by T in $\widehat{\mathcal{D}}$ coincides with \mathbb{R} and it is bidirectional. Also, $M \rightarrow R$ coincides with $[0, \infty) \rightarrow R$.

Bibliography I

A. Kock. Synthetic Differential Geometry. LMS LNS 333.
R.-L. Krivine. Quelques propriétés des preordres dans le anneaux commutatifs unitaires. C. R. Acad. Sci, 1964.

國 F. W. Lawvere. Axiomatic Cohesion. TAC, 2007.
F. W. Lawvere. Euler's Continuum Functorially Vindicated. In vol. 75 of The Western Ontario Series in Philosophy of Science, 2011.

围 M. Menni. Bi-directional models of "Radically Synthetic" Differential Geometry. Unpublished.

