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Locally cartesian closed categories

A category C is locally cartesian closed if it has finite limits and if
every re-indexing functor:

C/Γ (−)[f ]−−−−→ C/∆

along some arrow ∆
f−→ Γ has a right adjoint.



Locally cartesian closed categories

▶ Objects Γ of C are the semantic contexts.

▶ Arrows of target Γ are semantic types A in context Γ and are
denoted as Γ.A → Γ.

▶ Sections of Γ.A → Γ are semantic terms of A in context Γ.

Seely, Locally cartesian closed categories and type theory, 1983.

Such a category C is a non-genuine model of a dependent type theory
with extensional =, Π, Σ.
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Σ types in C

▶ Formation. If:
Γ.A → Γ and Γ.A.B → Γ.A

represent the type judgements:

Γ ⊢ A : Type and Γ, x : A ⊢ B : Type

then:
( Γ.ΣAB → Γ ) := ( Γ.A.B → Γ.A → Γ )

represents the judgement Γ ⊢ ΣAB : Type.

▶ Introduction. The morphism:

Γ.A.B = Γ.ΣAB

represents the judgement Γ, x : A, y : B ⊢ ⟨x, y⟩ : ΣAB.

▶ Elimination and Computation. In some way is done.
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Substitution? Issues!
If we are given ∆

f−→ Γ and Γ.A → Γ then the judgement:

∆ ⊢ A[f ] : Type

is represented by the re-indexing ∆.A[f ] → ∆ of Γ.A → Γ along f .

If we are given a section Γ
a−→ Γ.A of Γ.A → Γ then the judgement:

∆ ⊢ a[f ] : A[f ]

is represented by the unique section of ∆.A[f ] → ∆ such that:

∆ Γ

∆.A[f ] Γ.A

∆ Γf

⌟

a

f

commutes.
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Substitution? Issues!

But then, if we are given Ω
g−→ ∆

f−→ Γ:

▶ Ω.A[f ][g] ∼= Ω.A[fg] and not necessarily Ω.A[f ][g] ≡ Ω.A[fg]

▶

Ω.A[f ][g]

Ω

Ω.A[fg]

∼ =

a[fg]

a[f ][g]

and not necessarily a[f ][g] ≡ a[fg]

In this sense C is not a genuine model.



Substitution? Issues!

But then, if we are given Ω
g−→ ∆

f−→ Γ:

▶ Ω.A[f ][g] ∼= Ω.A[fg] and not necessarily Ω.A[f ][g] ≡ Ω.A[fg]

▶

Ω.A[f ][g]

Ω

Ω.A[fg]

∼ =

a[fg]

a[f ][g]

and not necessarily a[f ][g] ≡ a[fg]

In this sense C is not a genuine model.



Hofmann’s coherence result

However, in:

Hofmann, On the Interpretation of Type Theory in Locally
Cartesian Closed Categories, 1994.

every locally cartesian closed category is shown to be equivalent to a
split comprehension category (still endowed with extensional =, Π
and Σ).



Comprehension categories
If C is a category with a terminal object, then a comprehension
category (p, χ) over C is a Grothendieck fibration E p−→ C together with
a fully faithful functor E χ−→ C→ mapping cartesian morphisms to
pullback squares and such that the diagram:

E C→

C

χ

p cod

commutes.

If (p, χ) is equipped with the “right structure”, then one can interpret
in the non-genuine way the judgements of a dtt with extensional =, Π
and Σ formally as for lccc’s.

We say that (p, χ) is split if p is split. In this case (p, χ) is a genuine
model, since A[fg] ≡ A[f ][g] “abstractly” in E .
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In general: the right-adjoint coherence

The inclusion:
{split cc over C} ↪→ {cc over C}

has a right adjoint that:

▶ maps every cc (p, χ) into a split cc equivalent to (p, χ);
▶ (under some pseudo-stability condition) preserves the semantic

extensional =, Π and Σ structure.

Warren, Homotopy Theoretic Aspects of Constructive Type
Theory, 2008.

Streicher, Fibred categories à la Jean Bénabou, 2018.

Hofmann’s result is an instance of this one.
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The left-adjoint coherence

The inclusion:
{split cc over C} ↪→ {cc over C}

also has left adjoint. It:

▶ maps every cc (p, χ) into a split cc equivalent to (p, χ) as well;
▶ (under some weak-stability condition) preserves the semantic

intensional =, Π and Σ structure.

Lumsdaine, Warren, The local universes model, 2015.
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Intensional identity types

Formation & Introduction rules.

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

Path Elimination & Computation rules.

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ J(q, x, x, r(x)) ≡ q(x)
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Formation & Introduction rules.

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

Path Elimination & Propositional Computation rules.
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Propositional identity types in the literature

Propositional identity types appear in:

Coquand, Danielsson, Isomorphism is equality, 2013.

Bezem, Coquand, Huber, A model of type theory in cubical sets,
2014.

van den Berg, Path categories and propositional identity types,
2018.



Path categories i.e. non-genuine models of propositional
identity types

A path category C is a category with a terminal object, a class of
fibrations and a class of weak equivalences such that the following
properties are satisfied:

1. The composition of two fibrations is a fibration as well.
2. Every pullback of a fibration exists and is a fibration as well.
3. Every pullback of an acyclic fibration is a trivial fibration as well.
4. Weak equivalences satisfy 2-out-of-six.
5. Every isomorphism is a trivial fibration and every trivial fibration

has a section.
6. For every object X of C there is an object PX, called path object

on X, together with a weak equivalence X
r−→ PX and a fibration

PX
⟨s,t⟩−−−→ X ×X such that (X

r−→ PX
⟨s,t⟩−−−→ X ×X) = δX .

7. Every arrow of target a terminal object is a fibration.



Path categories as comprehension categories

Let C be a category with terminal object. Then a path categorical
structure over C can be re-phrased as a comprehension category:

F C→

C

cod cod

over C with:
▶ propositional = types
▶ strong Σ types
▶ contextuality/democracy

and vice versa. These mappings preserve equivalences (they seem to
constitute a biequivalence).
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Preservation of propositional =

In:

Bocquet, Strictification of weakly stable type-theoretic structures
using generic contexts, 2021.

the 2-left adjoint splitting is proven to preserve the semantic
propositional = structure under the usual weak-stability conditions,

that in our case are satisfied!

Therefore, let C be a path category. We re-phrase it as a democratic
comprehension category with weakly stable propositional = and
strong Σ. By the results by Lumsdaine, Warren and Bocquet, it is
equivalent to a democratic split comprehension category with stable
propositional = and strong Σ. This new split comprehension category
can be rephrased as a split path categorical structure over C. By our
biequivalence (or whatever it is), the obtained split path category is
equivalent to the one we started from.
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Coherence for path categories

Theorem
Every path category admits a split replacement.


