Abstracting sheafification-like adjunctions via the tripos-to-topos construction

Davide Trotta

j.w.w. M.E. Maietti

University of Pisa

$$A^{(-)}$$
: Set^{op} \longrightarrow Hey is a **localic tripos**

$$P: \mathcal{C}^{op} \longrightarrow Hey \text{ is a tripos}$$

$$A^{(-)} \longmapsto Sh(A)$$

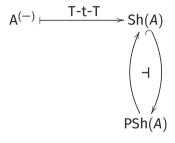
$$P \longmapsto T-t-T \rightarrow T_P$$

J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts (1980), *Tripos theory*, Math. Proc. Camb. Phil. Soc.

A.M. Pitts (2002), Tripos theory in retrospect, Math. Struct. in Comp. Science

 $A^{(-)}$: Set^{op} \longrightarrow Hey is a **localic tripos**

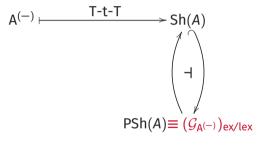
 $P: \mathcal{C}^{op} \longrightarrow Hey \text{ is a tripos}$



$$P \longmapsto T_F$$

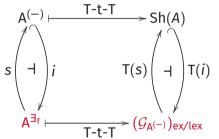
 $A^{(-)}$: Set^{op} \longrightarrow Hey is a **localic tripos**

 $P: \mathcal{C}^{\mathsf{op}} \longrightarrow \mathsf{Hey} \ \mathsf{is} \ \mathsf{a} \ \mathsf{tripos}$

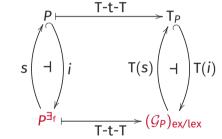


$$P \longmapsto T^{-1}$$

 $A^{(-)}$: Set^{op} \longrightarrow Hey is a **localic tripos**



 $P: \mathcal{C}^{op} \longrightarrow Hey$ is a **sheaf tripos**



Main references

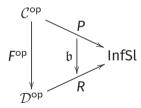
- ► J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts (1980), Tripos theory, *Math. Proc. Camb. Phil. Soc.*
- ► A.M. Pitts (2002), Tripos theory in retrospect, Math. Struct. in Comp. Science.
- ► M. Menni (2003), A characterization of the left exact categories whose exact completions are toposes, *J. Pure Appl. Algebra*.
- ► M.E. Maietti and G. Rosolini (2013), Unifying exact completions, *Appl. Categ.* Structures.
- ▶ J. Frey (2015), Triposes, q-toposes and toposes, Ann. Pure Appl. Log.
- ▶ D. Trotta (2020), The existential completion, *Theory App. Categ.*
- ► M.E. Maietti and D. Trotta (2023), A characterization of generalized existential completions, *Ann. Pure Appl. Log.*

Full primary doctrines

Definition (full primary doctrine)

A **full primary doctrine** is a functor $P: \mathcal{C}^{op} \longrightarrow InfSl$ from the opposite of a category \mathcal{C} with finite limits to the category of inf-semilattices.

A **full primary morphism** of doctrines is given by a pair (F, \mathfrak{b})



where $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a finite limits preserving functor and $\mathfrak{b}: P \longrightarrow R \circ F$ is a natural transformation.

Full existential doctrines

Definition (full existential doctrine)

A full primary doctrine $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSl}$ is called a **full existential doctrine** if for every arrow $f: A \longrightarrow B$ of \mathcal{C} the functor P_f has a left adjoint \exists_f and these satisfy Beck-Chevalley condition and Frobenius reciprocity.

Definition (full existential morphism of doctrines)

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ and $R: \mathcal{D}^{op} \longrightarrow InfSl$ be two full existential doctrines. A full primary morphism of doctrines (F, \mathfrak{b}) is said **full existential** if for every arrow $f: A \longrightarrow B$ of \mathcal{C} we have that

$$\exists_{\mathit{Ff}}\,\mathfrak{b}_{\mathit{A}}(\pmb{lpha})=\mathfrak{b}_{\mathit{B}}(\exists_{\mathit{f}}(\pmb{lpha}))$$

for every element α of P(A).

Full hyperdoctrines and full triposes

Definition (full hyperdoctrine)

A full existential doctrine $P: \mathcal{C}^{op} \longrightarrow InfSl$ is said **full hyperdoctrine** if

- ▶ for every object A of C, the poset P(A) is a Heyting algebra and for every arrow $f: A \longrightarrow B$, $P_f: P(B) \longrightarrow P(A)$ is a morphism of Heyting algebras;
- ▶ for every arrow $f: A \longrightarrow B$, the functor P_f has a right adjoint \forall_f and these satisfy Beck-Chevalley condition.

Definition (full tripos)

A full hyperdoctrine $P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSl}$ is said **full tripos** if for every object X of \mathcal{C} there exists an object PX and an element \in_X of $P(X \times PX)$ such that for every α of $P(X \times Y)$ there exists an arrow $\{\alpha\}_X: Y \longrightarrow PX$ such that $\alpha = P_{\text{id}_X} \times \{\alpha\}_X (\in_X)$.

Examples

Example

Let A be a locale. The representable functor $A^{(-)}$: Set^{op} \longrightarrow InfSl assigning to a set X the poset A^X of functions from X to A with the pointwise order is a full tripos.

Example

Given a pca \mathbb{A} , we can consider the realizability tripos $\mathcal{P} \colon \mathsf{Set}^\mathsf{op} \longrightarrow \mathsf{InfSl}$ over Set. For each set X, the partial ordered set $(\mathcal{P}(X), \leq)$ is defined as the set of functions $P(\mathbb{A})^X$ from X to the powerset $P(\mathbb{A})$ of \mathbb{A} . Given two elements α and β of $\mathcal{P}(X)$, we say that $\alpha \leq \beta$ if there exists an element $\overline{a} \in \mathbb{A}$ such that for all $x \in X$ and all $a \in \alpha(x)$, $\overline{a} \cdot a$ is defined and it is an element of $\beta(x)$.

Examples

Example

Let C be a category with finite limits. The full existential doctrine of **weak subobjects (or variations)** is given by the functor

$$\Psi_{\mathcal{C}} \colon \mathcal{C}^{\mathsf{op}} \longrightarrow \mathsf{InfSl}$$

where $\Psi_{\mathcal{C}}(A)$ is the poset reflection of the slice category \mathcal{C}/A . For an arrow $B \xrightarrow{f} A$, the homomorphism $\Psi_{\mathcal{D}}([f]) \colon \Psi_{\mathcal{D}}(A) \longrightarrow \Psi_{\mathcal{D}}(B)$ is given by the equivalence class of a pullback of an arrow $X \xrightarrow{g} A$ with f. This doctrine is a full tripos if and only if \mathcal{C} has weak dependent products and a generic proof.

Full triposes and Presheaves

Definition

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a full tripos. The **Grothendieck category** \mathcal{G}_P of P is given by the following objects and arrows:

- ▶ objects are pairs (A, α) , where A is an object of C and $\alpha \in P(A)$;
- ▶ a morphism $f: (A, \alpha) \longrightarrow (B, \beta)$ is an arrow $f: A \longrightarrow B$ of \mathcal{C} such that $\alpha \leq P_f(\beta)$.

Definition

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a full tripos. We define the category of P-presheaves as the category $PSh(P) := (\mathcal{G}_P)_{ex/lex}$.

Examples

Example

Let A be a locale and the localic tripos $A^{(-)}$: Set^{op} \longrightarrow InfSl . We have the equivalence PSh(A) $\equiv (A_+)_{ex/lex} \equiv (\mathcal{G}_{A^{(-)}})_{ex/lex}$.

Example

Let \mathbb{A} be a pca, and let us consider the realizability tripos $\mathcal{P} \colon \mathsf{Set}^\mathsf{op} \longrightarrow \mathsf{InfSl}$. The category $\mathcal{G}_{\mathcal{P}}$ can be described as follows: they are pairs (X, α) , where X is a set and $\alpha \subseteq X \times \mathbb{A}$ is a relation. A morphism $f \colon (X, \alpha) \longrightarrow (B, \beta)$ is given by a function $f \colon X \longrightarrow Y$ such that there exists an element $a \in \mathbb{A}$ that tracks f.

$$RT(A) \hookrightarrow (\mathcal{G}_{\mathcal{P}})_{ex/lex} \equiv PSh(\mathcal{P}).$$

Tripos-to-topos. Given a full tripos $P: \mathcal{C}^{op} \longrightarrow InfSl$, the topos T_P consists of:

- **objects:** are pairs (A, ρ) where A is an object of \mathcal{C} and ρ is an element of $P(A \times A)$ satisfying:
 - 1. symmetry: $a_1, a_2 : A \mid \rho(a_1, a_2) \vdash \rho(a_2, a_1)$;
 - 2. transitivity: a_1 , a_2 , a_3 : A | $\rho(a_1, a_2) \land \rho(a_2, a_3) \vdash \rho(a_1, a_3)$;
- **arrows:** $\phi: (A, \rho) \longrightarrow (B, \sigma)$ are objects ϕ of $P(A \times B)$ such that:
 - 1. $a : A, b : B \mid \phi(a, b) \vdash \rho(a, a) \land \sigma(b, b)$;
 - 2. $a_1, a_2 : A, b : B \mid \rho(a_1, a_2) \land \phi(a_1, b) \vdash \phi(a_2, b);$
 - 3. $a: A, b_1, b_2: B \mid \sigma(b_1, b_2) \land \phi(a, b_1) \vdash \phi(a, b_2)$:
 - 4. $a: A, b_1, b_2: B \mid \phi(a, b_1) \land \phi(a, b_2) \vdash \sigma(b_1, b_2);$
 - 5. $a : A \mid \rho(a, a) \vdash \exists b. \phi(a, b)$.

J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts (1980), *Tripos theory*, Math. Proc. Camb. Phil. Soc.

A.M. Pitts (2002), Tripos theory in retrospect, Math. Struct. in Comp. Science

Full existential completion

Full existential completion. Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a full primary doctrine. For every object A of \mathcal{C} consider the preorder $P^{\exists_f}(A)$ defined by:

- ▶ **objects:** pairs $(B \xrightarrow{f} A, \alpha)$, where $B \xrightarrow{f} A$ is an arrow of C and $\alpha \in P(B)$;
- ▶ **order:** $(B \xrightarrow{f} A, \alpha) \le (C \xrightarrow{g} A, \beta)$ if there exists an arrow $h: B \longrightarrow C$ of C such that the diagram

commutes and $\alpha \leq P_h(\beta)$.

The doctrine $P^{\exists_f}: \mathcal{C}^{op} \longrightarrow InfSl$ is called the **full existential completion** of P.

D. Trotta (2020), The existential completion, Theory and Applications of Categories

Examples of full existential completion

The following doctrines are instances of the full existential completion:

- 1. the **realizability doctrine** $\mathcal{P}: Set^{op} \longrightarrow InfSl$ (for a given a pca A);
- 2. the **localic doctrine** $A^{(-)}$: Set^{op} \longrightarrow InfSl when A is a supercoherent locale;
- 3. the **weak subobjects doctrine** $\Psi_{\mathcal{C}} \colon \mathcal{C}^{op} \longrightarrow \mathsf{InfSl}$ for a lex category \mathcal{C} .

A characterization of the tripos-to-topos construction

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a full tripos. If P is the full existential completion of a full primary doctrine $P': \mathcal{C}^{op} \longrightarrow InfSl$ then:

$$T_P \cong (\mathcal{G}_{P'})_{ex/lex}$$
.

Categories obtained as **full existential completion + tripos-to-topos**:

Example

- realizability toposes RT(A) for a given pca A;
- ▶ toposes of presheaves PreSh(A) for a given locale A;
- ▶ toposes of sheaves Sh(A) for a given supercoherent locale A;
- ▶ the exact completion $(C)_{ex/lex}$ of a lex category C.

Sheaf triposes

Definition (Sheaf tripos)

A full tripos $P: \mathcal{C}^{op} \longrightarrow InfSl$ is said a **sheaf tripos** if the Grothendieck category \mathcal{G}_P has weak dependent products and a generic proof.

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a full tripos. Then the following are equivalent:

- 1. $P: \mathcal{C}^{op} \longrightarrow InfSl$ is a sheaf tripos;
- 2. $\Psi_{\mathcal{G}_P} : \mathcal{G}_P^{op} \longrightarrow InfSl$ is a full tripos;
- 3. $P^{\exists_f}: \mathcal{C}^{op} \longrightarrow InfSl$ is a full tripos;
- 4. PSh(P) is a topos.

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a sheaf tripos. Then there is an adjunction of triposes

such that $si \cong id_P$, and s is a full existential morphism. Moreover, this induces an adjunction of toposes

$$T_{p^{\exists f}}$$
 $T(i)$

such that $T(s)T(i) \cong id_{T_p}$.

Tripos-to-topos of sheaf triposes

Corollary

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a sheaf tripos. Then there exists a Lawvere-Tierney topology j on $T_{p^{\exists_f}}$ such that $T_P \equiv Sh_j(T_{p^{\exists_f}})$.

A sufficient condition for sheaf triposes

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a full tripos such that

- ► C has weak dependent products;
- \blacktriangleright the weak predicate classifier Ω has a power object in C;
- $ightharpoonup \mathcal{C}$ admits a proper factorization system $(\mathcal{E}, \mathcal{M})$ and every epi of \mathcal{E} splits.

Then $P: \mathcal{C}^{op} \longrightarrow InfSl$ is a sheaf tripos.

Corollary

Every full tripos whose base category is Set (with the axiom of choice) is a sheaf tripos.

Example

The localic tripos $A^{(-)}$: Set^{op} \longrightarrow InfSl is a sheaf tripos. The adjunction

$$\mathsf{PSh}(A) \underbrace{\hspace{1cm} \bot \hspace{1cm}}_{\mathsf{T}(i)} \mathsf{Sh}(A)$$
 is exactly the so-called sheafification.

Example

The realizability tripos $\mathcal{P}: \mathsf{Set}^{\mathsf{op}} \longrightarrow \mathsf{InfSl}$ is a sheaf tripos. Therefore, we have

The realizability tripos
$$\mathcal{P} \colon \mathsf{Set}^\mathsf{op} \longrightarrow \mathsf{InfSl}$$
 is a sheaf tripos. Therefore, we

Another Sheafification-like adjunction

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a full tripos arising as full existential completion. If \mathcal{C} has weak dependent products and a generic proof then we have an adjunction of triposes:

$$P \stackrel{S}{\underbrace{\bot}} \Psi$$

such that $si \cong id_P$, where both s and i are full existential morphisms. Moreover, this induces an adjunction of toposes

$$T_P \xrightarrow{\perp} (C)_{\text{ex/l}}$$

Examples

Corollary

Let $P: \mathcal{C}^{op} \longrightarrow InfSl$ be a full tripos arising as full existential completion, and let \mathcal{C} be a category with weak dependent products and a generic proof. Then there exists a Lawvere-Tierney topology j on T_P such that $(\mathcal{C})_{ex/lex} \equiv Sh_j(T_P)$.

Example

Every realizability topos admits Set as category of sheaves (for a certain Lawvere-Tierney topology).

Example

Every localic topos, associated with a supercoherent locale, admits Set as category of sheaves (for a certain Lawvere-Tierney topology).