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Section 1

Implicative algebras
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Implicative structure

Implicative structures

An implicative structure is a complete poset (A, <) together with a binary
operation —: A x A — A satisfying the following two conditions:

(1) Ifd xaand b b thena— b= ad = b.

(2) For all subsets B C A we have

a— Ab: A(a—)b).

beB beB
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Implicative structure

Implicative structures

An implicative structure is a complete poset (A, <) together with a binary
operation —: A x A — A satisfying the following two conditions:

(1) Ifd xaand b b thena— b= ad = b.
(2) For all subsets B C A we have

a— Ab: A(a—>b).

beB beB

Intuition

We think of the elements of A as truth values or bits of evidence. However,
we should not think of < as giving us the logical ordering of these truth
values: it is more of an “evidential ordering” (“subtyping ordering”).
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Separators

Within the set of truth values we select the designated ones: those that we
hold to be true. Or those bits of evidence we find conclusive.
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Let A= (A, =, —) be an implicative structure. A separatoron A is a
subset S C A such that the following are satisfied:

(I) Ifae Sand a< b, then beS.

(2) fa—beSandac§, then beS.

(3) Both k and s belong to S.
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Separators

Within the set of truth values we select the designated ones: those that we
hold to be true. Or those bits of evidence we find conclusive.

Separators

Let A= (A, <, —) be an implicative structure. A separatoron A is a
subset S C A such that the following are satisfied:

(I) Ifae Sand a< b, then beS.

(2) fa—beSandac§, then beS.

(3) Both k and s belong to S.

Here k and s are defined as follows:

k = Aa—)b—>a
a,b

s A(a—>b—>c)—>(a—>b)—>(a—>c)
a,b,c
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Implicative algebras

Implicative algebra (Miquel)

A quadruple (A, <, —, S) consisting of an implicative structure (A, <, —)
together with a separator S is called an implicative algebra.
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Implicative algebra (Miquel)
A quadruple (A, <, —, S) consisting of an implicative structure (A, <, —)
together with a separator S is called an implicative algebra.

Examples
(1) A complete Heyting algebra with a distinguished filter.
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Implicative algebras

Implicative algebra (Miquel)

A quadruple (A, =, —, S) consisting of an implicative structure (A, <, —)
together with a separator S is called an implicative algebra.

Examples

(1) A complete Heyting algebra with a distinguished filter.

(2) If P is a total combinatory algebra, then Pow(P) ordered by inclusion
together with the implication

X—=Y={zeP:(WxeX)zxe Y}

The inhabited subsets form a separator.
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Tripos

Let us write PreHey for the category of preHeyting algebras (preorders
whose poset reflections are Heyting algebras).

Tripos (Hyland, Johnstone, Pitts)
A tripos is a functor P : Sets — PreHey such that:

o for each function f : Y — X, the operation Pf : PX — PY has both
adjoints satisfying the Beck-Chevally condition.
@ There is a set X and an element T € P(X) such that for any

A € P(X) there is some map a: X — X (not necessarily unique) such
that P(a)(T) = A.

The tripos-to-topos construction allows us to construct a topos from a
tripos.
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Implicative tripos
Proposition

Let A= (A, <x,—,S) be an implicative algebra. If we preorder A as
follows:

akFb:<—a—bes,

then A carries the structure of a preHeyting algebra.

v

In this preHeyting algebra the implication is given by —. We think of I~ as

giving us the logical ordering.
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Let A= (A, <x,—,S) be an implicative algebra. If we preorder A as
follows:
akFb:<—a—bes,

then A carries the structure of a preHeyting algebra.

v

In this preHeyting algebra the implication is given by —. We think of - as
giving us the logical ordering.

Indeed, if A= (A, <,—,S) be an implicative algebra and X is a set, then
we can consider AX as an implicative algebra as well: implication and the
order can be defined pointwise, while

p: X—>AcSK = AQO(X)ES.
xeX
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Implicative tripos

Proposition

Let A= (A, <x,—,S) be an implicative algebra. If we preorder A as
follows:
akFb:<—a—bes,

then A carries the structure of a preHeyting algebra.

v

In this preHeyting algebra the implication is given by —. We think of - as
giving us the logical ordering.

Indeed, if A= (A, <,—,S) be an implicative algebra and X is a set, then
we can consider AX as an implicative algebra as well: implication and the
order can be defined pointwise, while
p: X—>AcSK = AQO(X)ES.
xeX
Indeed, if we put PX = (A%, Fsx), then this defines a tripos (the

“implicative tripos”).
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Section 2

Arrow algebras
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Arrow structure

Implicative structures

An arrow structure is a complete poset (A, <) together with a binary
operation —: A x A — A satisfying the following condition:
Ifa’y <aand b b thena— b=<a — b.
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Arrow structure

Implicative structures
An arrow structure is a complete poset (A, <) together with a binary
operation —: A x A — A satisfying the following condition:

Ifa’y <aand b b thena— b=<a — b

Separators

Let A= (A, <,—) be an arrow structure. A separator on A is a subset
S C A such that the following are satisfied:

(I) Ifae Sand a< b, then beS.
(2) Ifa—beSandac§, then beS.
(3) S contains the combinators k, s and a.
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Arrow structure

Implicative structures
An arrow structure is a complete poset (A, <) together with a binary
operation —: A x A — A satisfying the following condition:

Ifa’y <aand b b thena— b=<a — b

Separators

Let A= (A, <,—) be an arrow structure. A separator on A is a subset
S C A such that the following are satisfied:

(I) Ifae Sand a< b, then beS.
(2) Ifa—beSandac§, then beS.

(3) S contains the combinators k, s and a.

Here a is the combinator:
a = A (AX—>y,-—>z,~)—>x—>(Ay,-—>z,-).
x1,(vi)iers(zi)ier 1€l icl
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Arrow algebras

Arrow algebra

A quadruple (A, <, —, S) consisting of an arrow structure (A, <, —)
together with a separator S is called an arrow algebra.
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Arrow algebras

Arrow algebra

A quadruple (A, <, —, S) consisting of an arrow structure (A, <, —)
together with a separator S is called an arrow algebra.

Every implicative algebra is an arrow algebra.

Proposition

Let A= (A, <,—,S) be an arrow algebra. If we preorder A as follows:
aFb<—a—bes,

then A carries the structure of a preHeyting algebra.

Indeed, if A= (A, <,—,S) be an implicative algebra and X is a set, then
we can consider AX as an arrow algebra as well: implication and the order
can be defined pointwise, with ¢ : X — A € SXif A .x ¢(x) € S. Indeed,
if we put PX = (AX,Fsx), then this defines a tripos (the “arrow tripos”).
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Section 3

Pcas
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Pcas
In this talk | follow the conventions of Jetze Zoethout's recent PhD thesis

(which has been heavily influenced by Pieter Hofstra's paper “All
realizability in relative”).
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Pcas

In this talk | follow the conventions of Jetze Zoethout's recent PhD thesis
(which has been heavily influenced by Pieter Hofstra's paper “All
realizability in relative”).

Partial applicative poset

A partial applicative poset (abbreviated PAP) is a triple (A, -, <) where
(A, <) is a poset and - is a partial binary operation which satisfies:
if a’b’ is defined and a < a’ and b < b/, then ab is defined and
ab < a'b.
We say that A is total is the application operation is total, and A is
discrete if the order < is a discrete order.
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Pcas

In this talk | follow the conventions of Jetze Zoethout's recent PhD thesis
(which has been heavily influenced by Pieter Hofstra's paper “All
realizability in relative”).

Partial applicative poset

A partial applicative poset (abbreviated PAP) is a triple (A, -, <) where
(A, <) is a poset and - is a partial binary operation which satisfies:
if a’b’ is defined and a < a’ and b < b/, then ab is defined and
ab < a'b.
We say that A is total is the application operation is total, and A is
discrete if the order < is a discrete order.

Examples

© Kj: the set of natural numbers with Kleene application (n- m is the
outcome of the n-th Turing machine on input m, whenever defined)
and the discrete order.

@ Terms in the untyped A-calculus and M < N if M —5 N.
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Pcas
Filter

Let A be a partial applicative poset. A filter F on Ais a subset F C A
such that:
(i) if a,b € F and ab is defined, then ab € F.
(i) ifa<band a€ F, then be F.
(iii) there are elements k,s € F satisfying:
(1) kab = a;
(2) sab;
(3) if ac(bc) |, then sabc | and sabc < ac(bc),
for all a, b, c € A.
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Pcas

Filter
Let A be a partial applicative poset. A filter F on Ais a subset F C A
such that:
(i) if a,b € F and ab is defined, then ab € F.
(i) ifa<band a€ F, then be F.
(iii) there are elements k,s € F satisfying:
(1) kab = a;

(2) sab;
(3) if ac(bc) |, then sabc | and sabc < ac(bc),

for all a, b, c € A.

Pcas

A partial combinatory algebra (abbreviated PCA) is a pair consisting of a
partial applicative poset (A, -, <) and a filter A# on it. The PCA will be
called total or discrete if the underlying partial applicative poset is. The

PCA will be called absolute if A# = A.
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Arrow algebras from a pca

Proposition
If P is a pca, then the collection DP of downsets in P carries an arrow
structure with

X =Y ={zeP: (¥xeX)xz] and xz € Y}.

In addition, S = {X € DP : (3x € X)x € F} is a separator on this arrow
structure. )
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Arrow algebras from a pca

Proposition

If P is a pca, then the collection DP of downsets in P carries an arrow
structure with

X—=Y:={zeP:(VxeX)xz] and xz € Y}.

In addition, S = {X € DP : (3x € X)x € F} is a separator on this arrow
structure.

Proposition

If P is a pca, then the collection PER(P) of subsets of P x P which are
downwards closed, symmetric and transitive carries an arrow structure with

X =Y :={(z,Z)e P?: (V(x,X') € X)xz |,x'Z | and (xz,x'Z") € Y}.

In addition, S = {X € PER(P) : (3(x,x’) € X)x,x € F} is a separator
on this arrow structure.

14/22



Section 4

Nuclei
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Nuclei

Nucleus

Let A= (A, <,—,S) be an arrow algebra. A mapping j : A — A will be
called a nucleus if the following three properties are satisfied:

(1) a < b implies ja < jb for all a,b € A.
(2) Asepaa—Jjaces.

(3) Aapeala = jb) = (ja— jb) € S.
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Nuclei
Nucleus

Let A= (A, <,—,S) be an arrow algebra. A mapping j : A — A will be
called a nucleus if the following three properties are satisfied:

(1) a < b implies ja < jb for all a,b € A.

(2) Asepaa—Jjaces.

(3) Aa’beA(a — jb) — (ja— jb) € S.

Proposition

Let (A,<,—,S) be an arrow algebra and j : A — A be a nucleus on it.
Then Aj = (A, <, =, S_,) with

a—>jb

a—jb
acs & jacs

is also an arrow algebra.
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Section 5

Modified realizability
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Modified realizability

Modified realizability is characterised by the following ideas:

@ There is a distinction between actual and potential realizers.

@ Every actual realizer is also a potential realizer, but not conversely.

@ Every proposition, including L, has at least one potential realizer.
@ Something is true if it has an actual realizer.

The first to define a modified realizability topos was Grayson, based on
ideas by Hyland.
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The modification of an arrow algebra

Let A= (A, <, —,S) be an arrow algebra. Then we can define a new
arrow algebra A~ as follows: its elements are pairs x = (xa, xp) € A% with
Xa < Xp (here p stands for potential and a for actual).
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Let A= (A, <, —,S) be an arrow algebra. Then we can define a new
arrow algebra A~ as follows: its elements are pairs x = (xa, xp) € A% with

Xa < Xp (here p stands for potential and a for actual).

A~ is often an arrow algebra:
© we order the pairs pointwise.
@ implication is defined follows:

X=y=Xa = YaAXp = Yp, Xp = Yp)-

@ an element x € A~ belongs to the separator if x, does.
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The modification of an arrow algebra
Let A= (A, <, —,S) be an arrow algebra. Then we can define a new
arrow algebra A~ as follows: its elements are pairs x = (xa, xp) € A% with

Xa < Xp (here p stands for potential and a for actual).

A~ is often an arrow algebra:
© we order the pairs pointwise.
@ implication is defined follows:

X=y=Xa = YaAXp = Yp, Xp = Yp)-

@ an element x € A~ belongs to the separator if x, does.

On A~ we can define a nucleus as follows:
j(x) = (Xa7xp) V(L T).

(Here V refers to the logical ordering.) The resulting arrow algebra can be
called the modification of A.
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Toposes for modified realizability
If we start with A = Pow(K1), the arrow algebra for number realizability,

then this modification construction yields the arrow algebra for Grayson's
topos.
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“extensional modified realizability”.
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Toposes for modified realizability

If we start with A = Pow(K1), the arrow algebra for number realizability,
then this modification construction yields the arrow algebra for Grayson's
topos.

However, if we let A be PER(K1), the arrow algebra for extensional
realizability, then / believe the modification construction yields a topos for
“extensional modified realizability”.

In the internal logic of this topos for “extensional modified realizability”
the characteristic principles of modified realizability hold:

AC : Vx73y" a(x,y) — IF77T VX7 a(x, f(x))
P (o — 3x79) = Ix(p — )

This topos has various subtoposes in which these principles also hold. One
such is studied in the MSc thesis of Mees de Vries.
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THANK YOU!
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