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Section 1

Implicative algebras
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Implicative structure

Implicative structures

An implicative structure is a complete poset (A,4) together with a binary
operation →: A× A→ A satisfying the following two conditions:

(1) If a′ 4 a and b 4 b′ then a→ b 4 a′ → b′.

(2) For all subsets B ⊆ A we have

a→
k

b∈B
b =

k

b∈B
(a→ b).

Intuition

We think of the elements of A as truth values or bits of evidence. However,
we should not think of 4 as giving us the logical ordering of these truth
values: it is more of an “evidential ordering” (“subtyping ordering”).
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Separators
Within the set of truth values we select the designated ones: those that we
hold to be true. Or those bits of evidence we find conclusive.

Separators

Let A = (A,4,→) be an implicative structure. A separator on A is a
subset S ⊆ A such that the following are satisfied:

(1) If a ∈ S and a 4 b, then b ∈ S .

(2) If a→ b ∈ S and a ∈ S , then b ∈ S .

(3) Both k and s belong to S .

Here k and s are defined as follows:

k :=
k

a,b

a→ b → a

s :=
k

a,b,c

(a→ b → c)→ (a→ b)→ (a→ c)
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Implicative algebras

Implicative algebra (Miquel)

A quadruple (A,4,→,S) consisting of an implicative structure (A,4,→)
together with a separator S is called an implicative algebra.

Examples

(1) A complete Heyting algebra with a distinguished filter.

(2) If P is a total combinatory algebra, then Pow(P) ordered by inclusion
together with the implication

X → Y = {z ∈ P : (∀x ∈ X ) zx ∈ Y }.

The inhabited subsets form a separator.
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Tripos

Let us write PreHey for the category of preHeyting algebras (preorders
whose poset reflections are Heyting algebras).

Tripos (Hyland, Johnstone, Pitts)

A tripos is a functor P : Sets → PreHey such that:

for each function f : Y → X , the operation Pf : PX → PY has both
adjoints satisfying the Beck-Chevally condition.

There is a set Σ and an element > ∈ P(Σ) such that for any
A ∈ P(X ) there is some map a : X → Σ (not necessarily unique) such
that P(a)(>) ∼= A.

The tripos-to-topos construction allows us to construct a topos from a
tripos.
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Implicative tripos

Proposition

Let A = (A,4,→,S) be an implicative algebra. If we preorder A as
follows:

a ` b :⇐⇒ a→ b ∈ S ,

then A carries the structure of a preHeyting algebra.

In this preHeyting algebra the implication is given by →. We think of ` as
giving us the logical ordering.

Indeed, if A = (A,4,→,S) be an implicative algebra and X is a set, then
we can consider AX as an implicative algebra as well: implication and the
order can be defined pointwise, while

ϕ : X → A ∈ SX :⇐⇒
k

x∈X
ϕ(x) ∈ S .

Indeed, if we put PX = (AX ,`SX ), then this defines a tripos (the
“implicative tripos”).
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Section 2

Arrow algebras
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Arrow structure

Implicative structures

An arrow structure is a complete poset (A,4) together with a binary
operation →: A× A→ A satisfying the following condition:

If a′ 4 a and b 4 b′ then a→ b 4 a′ → b′.

Separators

Let A = (A,4,→) be an arrow structure. A separator on A is a subset
S ⊆ A such that the following are satisfied:

(1) If a ∈ S and a 4 b, then b ∈ S .

(2) If a→ b ∈ S and a ∈ S , then b ∈ S .

(3) S contains the combinators k, s and a.

Here a is the combinator:

a :=
k

x ,I ,(yi )i∈I ,(zi )i∈I

(
k

i∈I
x → yi → zi )→ x → (

k

i∈I
yi → zi ).
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Arrow algebras

Arrow algebra

A quadruple (A,4,→,S) consisting of an arrow structure (A,4,→)
together with a separator S is called an arrow algebra.

Every implicative algebra is an arrow algebra.

Proposition

Let A = (A,4,→,S) be an arrow algebra. If we preorder A as follows:
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then A carries the structure of a preHeyting algebra.

Indeed, if A = (A,4,→, S) be an implicative algebra and X is a set, then
we can consider AX as an arrow algebra as well: implication and the order
can be defined pointwise, with ϕ : X → A ∈ SX if

c
x∈X ϕ(x) ∈ S . Indeed,

if we put PX = (AX ,`SX ), then this defines a tripos (the “arrow tripos”).
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Section 3

Pcas
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Pcas
In this talk I follow the conventions of Jetze Zoethout’s recent PhD thesis
(which has been heavily influenced by Pieter Hofstra’s paper “All
realizability in relative”).

Partial applicative poset

A partial applicative poset (abbreviated PAP) is a triple (A, ·,≤) where
(A,≤) is a poset and · is a partial binary operation which satisfies:

if a′b′ is defined and a ≤ a′ and b ≤ b′, then ab is defined and
ab ≤ a′b′.

We say that A is total is the application operation is total, and A is
discrete if the order ≤ is a discrete order.

Examples

1 K1: the set of natural numbers with Kleene application (n ·m is the
outcome of the n-th Turing machine on input m, whenever defined)
and the discrete order.

2 Terms in the untyped λ-calculus and M ≤ N if M �β N.
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Pcas

Filter

Let A be a partial applicative poset. A filter F on A is a subset F ⊆ A
such that:

(i) if a, b ∈ F and ab is defined, then ab ∈ F .

(ii) if a ≤ b and a ∈ F , then b ∈ F .

(iii) there are elements k, s ∈ F satisfying:

(1) kab = a;
(2) sab ↓;
(3) if ac(bc) ↓, then sabc ↓ and sabc ≤ ac(bc),

for all a, b, c ∈ A.

Pcas

A partial combinatory algebra (abbreviated PCA) is a pair consisting of a
partial applicative poset (A, ·,≤) and a filter A# on it. The PCA will be
called total or discrete if the underlying partial applicative poset is. The
PCA will be called absolute if A# = A.
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Arrow algebras from a pca

Proposition

If P is a pca, then the collection DP of downsets in P carries an arrow
structure with

X → Y := {z ∈ P : (∀x ∈ X ) xz ↓ and xz ∈ Y }.

In addition, S = {X ∈ DP : (∃x ∈ X ) x ∈ F} is a separator on this arrow
structure.

Proposition

If P is a pca, then the collection PER(P) of subsets of P × P which are
downwards closed, symmetric and transitive carries an arrow structure with

X → Y := {(z , z ′) ∈ P2 : (∀(x , x ′) ∈ X ) xz ↓, x ′z ′ ↓ and (xz , x ′z ′) ∈ Y }.

In addition, S = {X ∈ PER(P) : (∃(x , x ′) ∈ X ) x , x ′ ∈ F} is a separator
on this arrow structure.
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Section 4

Nuclei
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Nuclei

Nucleus

Let A = (A,4,→,S) be an arrow algebra. A mapping j : A→ A will be
called a nucleus if the following three properties are satisfied:

(1) a 4 b implies ja 4 jb for all a, b ∈ A.

(2)
c

a∈A a→ ja ∈ S .

(3)
c

a,b∈A(a→ jb)→ (ja→ jb) ∈ S .

Proposition

Let (A,4,→,S) be an arrow algebra and j : A→ A be a nucleus on it.
Then Aj = (A,4,→j ,Sj) with

a→j b :≡ a→ jb

a ∈ Sj :⇔ ja ∈ S

is also an arrow algebra.
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Section 5

Modified realizability
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Modified realizability

Modified realizability is characterised by the following ideas:

There is a distinction between actual and potential realizers.

Every actual realizer is also a potential realizer, but not conversely.

Every proposition, including ⊥, has at least one potential realizer.

Something is true if it has an actual realizer.

The first to define a modified realizability topos was Grayson, based on
ideas by Hyland.
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The modification of an arrow algebra
Let A = (A,4,→,S) be an arrow algebra. Then we can define a new
arrow algebra A→ as follows: its elements are pairs x = (xa, xp) ∈ A2 with
xa 4 xp (here p stands for potential and a for actual).

A→ is often an arrow algebra:

1 we order the pairs pointwise.

2 implication is defined follows:

x → y = (xa → ya f xp → yp, xp → yp).

3 an element x ∈ A→ belongs to the separator if xa does.

On A→ we can define a nucleus as follows:

j(x) = (xa, xp) ∨ (⊥,>).

(Here ∨ refers to the logical ordering.) The resulting arrow algebra can be
called the modification of A.
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Toposes for modified realizability

If we start with A = Pow(K1), the arrow algebra for number realizability,
then this modification construction yields the arrow algebra for Grayson’s
topos.

However, if we let A be PER(K1), the arrow algebra for extensional
realizability, then I believe the modification construction yields a topos for
“extensional modified realizability”.

In the internal logic of this topos for “extensional modified realizability”
the characteristic principles of modified realizability hold:

AC : ∀xσ ∃y τ α(x , y)→ ∃f σ→τ ∀xσ α(x , f (x))
IP : (ϕ→ ∃xσ ψ)→ ∃xσ(ϕ→ ψ)

This topos has various subtoposes in which these principles also hold. One
such is studied in the MSc thesis of Mees de Vries.
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THANK YOU!
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