Algebraic structures for modified realizability
 (jww Marcus Briët)

Benno van den Berg ILLC, University of Amsterdam

Workshop on Doctrines and Fibrations
Padova, 30 May 2023

Section 1

Implicative algebras

Implicative structure

Implicative structures

An implicative structure is a complete poset (A, \preccurlyeq) together with a binary operation $\rightarrow: A \times A \rightarrow A$ satisfying the following two conditions:
(1) If $a^{\prime} \preccurlyeq a$ and $b \preccurlyeq b^{\prime}$ then $a \rightarrow b \preccurlyeq a^{\prime} \rightarrow b^{\prime}$.
(2) For all subsets $B \subseteq A$ we have

$$
a \rightarrow 人_{b \in B} b=人_{b \in B}(a \rightarrow b) .
$$

Implicative structure

Implicative structures

An implicative structure is a complete poset (A, \preccurlyeq) together with a binary operation $\rightarrow: A \times A \rightarrow A$ satisfying the following two conditions:
(1) If $a^{\prime} \preccurlyeq a$ and $b \preccurlyeq b^{\prime}$ then $a \rightarrow b \preccurlyeq a^{\prime} \rightarrow b^{\prime}$.
(2) For all subsets $B \subseteq A$ we have

$$
a \rightarrow \curlywedge_{b \in B} b=人_{b \in B}(a \rightarrow b)
$$

Intuition

We think of the elements of A as truth values or bits of evidence. However, we should not think of \preccurlyeq as giving us the logical ordering of these truth values: it is more of an "evidential ordering" ("subtyping ordering").

Separators

Within the set of truth values we select the designated ones: those that we hold to be true. Or those bits of evidence we find conclusive.

Separators

Within the set of truth values we select the designated ones: those that we hold to be true. Or those bits of evidence we find conclusive.

Separators

Let $A=(A, \preccurlyeq, \rightarrow)$ be an implicative structure. A separator on A is a subset $S \subseteq A$ such that the following are satisfied:
(1) If $a \in S$ and $a \preccurlyeq b$, then $b \in S$.
(2) If $a \rightarrow b \in S$ and $a \in S$, then $b \in S$.
(3) Both k and s belong to S.

Separators

Within the set of truth values we select the designated ones: those that we hold to be true. Or those bits of evidence we find conclusive.

Separators

Let $A=(A, \preccurlyeq, \rightarrow)$ be an implicative structure. A separator on A is a subset $S \subseteq A$ such that the following are satisfied:
(1) If $a \in S$ and $a \preccurlyeq b$, then $b \in S$.
(2) If $a \rightarrow b \in S$ and $a \in S$, then $b \in S$.
(3) Both k and s belong to S.

Here k and s are defined as follows:

$$
\begin{aligned}
\mathrm{k} & :=\widehat{a}_{a, b}(a \rightarrow b \rightarrow a \\
\mathrm{s} & :=\widehat{a}_{a, b, c}(a \rightarrow b \rightarrow c) \rightarrow(a \rightarrow b) \rightarrow(a \rightarrow c)
\end{aligned}
$$

Implicative algebras

Implicative algebra (Miquel)

A quadruple $(A, \preccurlyeq, \rightarrow, S)$ consisting of an implicative structure $(A, \preccurlyeq, \rightarrow)$ together with a separator S is called an implicative algebra.

Implicative algebras

Implicative algebra (Miquel)

A quadruple $(A, \preccurlyeq, \rightarrow, S)$ consisting of an implicative structure $(A, \preccurlyeq, \rightarrow)$ together with a separator S is called an implicative algebra.

Examples

(1) A complete Heyting algebra with a distinguished filter.

Implicative algebras

Implicative algebra (Miquel)

A quadruple $(A, \preccurlyeq, \rightarrow, S)$ consisting of an implicative structure $(A, \preccurlyeq, \rightarrow)$ together with a separator S is called an implicative algebra.

Examples

(1) A complete Heyting algebra with a distinguished filter.
(2) If P is a total combinatory algebra, then $\operatorname{Pow}(P)$ ordered by inclusion together with the implication

$$
X \rightarrow Y=\{z \in P:(\forall x \in X) z x \in Y\}
$$

The inhabited subsets form a separator.

Tripos

Let us write PreHey for the category of preHeyting algebras (preorders whose poset reflections are Heyting algebras).

Tripos (Hyland, Johnstone, Pitts)
A tripos is a functor P : Sets \rightarrow PreHey such that:

- for each function $f: Y \rightarrow X$, the operation $P f: P X \rightarrow P Y$ has both adjoints satisfying the Beck-Chevally condition.
- There is a set Σ and an element $T \in P(\Sigma)$ such that for any $A \in P(X)$ there is some map a: $X \rightarrow \Sigma$ (not necessarily unique) such that $P(a)(T) \cong A$.

The tripos-to-topos construction allows us to construct a topos from a tripos.

Implicative tripos

Proposition
Let $A=(A, \preccurlyeq, \rightarrow, S)$ be an implicative algebra. If we preorder A as follows:

$$
a \vdash b: \Longleftrightarrow a \rightarrow b \in S,
$$

then A carries the structure of a preHeyting algebra.
In this preHeyting algebra the implication is given by \rightarrow. We think of \vdash as giving us the logical ordering.

Implicative tripos

Proposition

Let $A=(A, \preccurlyeq, \rightarrow, S)$ be an implicative algebra. If we preorder A as follows:

$$
a \vdash b: \Longleftrightarrow a \rightarrow b \in S,
$$

then A carries the structure of a preHeyting algebra.
In this preHeyting algebra the implication is given by \rightarrow. We think of \vdash as giving us the logical ordering.

Indeed, if $A=(A, \preccurlyeq, \rightarrow, S)$ be an implicative algebra and X is a set, then we can consider A^{X} as an implicative algebra as well: implication and the order can be defined pointwise, while

$$
\varphi: X \rightarrow A \in S^{X}: \Longleftrightarrow 人_{x \in X} \varphi(x) \in S
$$

Implicative tripos

Proposition

Let $A=(A, \preccurlyeq, \rightarrow, S)$ be an implicative algebra. If we preorder A as follows:

$$
a \vdash b: \Longleftrightarrow a \rightarrow b \in S,
$$

then A carries the structure of a preHeyting algebra.
In this preHeyting algebra the implication is given by \rightarrow. We think of \vdash as giving us the logical ordering.

Indeed, if $A=(A, \preccurlyeq, \rightarrow, S)$ be an implicative algebra and X is a set, then we can consider A^{X} as an implicative algebra as well: implication and the order can be defined pointwise, while

$$
\varphi: X \rightarrow A \in S^{X}: \Longleftrightarrow 人_{x \in X} \varphi(x) \in S
$$

Indeed, if we put $P X=\left(A^{X}, \vdash_{S^{x}}\right)$, then this defines a tripos (the "implicative tripos").

Section 2

Arrow algebras

Arrow structure

Implicative structures

An arrow structure is a complete poset (A, \preccurlyeq) together with a binary operation $\rightarrow: A \times A \rightarrow A$ satisfying the following condition:

If $a^{\prime} \preccurlyeq a$ and $b \preccurlyeq b^{\prime}$ then $a \rightarrow b \preccurlyeq a^{\prime} \rightarrow b^{\prime}$.

Arrow structure

Implicative structures

An arrow structure is a complete poset (A, \preccurlyeq) together with a binary operation $\rightarrow: A \times A \rightarrow A$ satisfying the following condition:

If $a^{\prime} \preccurlyeq a$ and $b \preccurlyeq b^{\prime}$ then $a \rightarrow b \preccurlyeq a^{\prime} \rightarrow b^{\prime}$.

Separators

Let $A=(A, \preccurlyeq, \rightarrow)$ be an arrow structure. A separator on A is a subset $S \subseteq A$ such that the following are satisfied:
(1) If $a \in S$ and $a \preccurlyeq b$, then $b \in S$.
(2) If $a \rightarrow b \in S$ and $a \in S$, then $b \in S$.
(3) S contains the combinators k, s and a .

Arrow structure

Implicative structures

An arrow structure is a complete poset (A, \preccurlyeq) together with a binary operation $\rightarrow: A \times A \rightarrow A$ satisfying the following condition：

If $a^{\prime} \preccurlyeq a$ and $b \preccurlyeq b^{\prime}$ then $a \rightarrow b \preccurlyeq a^{\prime} \rightarrow b^{\prime}$ ．

Separators

Let $A=(A, \preccurlyeq, \rightarrow)$ be an arrow structure．A separator on A is a subset $S \subseteq A$ such that the following are satisfied：
（1）If $a \in S$ and $a \preccurlyeq b$ ，then $b \in S$ ．
（2）If $a \rightarrow b \in S$ and $a \in S$ ，then $b \in S$ ．
（3）S contains the combinators k, s and a ．
Here a is the combinator：

$$
\mathrm{a}:=\text { 人 }_{x, I,\left(y_{i}\right)_{i \in I},\left(z_{i}\right)_{i \in I}}\left(人_{i \in I} x \rightarrow y_{i} \rightarrow z_{i}\right) \rightarrow x \rightarrow\left(\text { 人 }_{i \in I} y_{i} \rightarrow z_{i}\right) .
$$

Arrow algebras

Arrow algebra

A quadruple $(A, \preccurlyeq, \rightarrow, S)$ consisting of an arrow structure $(A, \preccurlyeq, \rightarrow)$ together with a separator S is called an arrow algebra.

Arrow algebras

Arrow algebra

A quadruple $(A, \preccurlyeq, \rightarrow, S)$ consisting of an arrow structure $(A, \preccurlyeq, \rightarrow)$ together with a separator S is called an arrow algebra.

Every implicative algebra is an arrow algebra.

Arrow algebras

Arrow algebra

A quadruple $(A, \preccurlyeq, \rightarrow, S)$ consisting of an arrow structure $(A, \preccurlyeq, \rightarrow)$ together with a separator S is called an arrow algebra.

Every implicative algebra is an arrow algebra.

Proposition

Let $A=(A, \preccurlyeq, \rightarrow, S)$ be an arrow algebra. If we preorder A as follows:

$$
a \vdash b: \Longleftrightarrow a \rightarrow b \in S,
$$

then A carries the structure of a preHeyting algebra.
Indeed, if $A=(A, \preccurlyeq, \rightarrow, S)$ be an implicative algebra and X is a set, then we can consider A^{X} as an arrow algebra as well: implication and the order can be defined pointwise, with $\varphi: X \rightarrow A \in S^{X}$ if $人_{x \in X} \varphi(x) \in S$. Indeed, if we put $P X=\left(A^{X}, \vdash_{s^{X}}\right)$, then this defines a tripos (the "arrow tripos").

Section 3

Pcas

Pcas

In this talk I follow the conventions of Jetze Zoethout's recent PhD thesis (which has been heavily influenced by Pieter Hofstra's paper "All realizability in relative").

Pcas

In this talk I follow the conventions of Jetze Zoethout's recent PhD thesis (which has been heavily influenced by Pieter Hofstra's paper "All realizability in relative").

Partial applicative poset

A partial applicative poset (abbreviated PAP) is a triple (A, \cdot, \leq) where (A, \leq) is a poset and \cdot is a partial binary operation which satisfies:
if $a^{\prime} b^{\prime}$ is defined and $a \leq a^{\prime}$ and $b \leq b^{\prime}$, then $a b$ is defined and $a b \leq a^{\prime} b^{\prime}$.
We say that A is total is the application operation is total, and A is discrete if the order \leq is a discrete order.

Pcas

In this talk I follow the conventions of Jetze Zoethout's recent PhD thesis (which has been heavily influenced by Pieter Hofstra's paper "All realizability in relative").

Partial applicative poset

A partial applicative poset (abbreviated PAP) is a triple (A, \cdot, \leq) where (A, \leq) is a poset and \cdot is a partial binary operation which satisfies:
if $a^{\prime} b^{\prime}$ is defined and $a \leq a^{\prime}$ and $b \leq b^{\prime}$, then $a b$ is defined and $a b \leq a^{\prime} b^{\prime}$.
We say that A is total is the application operation is total, and A is discrete if the order \leq is a discrete order.

Examples

(1) K_{1} : the set of natural numbers with Kleene application ($n \cdot m$ is the outcome of the n-th Turing machine on input m, whenever defined) and the discrete order.
(2) Terms in the untyped λ-calculus and $M \leq N$ if $M \rightarrow_{\beta} N$.

Pcas

Filter

Let A be a partial applicative poset. A filter F on A is a subset $F \subseteq A$ such that:
(i) if $a, b \in F$ and $a b$ is defined, then $a b \in F$.
(ii) if $a \leq b$ and $a \in F$, then $b \in F$.
(iii) there are elements $k, s \in F$ satisfying:
(1) $k a b=a$;
(2) sab \downarrow;
(3) if $a c(b c) \downarrow$, then $s a b c \downarrow$ and sabc $\leq a c(b c)$,
for all $a, b, c \in A$.

Pcas

Filter

Let A be a partial applicative poset. A filter F on A is a subset $F \subseteq A$ such that:
(i) if $a, b \in F$ and $a b$ is defined, then $a b \in F$.
(ii) if $a \leq b$ and $a \in F$, then $b \in F$.
(iii) there are elements $k, s \in F$ satisfying:
(1) $k a b=a$;
(2) sab \downarrow;
(3) if $a c(b c) \downarrow$, then sabc \downarrow and $s a b c \leq a c(b c)$, for all $a, b, c \in A$.

Pcas

A partial combinatory algebra (abbreviated PCA) is a pair consisting of a partial applicative poset (A, \cdot, \leq) and a filter $A^{\#}$ on it. The PCA will be called total or discrete if the underlying partial applicative poset is. The PCA will be called absolute if $A^{\#}=A$.

Arrow algebras from a pca

Proposition

If P is a pca, then the collection $D P$ of downsets in P carries an arrow structure with

$$
X \rightarrow Y:=\{z \in P:(\forall x \in X) x z \downarrow \text { and } x z \in Y\} .
$$

In addition, $S=\{X \in D P:(\exists x \in X) x \in F\}$ is a separator on this arrow structure.

Arrow algebras from a pca

Proposition

If P is a pca, then the collection DP of downsets in P carries an arrow structure with

$$
X \rightarrow Y:=\{z \in P:(\forall x \in X) x z \downarrow \text { and } x z \in Y\}
$$

In addition, $S=\{X \in D P:(\exists x \in X) x \in F\}$ is a separator on this arrow structure.

Proposition

If P is a pca, then the collection $\operatorname{PER}(P)$ of subsets of $P \times P$ which are downwards closed, symmetric and transitive carries an arrow structure with
$X \rightarrow Y:=\left\{\left(z, z^{\prime}\right) \in P^{2}:\left(\forall\left(x, x^{\prime}\right) \in X\right) x z \downarrow, x^{\prime} z^{\prime} \downarrow\right.$ and $\left.\left(x z, x^{\prime} z^{\prime}\right) \in Y\right\}$.
In addition, $S=\left\{X \in \operatorname{PER}(P):\left(\exists\left(x, x^{\prime}\right) \in X\right) x, x^{\prime} \in F\right\}$ is a separator on this arrow structure.

Section 4

Nuclei

Nuclei

Nucleus

Let $A=(A, \preccurlyeq, \rightarrow, S)$ be an arrow algebra. A mapping $j: A \rightarrow A$ will be called a nucleus if the following three properties are satisfied:
(1) $a \preccurlyeq b$ implies $j a \preccurlyeq j b$ for all $a, b \in A$.
(2) $人_{a \in A} a \rightarrow j a \in S$.
(3) $人_{a, b \in A}(a \rightarrow j b) \rightarrow(j a \rightarrow j b) \in S$.

Nuclei

Nucleus

Let $A=(A, \preccurlyeq, \rightarrow, S)$ be an arrow algebra. A mapping $j: A \rightarrow A$ will be called a nucleus if the following three properties are satisfied:
(1) $a \preccurlyeq b$ implies $j a \preccurlyeq j b$ for all $a, b \in A$.
(2) $人_{a \in A} a \rightarrow j a \in S$.
(3) $人_{a, b \in A}(a \rightarrow j b) \rightarrow(j a \rightarrow j b) \in S$.

Proposition

Let $(A, \preccurlyeq, \rightarrow, S)$ be an arrow algebra and $j: A \rightarrow A$ be a nucleus on it. Then $A_{j}=\left(A, \preccurlyeq, \rightarrow_{j}, S_{j}\right)$ with

$$
\begin{array}{rll}
a \rightarrow_{j} b & : \equiv a \rightarrow j b \\
a \in S_{j} & : \Leftrightarrow j a \in S
\end{array}
$$

is also an arrow algebra.

Section 5

Modified realizability

Modified realizability

Modified realizability is characterised by the following ideas:

- There is a distinction between actual and potential realizers.
- Every actual realizer is also a potential realizer, but not conversely.
- Every proposition, including \perp, has at least one potential realizer.
- Something is true if it has an actual realizer.

The first to define a modified realizability topos was Grayson, based on ideas by Hyland.

The modification of an arrow algebra

Let $A=(A, \preccurlyeq, \rightarrow, S)$ be an arrow algebra. Then we can define a new arrow algebra A^{\rightarrow} as follows: its elements are pairs $x=\left(x_{a}, x_{p}\right) \in A^{2}$ with $x_{a} \preccurlyeq x_{p}$ (here p stands for potential and a for actual).

The modification of an arrow algebra

Let $A=(A, \preccurlyeq, \rightarrow, S)$ be an arrow algebra. Then we can define a new arrow algebra A^{\rightarrow} as follows: its elements are pairs $x=\left(x_{a}, x_{p}\right) \in A^{2}$ with $x_{a} \preccurlyeq x_{p}$ (here p stands for potential and a for actual).
A^{\rightarrow} is often an arrow algebra:
(1) we order the pairs pointwise.
(2) implication is defined follows:

$$
x \rightarrow y=\left(x_{a} \rightarrow y_{a} \curlywedge x_{p} \rightarrow y_{p}, x_{p} \rightarrow y_{p}\right) .
$$

(3) an element $x \in A^{\rightarrow}$ belongs to the separator if x_{a} does.

The modification of an arrow algebra

Let $A=(A, \preccurlyeq, \rightarrow, S)$ be an arrow algebra. Then we can define a new arrow algebra A^{\rightarrow} as follows: its elements are pairs $x=\left(x_{a}, x_{p}\right) \in A^{2}$ with $x_{a} \preccurlyeq x_{p}$ (here p stands for potential and a for actual).
A^{\rightarrow} is often an arrow algebra:
(1) we order the pairs pointwise.
(2) implication is defined follows:

$$
x \rightarrow y=\left(x_{a} \rightarrow y_{a} \curlywedge x_{p} \rightarrow y_{p}, x_{p} \rightarrow y_{p}\right)
$$

(3) an element $x \in A^{\rightarrow}$ belongs to the separator if x_{a} does.

On A^{\rightarrow} we can define a nucleus as follows:

$$
j(x)=\left(x_{a}, x_{p}\right) \vee(\perp, \top)
$$

(Here \vee refers to the logical ordering.) The resulting arrow algebra can be called the modification of A.

Toposes for modified realizability

If we start with $A=\operatorname{Pow}\left(K_{1}\right)$, the arrow algebra for number realizability, then this modification construction yields the arrow algebra for Grayson's topos.

Toposes for modified realizability

If we start with $A=\operatorname{Pow}\left(K_{1}\right)$, the arrow algebra for number realizability, then this modification construction yields the arrow algebra for Grayson's topos.

However, if we let A be $\operatorname{PER}\left(K_{1}\right)$, the arrow algebra for extensional realizability, then I believe the modification construction yields a topos for "extensional modified realizability".

Toposes for modified realizability

If we start with $A=\operatorname{Pow}\left(K_{1}\right)$, the arrow algebra for number realizability, then this modification construction yields the arrow algebra for Grayson's topos.

However, if we let A be $\operatorname{PER}\left(K_{1}\right)$, the arrow algebra for extensional realizability, then I believe the modification construction yields a topos for "extensional modified realizability".

In the internal logic of this topos for "extensional modified realizability" the characteristic principles of modified realizability hold:

$$
\begin{aligned}
& \mathrm{AC}: \forall x^{\sigma} \exists y^{\tau} \alpha(x, y) \rightarrow \exists f^{\sigma \rightarrow \tau} \forall x^{\sigma} \alpha(x, f(x)) \\
& \text { IP : } \quad\left(\varphi \rightarrow \exists x^{\sigma} \psi\right) \rightarrow \exists x^{\sigma}(\varphi \rightarrow \psi)
\end{aligned}
$$

Toposes for modified realizability

If we start with $A=\operatorname{Pow}\left(K_{1}\right)$, the arrow algebra for number realizability, then this modification construction yields the arrow algebra for Grayson's topos.

However, if we let A be $\operatorname{PER}\left(K_{1}\right)$, the arrow algebra for extensional realizability, then I believe the modification construction yields a topos for "extensional modified realizability".

In the internal logic of this topos for "extensional modified realizability" the characteristic principles of modified realizability hold:

$$
\begin{aligned}
& \mathrm{AC}: \forall x^{\sigma} \exists y^{\tau} \alpha(x, y) \rightarrow \exists f^{\sigma \rightarrow \tau} \forall x^{\sigma} \alpha(x, f(x)) \\
& \text { IP : } \quad\left(\varphi \rightarrow \exists x^{\sigma} \psi\right) \rightarrow \exists x^{\sigma}(\varphi \rightarrow \psi)
\end{aligned}
$$

This topos has various subtoposes in which these principles also hold. One such is studied in the MSc thesis of Mees de Vries.

THANK YOU!

References

(1) Alexandre Miquel. Implicative algebras: a new foundation for realizability and forcing. MSCS 30 (2020), 458 - 510.
(2) Jaap van Oosten. Realizability: An Introduction to its Categorical Side. Elsevier, Amsterdam, 2008.
(3) A.S. Troelstra, editor. Metamathematical Invesitigation of Intuitionistic Arithmetic and Analysis. Springer Lectures Notes in Mathematics 344, 1973.
(9) Mees de Vries. An extensional modified realizability topos. MSc thesis, University of Amsterdam, 2017.
(3) Jetze Zoethout. Computability Models and Realizability Toposes. PhD thesis, University of Utrecht, 2022.

