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Completions of doctrines

For this presentation, a doctrine is any functor

P : Cop → PreOrd.

Some completions of doctrines change P, adding structure to the
fibres, e.g.:
(i) Trotta’s existential completion,

(ii) Coumans’ canonical extension.

Other completions change the indexing category C, e.g.
(iii) Cioffo’s strictification of a biased doctrine,

(iv) the quotient completion of Maietti and Rosolini.
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Overview

(a) First we will review the geometric completion of a doctrine,

(b) We then describe an infinitary exact completion for a
geometric doctrine,

(c) Finally, we develop an abstract framework for completions of
doctrines based on relative topos theory.
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Geometric doctrines

Definition
A geometric doctrine over a cartesian category C is a functor

L : Cop → Frm

such that for each arrow f , L(f ) has a left adjoint ∃f satisfying
(i) Frobenius reciprocity (i.e. L(f ) is open),

(ii) and the Beck-Chevalley condition.
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Free geometric completion

It is relatively easy to construct a free geometric completion of a
primary doctrine P : Cop →MSLat.

Given a primary doctrine morphism P → L where L is also
geometric.

We first take the existential completion of P,
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Free geometric completion

It is relatively easy to construct a free geometric completion of a
primary doctrine P : Cop →MSLat.

Given a primary doctrine morphism P → L where L is also
geometric.

We first take the existential completion of P, followed by the
pointwise free join completion.

P P∃ 2(−)op ◦ P∃

L.
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Limitations

However, this is not entirely satisfactory: it is not an idempotent
completion.

This is not surprising, as it is a free algebraic completion.

To achieve idempotency, we must include relations.

For geometric logic, these relations look like Grothendieck
topologies.
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Doctrinal sites

Definition
A doctrinal site is a tuple (C, J ,P,K ) where
(i) (C, J) is a site,

(ii) P : Cop → PreOrd is a doctrine,

(iii) and K is a Grothendieck topology on the Grothendieck con-
struction C ⋊ P that contains the Giraud topology.

Equivalently, π : (C ⋊ P,K )→ (C, J) is a faithful fibration that is
also a comorphism of sites.
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Morphisms of doctrinal sites

Definition
A morphism of doctrinal sites (C, J ,P,K )→ (D, J ′,Q,K ′) consists
of
(i) a functor F : C → D,

(ii) and a natural transformation a : P → Q ◦ F op,
such that both

F : (C, J)→ (D, J ′), F ⋊ a : (C ⋊ P,K )→ (D ⋊ Q,K ′)

are morphisms of sites.
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Are doctrinal sites sane?

There are full and faithful embeddings

PrimDoc

DocSites

given by
P primary doctrine 7→ (C, Jtriv,P, Jtriv),
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Are doctrinal sites sane?
There are full and faithful embeddings

PrimDoc

ExDoc DocSites

given by
P existential doctrine 7→ (C, Jtriv,P, JEx),

where JEx is generated by covers

(c ,U)
f−→ (c , ∃f U),
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Are doctrinal sites sane?
There are full and faithful embeddings

PrimDoc

ExDoc DocSites

CohDoc,

given by
P coherent doctrine 7→ (C, Jtriv,P, JCoh),

where JCoh is generated by covers

(c ,U)
f−→ (c , ∃f U ∨ ∃gV )

g←− (c ,V ).
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Geometric doctrines

Definition
A geometric doctrine over a site (C, J) is Frmopen-valued doctrine
L : Cop → Frmopen satisfying one of the equivalent conditions
(i) L is an internal locale of Sh(C, J),

(ii) the assignment of sieves KL(d ,V ) given by{
(ci ,Ui)

fi−→ (d ,V )
∣∣∣ i ∈ I

}
∈ KL(d ,V ) ⇐⇒ V =

∨
i∈I
∃fi Ui

defines a Grothendieck topology on C ⋊ L that contains the
Giraud topology for J .

This is an application of Caramello’s relative Beck-Chevalley
condition.
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The geometric completion

We define GeomDoc as the full subcategory of DocSites on
objects of the form (C, J ,L,KL).

Theorem
There exists a 2-adjunction, the geometric completion,

GeomDoc DocSites.

Joshua Wrigley Università degli Studi dell’Insubria
Eliminating Imaginaries and adding structure: How does the geometric completion fit in?



Introduction The geometric completion Families of partial equivalence relations Completions of indexing categories References

Calculating the geometric completion
For the geometric morphism Cπ : Sh(C ⋊ P,K )→ Sh(C, J), the
subobject lattice SubSh(C⋊P,K)(C∗

π(F )) is a frame for each object
F ∈ Sh(C, J).

The doctrine

Sh(C, J)op Frm.
SubSh(C⋊P,K)(C∗

π(−))

is a geometric doctrine.

The geometric completion acts on objects by sending (C, J ,P,K )
to the geometric doctrine

Cop Sh(C, J)op Frm.ℓop SubSh(C⋊P,K)(C∗
π(−))
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In classical model theory, there is a notion of elimination of
imaginaries.

Roughly speaking, an imaginary is a partial equivalence relation
defined by a theory, and Shelah’s elimination of imaginaries is a
universal addition a sort for each such relation to the language of
the theory.

Makkai observed that the pretopos completion is the categorical
formulation of Shelah’s elimination of imaginaries for a coherent
theory.

For doctrines, there are equivalent notions such as the
tripos-to-topos construction or the quotient completion.
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Syntactic categories
Let L : Cop → Frm be a geometric doctrine over a cartesian base
category.

Definition
The syntactic category Syn(L) of L is the category:
(i) whose objects are pairs (c ,U), U ∈ L(c),

(ii) and whose arrows (c ,U)
f−→ (d ,V ) are provably functional re-

lations, i.e. f ∈ L(c × d) such that

f (x) = y `x :c;y :d U(x) ∧ V (y),
f (x) = y ∧ f (x) = y ′ `x :c;y ,y ′:d y = y ′,

U(x) `x :c ∃y : d f (x) = y .
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Category of partial equivalence relations

Definition
The category of partial equivalence relations PER(L) of L is the
category:
(i) whose objects are partial equivalence relations (c ,E ), i.e. E ∈

L(c × c) such that

E (x , x ′) `x ,x ′:c E (x ′, x),
E (x , x ′) ∧ E (x ′, x ′′) `x ,x ′,x ′′:c E (x , x ′′),
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Category of families of partial equivalence relations

Let κ be an infinite cardinal.
Definition
The category of κ-families of partial equivalence relations
κ-PER(L) of L is the category:
(i) whose objects are tuples (ci ,Ei)i∈I of partial equivalence rela-

tions of at most length κ,
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Category of families of partial equivalence relations
Let κ be an infinite cardinal.
Definition
The category of κ-families of partial equivalence relations
κ-PER(L) of L is the category:

(ii) and whose arrows (ci ,Ei)i∈I
(fi,j )i∈I,j∈J−−−−−−→ (dj ,Fj)j∈J are familial

provably functional relations, i.e. fi ,j ∈ L(ci × dj) such that

fi ,j(x) = y `x :ci ;y :dj Ei(x , x) ∧ Fj(y , y),
fi ,j(x) = y ∧ Ei(x , x ′) ∧ Fj(y , y ′) `x ,x ′:ci ;y ,y ′:dj f (x ′) = y ,

fi ,j(x) = y ∧ fi ,j(x) = y ′ `x :ci ;y ,y ′:dj Fj(y , y ′),

Ei(x , x) `x :ci

∨
j∈J
∃y : d fi ,j(x) = y .
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Families of partial equivalence relations and sheaves

The category ∞-PER(L) is the ∞-pretopos completion of Syn(L).

It is also equivalent to the topos of internal sheaves Sh(L) for L
viewed as an internal locale. Explicitly,

∞-PER(L) ' Sh(C ⋊ L,KL).

This motivates considering the geometric morphism

Sh(C ⋊ P,K )→ Sh(C, J)

for a doctrinal site (C, J ,P,K ).
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Summary of constructions
We thus obtain generalised exact completions of the geometric
completion.

Level Subcategory of Sh(C ⋊ P,K ) Corresponding completion

0 Full subcategory of
subrepresentables Syntactic category,

1 Full subcategory of sheaves
covered by a subrepresentable Exact completion,

ω0

Full subcategory of sheaves
covered by finitely many
subrepresentables

Pretopos completion,

...
...

...
∞ The whole topos ∞-pretopos completion.
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Cioffo’s strictification
Our framework also encompasses completions of a doctrine P that
don’t include any data coming from P.

For example, Cioffo studies biased doctrines, i.e. functors

P : Cop →MSLat

where C has weak finite limits.

In order to study the quotient completion of a biased doctrine,
parallel to Carboni and Vitale’s exact completion of a weakly
cartesian category, Cioffo introduces in [2] the strictification of a
biased doctrine

Pst : fl(C)op →MSLat
where fl(C) denotes the free finite limit completion of C.
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Extending strictification

We can extend the notion of strictification to the geometric
completion of any doctrinal site (C, J ,P,K ).

There exists a topology J ′ on fl(C) such that

Sh(C, J) ' Sh(fl(C), J ′),

and so we can define the geometric strictification of an arbitrary
doctrinal site (C, J ,P,K ) as the doctrine

fl(C)op Sh(fl(C), J ′) ' Sh(C, J) Frm.ℓop SubSh(C⋊P,K)(C∗
π(−))
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Thank you for listening
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