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Hindman’s Finite Sums Theorem

Theorem (Hindman, 1972)
Whenever the positive integers are colored in finitely many colors there
is an infinite set such that all non-empty finite sums of distinct
elements drawn from that set have the same color.

Original proof is combinatorial but intricate.
Later proofs are simpler but use strong methods (ultrafilters or
ergodic theory).

Question, ’80s
What is the strength of Hindman’s Theorem?
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Measures of Strength

HTk = ∀ c : N→ k︸ ︷︷ ︸
instance

∃X ⊆ N︸ ︷︷ ︸
solution

(|X | = ℵ0 and FS(X ) is mono)

HT = ∀kHTk

Reverse Mathematics: provability in the systems

RCA0,WKL0,ACA0,ACA′0,ACA+
0 , . . .

or (mutual) implications over the base theory RCA0.
Computable Mathematics: complexity of solutions for
computable instances.
RM and CM: computable reducibility to/from other principles.
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Lower Bound on Hindman’s Theorem

HT ≥ ∅(1),RT3
2,ACA0

Theorem (Blass, Hirst, Simpson 1987)
1 Some computable (resp. computable in X) 2-coloring of N admits

only solutions to HT2 that compute ∅(1) (resp. X ′ – the jump of X).
2 RCA0 + HT2 ` ACA0.

Proof is by coding of the Halting Set and formalizes in RCA0.
Uses the notion of gap, the interval between two successive
exponents of a number in base 2.
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Upper Bound on Hindman’s Theorem

ACA+
0 ,∅(ω+1) ≥ HT

Theorem (Blass, Hirst, Simpson 1987)
1 Any finite computable (resp. computable in X) coloring of N

admits a solution to HT computable in ∅(ω+1) (resp. in X (ω+1)).
2 ACA+

0 ` HT.

ACA+
0 is ACA0 plus ∀X∃Y (Y = X (ω)).

Proof is by analyzing the original proof by Hindman.
Ultrafilter and ergodic proofs give worse bounds (so far).
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Bounded Sums

Question (Blass, 2005)
Does the complexity of HT grow with the length of the sums?

Is it the case that longer sums require more jumps?
FS(X ) = sums of finitely many distinct elements of X .
FS≤n(X ) = sums of 1,2, . . . ,n distinct elements of X .
HT≤n

k = the restriction of HT to k colors and sums of length ≤ n.

HT≤n
k ,HT≤n
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Lower Bounds for bounded sums

HT≤3 ≥ ∅(1),RT3
2,ACA0

Theorem (Dzhafarov, Jockusch, Solomon, Westrick, 2017)
1 RCA0 + HT≤3

3 ` ACA0.
2 RCA0 0 HT≤2

2 , and RCA0 + RT1 + HT≤2
2 ` SRT2

2.

SRT2
2 is the Stable Ramsey’s Theorem (WKL0 0 SRT2

2).
Proof of (1): modification of Blass-Hirst-Simpson’s argument.
Proof of (2): Given a ∆0

2-set A define a coloring all of whose
solutions compute an infinite subset of A or an infinite set disjoint
from A. Formalization requires RT1 (eq. BΣ0

2).
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Upper bounds for bounded sums?

Question (Hindman, Leader and Strauss, 2003)
Is there a proof that whenever N is finitely coloured there is a sequence
x1, x2, . . . such that all xi and all xi + xj (i 6= j) have the same colour,
that does not also prove the Finite Sums Theorem?

Does HT≤2 imply HT over RCA0?
Can we upper bound HT≤2 below ACA+

0 ?
Are there natural Hindman-type principles with:

1 Non-trivial lower bounds, and
2 Upper bounds strictly below HT?

We call such principles Weak Yet Strong.
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A brute force proof using Ramsey

Given c : N→ 2,

1. Use RT1
2 on N wrt c to get an infinite homset H1.

2. Use RT2
2 on H1 wrt f2(x , y) := c(x + y) to fix the color of sums of

length 2 on an infinite H2 ⊆ H1.
. . .

k. Use RTk
2 on Hk−1 wrt fk (x1, . . . , xk ) := c(x1 + · · ·+ xk ) to fix the

color of sums of length k on an infinite Hk ⊆ Hk−1.

This induces a coloring d : [1, k ]→ 2, where d(i) is the c-color of sums
of length i from Hk .
If k is large, then d has some interesting homogeneous set!
E.g. if k ≥ 6 then by Schur’s Theorem there exists a,b > 0 such that

d(a) = d(b) = d(a + b).
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Hindman-Schur Theorem

FSA(X ): sums of j-many distinct elements of X for any j ∈ A.
Hindman-Schur Theorem: Whenever the positive integers are
colored in two colors there exist positive integers a,b and an
infinite set H such that FS{a,b,a+b}(H) is monochromatic.

Theorem (C., 2017)
Hindman-Schur Theorem is provable in ACA0.

A host of similar Hindman-type theorems based on different finite
combinatorial principles (e.g., Van Der Waerden, Folkman, etc.).
All provable in ACA0.
What about lower bounds?
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Hindman-Schur with apartness

The Blass-Hirst-Simpson’s lower bound proof works, if we impose that
the solution set satisfies the following Apartness Condition, for t = 2.

Definition (t-Apartness)
Fix a base t ≥ 2. A set X ⊆ N satisfies the t-apartness condition if

x < x ′ ⇒ µt (x) < λt (x ′).

λt (x) = least exponent in base t representation of n.
µt (x) = maximal exponent in base t representation of n.

P with t-apartness = P with t-apartness on the solution set.

Theorem (C., Kołodziejczyk, Lepore, Zdanowski, 2017)
Hindman-Schur with 2-apartness is equivalent to ACA0 (over RCA0).
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The Apartness Condition
Imposing apartness is a self-strenghtening of Hindman’s Theorem:

RCA0 ` HT ≡ HT with apartness.

For restricted versions we have the following:

Proposition (C., 2017)

RCA0 + HT≤n
2k ` HT≤n

k with 3-apartness.

Proof: Give c : N→ 2, let d : N→ 4:

d(n) :=

{
c(n) if n = 3t + . . . ,

2 + c(n) if n = 2 · 3t + . . . .

If FS≤2(H) is monochromatic for d then:
1 all elements have same first coefficient. Then:
2 no two elements of H can have the same first exponent.
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Restricted Hindman and Polarized Ramsey

Recall that Dzhafarov et alii proved

RCA0 + HT≤2 + RT1 ` SRT2
2

We improve by showing that

RCA0 + HT≤2 ` IPT2
2

Definition (Dzhafarov and Hirst, 2011)

IPT2
2: For all f : [N]2 → 2 there exists a pair of infinite sets (H1,H2)

such that all increasing pairs {x1, x2} with xi ∈ Hi get the same f -color.

RT2
2 ≥ IPT2

2 > SRT2
2
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Restricted Hindman and Polarized Ramsey
In fact we get that IPT2

2 is strongly computably reducible to HT≤2
4 :

any f : [N]2 → 2 of IPT2
2 computes an instance c : N→ 2 of HT≤2

4 s.t.
any solution to HT≤2

4 for c computes a solution to IPT2
2 for f .

Theorem (C., 2017)

RCA0 + HT≤2
4 ` IPT2

2. Moreover, IPT2
2 ≤sc HT≤2

4 .

HT=n
k = restriction of HTk to sums of exactly n elements.

In fact we show:

Theorem (C., 2017)

RCA0 + HT=2
2 with t-apartness ` IPT2

2. Moreover, IPT2
2 ≤sc HT=2

2 with
t-apartness.

N.B. RT2
2 proves HT=2

2 with t-apartness.

Lorenzo Carlucci (Rome I) Padova, September 2017 15 / 21



IPT2
2 ≤sc HT=2

2 with 2-apartness

Given f : [N]2 → 2, let g : N→ 2:

g(n) :=

{
0 if n = 2t ,

f (λ(n), µ(n)) otherwise.

Let H = {h1 < h2 < h3 < . . . } be an infinite and 2-apart set such that
g is constant on FS=2(H). Then

λ(h1) ≤ µ(h1) < λ(h2) ≤ µ(h2) < λ(h3) ≤ µ(h3) < . . .

So if
H1 := {λ(h1), λ(h3), λ(h5), . . . , }

H2 := {µ(h2), µ(h4), µ(h6), . . . , }

Then (H1,H2) is a solution to IPT2
2 for f .
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Sums of length 2 and ACA0

HT≤2 ≥ ∅(1),RT3
2,ACA0

Recall that Dzhafarov et alii proved

RCA0 + HT≤3 ` ACA0.

Theorem (C., Kołodziejczyk, Lepore, Zdanowski, 2017)

RCA0 + HT≤2 ` ACA0.

Proposition (C., Kołodziejczyk, Lepore, Zdanowski, 2017)

For t ≥ 2, RCA0 + HT≤2
2 with t-apartness ` ACA0.

Lorenzo Carlucci (Rome I) Padova, September 2017 17 / 21



HT≤2
2 with apartness implies ACA0

Let f : N→ N be 1:1. Let n = 2n0 + · · ·+ 2nr , (n0 < · · · < nr ). Consider

f � [0,n0), f � [n0,n1), . . . , f � [nr−1,nr ).

Call j ≤ r important in n iff some value of f � [nj−1,nj) is below n0.
(n−1 := 0).

c(n) := parity of the number of important js in n.

Let H be infinite, 2-apart and FS≤2(H) mono.
Claim: for each n ∈ H and each x < λ(n),

x ∈ rg(f ) if and only if x ∈ rg(f � µ(n)).

Gives a computable definition of rg(f ): given x , find the smallest n ∈ H
such that x < λ(n) and check whether x is in rg(f � µ(n)).
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HT=n
k with apartness and ACA0

By improving the proof we get the following:

Proposition (C., Kołodziejczyk, Lepore, Zdanowski, 2017)

For every t ≥ 2, RCA0 + HT=3
2 with t-apartness ` ACA0.

Therefore {HT=n
k with 2-apartness ; n ≥ 3, k ≥ 2} is a weak yet

strong family.

Corollary (C., Kołodziejczyk, Lepore, Zdanowski, 2017)
For every n ≥ 3 and k ≥ 2,

HT=n
k with 2-apartness ≡ ACA0

over RCA0.
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Open Problems

Can we upper bound HT≤2
2 strictly below ACA+

0 ?

Is HT≤2
2 provable in ACA0?

Do colors matter? How?
Does apartness increase strength in the bounded cases?
Which implications are witnessed by reductions? E.g. Does
IPT3

2 ≤sc HT≤3
2 ?
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