## Weak yet strong restrictions of Hindman's Finite Sums Theorem

Lorenzo Carlucci

Department of Computer Science University of Rome I

September 2017 AILA meeting Padova, Italy

4 3 5 4 3 5

## Outline



#### Bounded Sums

- 3 Weak Yet Strong Principles
- 4 From Hindman to Ramsey



## Hindman's Finite Sums Theorem

#### Theorem (Hindman, 1972)

Whenever the positive integers are colored in finitely many colors there is an infinite set such that all non-empty finite sums of distinct elements drawn from that set have the same color.

- Original proof is combinatorial but intricate.
- Later proofs are simpler but use strong methods (ultrafilters or ergodic theory).

Question, '80s

What is the strength of Hindman's Theorem?

< 回 > < 回 > < 回 >

## Measures of Strength



Reverse Mathematics: provability in the systems

 $\mathsf{RCA}_0, \mathsf{WKL}_0, \mathsf{ACA}_0, \mathsf{ACA}_0', \mathsf{ACA}_0^+, \ldots$ 

or (mutual) implications over the base theory RCA<sub>0</sub>.

- Computable Mathematics: complexity of solutions for computable instances.
- RM and CM: computable reducibility to/from other principles.

### Lower Bound on Hindman's Theorem

# $HT \geq \varnothing^{(1)}, RT_2^3, ACA_0$

#### Theorem (Blass, Hirst, Simpson 1987)

- Some computable (resp. computable in X) 2-coloring of N admits only solutions to HT<sub>2</sub> that compute Ø<sup>(1)</sup> (resp. X' the jump of X).
  RCA<sub>0</sub> + HT<sub>2</sub> ⊢ ACA<sub>0</sub>.
  - Proof is by coding of the Halting Set and formalizes in RCA<sub>0</sub>.
  - Uses the notion of gap, the interval between two successive exponents of a number in base 2.

A (10) A (10)

## Upper Bound on Hindman's Theorem

 $ACA_0^+, \emptyset^{(\omega+1)} \ge HT$ 

#### Theorem (Blass, Hirst, Simpson 1987)

- Any finite computable (resp. computable in X) coloring of N admits a solution to HT computable in Ø<sup>(ω+1)</sup> (resp. in X<sup>(ω+1)</sup>).
  ACA<sup>+</sup><sub>0</sub> ⊢ HT.
  - ACA<sub>0</sub><sup>+</sup> is ACA<sub>0</sub> plus  $\forall X \exists Y(Y = X^{(\omega)})$ .
  - Proof is by analyzing the original proof by Hindman.
  - Ultrafilter and ergodic proofs give worse bounds (so far).

< ロ > < 同 > < 回 > < 回 >

### **Bounded Sums**

#### Question (Blass, 2005)

Does the complexity of HT grow with the length of the sums?

- Is it the case that longer sums require more jumps?
- FS(X) = sums of finitely many distinct elements of *X*.
- $FS^{\leq n}(X) =$ sums of 1, 2, ..., *n* distinct elements of *X*.
- $HT_k^{\leq n}$  = the restriction of HT to k colors and sums of length  $\leq n$ .

 $\operatorname{HT}_{k}^{\leq n}, \operatorname{HT}^{\leq n}$ 

A > + = + + =

### Lower Bounds for bounded sums

$$\mathsf{HT}^{\leq 3} \geq \varnothing^{(1)}, \mathsf{RT}_2^3, \mathsf{ACA}_0$$

Theorem (Dzhafarov, Jockusch, Solomon, Westrick, 2017)

**1** 
$$\operatorname{RCA}_0 + \operatorname{HT}_3^{\leq 3} \vdash \operatorname{ACA}_0.$$

**2** 
$$\operatorname{RCA}_{0} \nvDash \operatorname{HT}_{2}^{\leq 2}$$
, and  $\operatorname{RCA}_{0} + \operatorname{RT}^{1} + \operatorname{HT}_{2}^{\leq 2} \vdash \operatorname{SRT}_{2}^{2}$ .

- $SRT_2^2$  is the Stable Ramsey's Theorem (WKL<sub>0</sub>  $\nvDash$   $SRT_2^2$ ).
- Proof of (1): modification of Blass-Hirst-Simpson's argument.
- Proof of (2): Given a Δ<sub>2</sub><sup>0</sup>-set A define a coloring all of whose solutions compute an infinite subset of A or an infinite set disjoint from A. Formalization requires RT<sup>1</sup> (eq. BΣ<sub>2</sub><sup>0</sup>).

< 回 > < 回 > < 回 >

## Upper bounds for bounded sums?

#### Question (Hindman, Leader and Strauss, 2003)

Is there a proof that whenever **N** is finitely coloured there is a sequence  $x_1, x_2, ...$  such that all  $x_i$  and all  $x_i + x_j$  ( $i \neq j$ ) have the same colour, that does not also prove the Finite Sums Theorem?

- Does HT<sup>≤2</sup> imply HT over RCA<sub>0</sub>?
- Can we upper bound  $HT^{\leq 2}$  below  $ACA_0^+$ ?
- Are there natural Hindman-type principles with:
  - Non-trivial lower bounds, and
  - Opper bounds strictly below HT?
- We call such principles Weak Yet Strong.

A D A D A D A

## A brute force proof using Ramsey

Given  $c: \mathbf{N} \rightarrow 2$ ,

. . .

- 1. Use  $RT_2^1$  on **N** wrt *c* to get an infinite homset  $H_1$ .
- 2. Use  $\operatorname{RT}_2^2$  on  $H_1$  wrt  $f_2(x, y) := c(x + y)$  to fix the color of sums of length 2 on an infinite  $H_2 \subseteq H_1$ .
- k. Use  $\operatorname{RT}_2^k$  on  $H_{k-1}$  wrt  $f_k(x_1, \ldots, x_k) := c(x_1 + \cdots + x_k)$  to fix the color of sums of length k on an infinite  $H_k \subseteq H_{k-1}$ .

This induces a coloring  $d : [1, k] \rightarrow 2$ , where d(i) is the *c*-color of sums of length *i* from  $H_k$ .

If *k* is large, then *d* has some interesting homogeneous set!

E.g. if  $k \ge 6$  then by Schur's Theorem there exists a, b > 0 such that

$$d(a) = d(b) = d(a+b).$$

#### Hindman-Schur Theorem

- $FS^{A}(X)$ : sums of *j*-many distinct elements of X for any  $j \in A$ .
- **Hindman-Schur Theorem**: Whenever the positive integers are colored in two colors **there exist** positive integers *a*, *b* and an infinite set *H* such that *FS*{*a,b,a+b*}(*H*) is monochromatic.

#### Theorem (C., 2017)

Hindman-Schur Theorem is provable in ACA<sub>0</sub>.

- A host of similar Hindman-type theorems based on different finite combinatorial principles (e.g., Van Der Waerden, Folkman, etc.).
- All provable in ACA<sub>0</sub>.
- What about lower bounds?

< 回 > < 回 > < 回 >

#### Hindman-Schur with apartness

The Blass-Hirst-Simpson's lower bound proof works, if we impose that the solution set satisfies the following Apartness Condition, for t = 2.

#### Definition (t-Apartness)

Fix a base  $t \ge 2$ . A set  $X \subseteq \mathbf{N}$  satisfies the *t*-apartness condition if

$$\mathbf{x} < \mathbf{x}' \Rightarrow \mu_t(\mathbf{x}) < \lambda_t(\mathbf{x}').$$

 $\lambda_t(x) = least$  exponent in base t representation of n.  $\mu_t(x) = maximal$  exponent in base t representation of n.

• P with t-apartness = P with t-apartness on the solution set.

Theorem (C., Kołodziejczyk, Lepore, Zdanowski, 2017) Hindman-Schur with 2-apartness is equivalent to ACA<sub>0</sub> (over RCA<sub>0</sub>).

## The Apartness Condition

Imposing apartness is a self-strenghtening of Hindman's Theorem:

 $RCA_0 \vdash HT \equiv HT$  with apartness.

For restricted versions we have the following:

Proposition (C., 2017) RCA<sub>0</sub> + HT $\frac{\leq n}{2k}$   $\vdash$  HT $\frac{\leq n}{k}$  with 3-apartness.

**Proof:** Give  $c : \mathbf{N} \to 2$ , let  $d : \mathbf{N} \to 4$ :

$$d(n) := \begin{cases} c(n) & \text{if } n = 3^t + \dots, \\ 2 + c(n) & \text{if } n = 2 \cdot 3^t + \dots \end{cases}$$

If  $FS^{\leq 2}(H)$  is monochromatic for *d* then:

- all elements have same first coefficient. Then:
- Ino two elements of H can have the same first exponent.

### **Restricted Hindman and Polarized Ramsey**

Recall that Dzhafarov et alii proved

 $\mathsf{RCA}_0 + \mathsf{HT}^{\leq 2} + \mathsf{RT}^1 \vdash \mathsf{SRT}_2^2$ 

We improve by showing that

 $\mathsf{RCA}_0 + \mathsf{HT}^{\leq 2} \vdash \mathsf{IPT}_2^2$ 

#### Definition (Dzhafarov and Hirst, 2011)

IPT<sub>2</sub><sup>2</sup>: For all  $f : [\mathbf{N}]^2 \to 2$  there exists a pair of infinite sets  $(H_1, H_2)$  such that all increasing pairs  $\{x_1, x_2\}$  with  $x_i \in H_i$  get the same *f*-color.

$$\mathsf{RT}_2^2 \geq \mathsf{IPT}_2^2 > \mathsf{SRT}_2^2$$

A (10) A (10)

## **Restricted Hindman and Polarized Ramsey**

In fact we get that IPT<sub>2</sub><sup>2</sup> is **strongly computably reducible** to  $HT_4^{\leq 2}$ : any  $f : [\mathbf{N}]^2 \rightarrow 2$  of IPT<sub>2</sub><sup>2</sup> computes an instance  $c : \mathbf{N} \rightarrow 2$  of  $HT_4^{\leq 2}$  s.t. any solution to  $HT_4^{\leq 2}$  for *c* computes a solution to IPT<sub>2</sub><sup>2</sup> for *f*.

Theorem (C., 2017)

 $\text{RCA}_0 + \text{HT}_4^{\leq 2} \vdash \text{IPT}_2^2. \textit{ Moreover, } \text{IPT}_2^2 \leq_{sc} \text{HT}_4^{\leq 2}.$ 

•  $HT_k^{=n}$  = restriction of  $HT_k$  to sums of *exactly n* elements.

In fact we show:

Theorem (C., 2017)

 $RCA_0 + HT_2^{=2}$  with t-apartness  $\vdash IPT_2^2$ . Moreover,  $IPT_2^2 \leq_{sc} HT_2^{=2}$  with t-apartness.

• N.B.  $RT_2^2$  proves  $HT_2^{=2}$  with t-apartness.

# $IPT_2^2 \leq_{sc} HT_2^{=2}$ with 2-apartness

Given  $f : [\mathbf{N}]^2 \rightarrow 2$ , let  $g : \mathbf{N} \rightarrow 2$ :

$$g(n) := egin{cases} 0 & ext{if } n = 2^t, \ f(\lambda(n), \mu(n)) & ext{otherwise.} \end{cases}$$

Let  $H = \{h_1 < h_2 < h_3 < ...\}$  be an infinite and 2-apart set such that g is constant on  $FS^{=2}(H)$ . Then

$$\lambda(h_1) \leq \mu(h_1) < \lambda(h_2) \leq \mu(h_2) < \lambda(h_3) \leq \mu(h_3) < \dots$$

So if

$$H_1 := \{\lambda(h_1), \lambda(h_3), \lambda(h_5), \dots, \}$$
$$H_2 := \{\mu(h_2), \mu(h_4), \mu(h_6), \dots, \}$$

Then  $(H_1, H_2)$  is a solution to IPT<sup>2</sup><sub>2</sub> for *f*.

A (1) > A (2) > A (2) >

## Sums of length 2 and ACA<sub>0</sub>

# $HT^{\leq 2} \geq \varnothing^{(1)}, RT_2^3, ACA_0$

Recall that Dzhafarov et alii proved

 $\mathsf{RCA}_0 + \mathsf{HT}^{\leq 3} \vdash \mathsf{ACA}_0.$ 

Theorem (C., Kołodziejczyk, Lepore, Zdanowski, 2017)  $\label{eq:RCA0} \mathsf{RCA}_0 + \mathsf{HT}^{\leq 2} \vdash \mathsf{ACA}_0.$ 

Proposition (C., Kołodziejczyk, Lepore, Zdanowski, 2017) For  $t \ge 2$ ,  $RCA_0 + HT_2^{\le 2}$  with t-apartness  $\vdash ACA_0$ .

# $HT_2^{\leq 2}$ with apartness implies ACA<sub>0</sub>

Let  $f : \mathbf{N} \to \mathbf{N}$  be 1:1. Let  $n = 2^{n_0} + \cdots + 2^{n_r}$ ,  $(n_0 < \cdots < n_r)$ . Consider

$$f \upharpoonright [0, n_0), f \upharpoonright [n_0, n_1), \ldots, f \upharpoonright [n_{r-1}, n_r).$$

Call  $j \le r$  important in n iff some value of  $f \upharpoonright [n_{j-1}, n_j)$  is below  $n_0$ .  $(n_{-1} := 0)$ .

c(n) := parity of the number of important *j*s in *n*.

Let *H* be infinite, 2-apart and  $FS^{\leq 2}(H)$  mono. **Claim**: for each  $n \in H$  and each  $x < \lambda(n)$ ,

 $x \in \operatorname{rg}(f)$  if and only if  $x \in \operatorname{rg}(f \upharpoonright \mu(n))$ .

Gives a computable definition of rg(f): given x, find the smallest  $n \in H$  such that  $x < \lambda(n)$  and check whether x is in  $rg(f \upharpoonright \mu(n))$ .

# $HT_k^{=n}$ with apartness and $ACA_0$

By improving the proof we get the following:

Proposition (C., Kołodziejczyk, Lepore, Zdanowski, 2017) For every  $t \ge 2$ ,  $RCA_0 + HT_2^{=3}$  with t-apartness  $\vdash ACA_0$ .

Therefore {HT<sup>=n</sup><sub>k</sub> with 2-apartness ; n ≥ 3, k ≥ 2} is a weak yet strong family.

Corollary (C., Kołodziejczyk, Lepore, Zdanowski, 2017) For every  $n \ge 3$  and  $k \ge 2$ ,

 $HT_k^{=n}$  with 2-apartness  $\equiv ACA_0$ 

over RCA<sub>0</sub>.

## **Open Problems**

- Can we upper bound  $HT_2^{\leq 2}$  strictly below  $ACA_0^+$ ?
- Is HT<sup>2</sup><sub>2</sub> provable in ACA<sub>0</sub>?
- Do colors matter? How?
- Does apartness increase strength in the bounded cases?
- Which implications are witnessed by reductions? E.g. Does  $\mathsf{IPT}_2^3 \leq_{sc} \mathsf{HT}_2^{\leq 3}$ ?

## Bibliography

- A. Blass. Some questions arising from Hindman's Theorem. Sci. Math. Jpn., 62 (2005), 331–334.
- A. R. Blass, J.L. Hirst, S. G. Simpson. Logical analysis of some theorems of combinatorics and topological dynamics. In: *Logic and combinatorics*, Contemp. Math., vol. 65, pp. 125–156. AMS, 1987.
- L. Carlucci. A weak variant of Hindman's Theorem stronger than Hilbert's Theorem. To appear in Archive for Mathematical Logic.
- L. Carlucci. Weak Yet Strong restrictions of Hindman's Finite Sums Theorem. To appear in *Proceedings of the AMS*.
- **L.** Carlucci, L. A. Kołodziewczyk, F. Lepore, K. Zdanowski, New bounds on restrictions of Hindman's Finite Sums Theorem, arXiv:1701.06095.
- D. Dzhafarov, C. Jockusch, R. Solomon, L. B. Westrick. Effectiveness of Hindman's Theorem for bounded sums. In *Proceedings of the International Symposium on Computability and Complexity*, 2017.
- N. Hindman. Finite sums from sequences within cells of a partition of N. Journal of Combinatorial Theory Series A 17 (1974), 1–11.
- N. Hindman, I. Leader, and D. Strauss. Open problems in partition regularity. Combinatorics Probability and Computing 12 (2003), 571–583.