
Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Towards an implementation in LambdaProlog
of the two level Minimalist Foundation

A. Fiori C. Sacerdoti Coen

University of Padova University of Bologna

Padova, 27/09/2017

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

1 Introduction

2 Type checkers for the two levels of the Minimalist Foundation

3 Interpreting the extensional level in the intensional level

4 Conclusions and Future Works

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Outline

1 Introduction

2 Type checkers for the two levels of the Minimalist Foundation

3 Interpreting the extensional level in the intensional level

4 Conclusions and Future Works

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

The Minimalist Foundation
The Minimalist Foundation [MaiettiSambin 2005, Maietti
2009] is a two-level formal system.
The extensional level allows for quotients.
The intensional satisfies the proof-as-programs paradigm.
The Minimalist Foundation is compatible with all major
constructive foundations for mathematics

Extensional
(emTT)

Power sets
Quotients

Intensional
(mTT)

CT+AC
Decidability

Setoid
Model

Interpretation

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Outline of Our Work

Work in Progress
Type checkers for the two levels of the Minimalist
Foundation (implemented in λProlog).
Implementation (in λProlog) of the interpretation from the
extensional level to the intensional level.

Future Works
Formal validation of the interpretation (in Abella).
Proof assistant over the extensional level
(in ELPI = λProlog + Constraint Programming)
Code extraction at the intensional level.

We implemented the two level system completed in [Maietti
2009]

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

What Programming Language to Formalize a Theory?

Characteristics of λ-Prolog
1 very high level language, usable by a

logician/mathematician
2 easy definition of structures with binders
3 α-equality and capture-avoiding substitution for free
4 simple encoding of inference rules
5 automatic management of non-determinism/backtracking
6 simple reasoning on the programs (simple semantics)

λProlog is the smallest extension to Prolog able to treat
syntaxes with binders

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Higher Order Logic Programming (HOLP)

λProlog = Prolog ∪ {⇒,∀} in queries

[c]
...
q

c => q

Locally scoped,
hypothetical reasoning

c{y/x} y fresh
pi x\ c

Generation of
fresh names

HOAS + {⇒,∀} for entering binders in recursive definition

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

The Hello-World of λProlog

Type-Checking for Simply Typed λ-calculus

Γ ` M : A → B Γ ` N : A
Γ ` MN : B

Γ, x : A ` F x : B
Γ ` λx .F x : A → B

(x : A) ∈ Γ

Γ ` x : A

Representation of Simply Typed λ-calculus
type app term -> term -> term.
type lam (term -> term) -> term.

Type-Checking/Inference in λProlog
of (app M N) B :- of M (arr A B), of N A.
of (lam F) (arr A B) :- pi x\ of x A => of (F x) B.

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Outline

1 Introduction

2 Type checkers for the two levels of the Minimalist Foundation

3 Interpreting the extensional level in the intensional level

4 Conclusions and Future Works

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Preliminary Work: Minor Changes to the Calculus

Syntax directed version of the rules
From

x ∈ A A = B
x ∈ B

f ∈ Πx∈BC(x) t ∈ B
f t ∈ C(t)

to

f ∈ Πx∈BC(x) t ∈= B
f t ∈ C(t)

Deterministic equality check
From (λx∈BC(x)) t = C(t)
to (λx∈BC(x)) t B C(t) and (s = t) := s B∗∗C t

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Preliminary Work: Major Changes to the Calculus

Problem: proofs are not recorded at the extensional level
true ∈ Eq(C, c,d)

c = d ∈ C
true ∈ B true ∈ C B props C props

true ∈ B ∧ C

Discarded solution
The typechecker takes the whole derivation in input.
The datatype for the derivation is yet another typed λ-calculus.

Partial solution
Keep proof terms as in the intensional level.
To a user we can still show true because of proof irrelevance.
It does not solve the problem of the conv rule.

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Preliminary Work: Major Changes to the Calculus

Full solution: deterministic equality check in the ext. level
From arbitrary conversion proofs

true ∈ Eq(C, c,d)

c = d ∈ C

to contextual closure + context lookup rule

(x ∈ Eq(C, c,d)) ∈ Γ

c = d ∈ C

and new LetIn term constructor

p ∈ P t ∈ T [x ∈ P]

let x := p ∈ P in t ∈ T

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Preliminary Work: Changes for Code Reuse

Π Introduction rule

B set c(x) ∈ C(x) [x ∈ B] C(x) set [x ∈ B]

λxB.c(x) ∈ Πx∈BC(x)

of (lambda B F) (setPi B C) IE :-
isType B _ IE,
(pi x\ locDecl x B => isType (C x) _ IE)
pi x\ locDecl x B => of (F x) (C x) IE.

Π Formation rule

B set C(x) set [x ∈ B]

Πx∈BC(x) set
B col C(x) col [x ∈ B]

Πx∈BC(x) col

isType (setPi B C) KIND3 IE :-
isType B KIND1 IE,
pi x locDecl x B => isType (C x) KIND2 IE,
pts pi KIND1 KIND2 KIND3.

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Typechecking and future works

Typechecking

Code reuse between levels.
Code reduction via PTS-style.
Extremely modular code.

Future works
Complete and debug all the rules.
The changes to the calculi have to be validated
The ξ-rule at the intentional level must be removed.
Requires a syntax directed version of explicit substitutions.

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Outline

1 Introduction

2 Type checkers for the two levels of the Minimalist Foundation

3 Interpreting the extensional level in the intensional level

4 Conclusions and Future Works

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Design of the Interpretation

The Interpretation in a Nutshell
In the Minimalist Foundation types are interpreted in
dependent setoids.
The interpretation on types is defined by structural
recursion.
For simple types (the singleton, the empty set, naturals)
the setoid equality is the intensional propositional equality
The equality of functions imposes the ξ rule
Proof irrelevance is imposed by the interpretation
Lack of impredicative quantifications avoids user-defined
type equalities: this is NOT homotopy type theory

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Design of the Interpretation

The Interpretation is Rich and Complex
Requires lots of (proof) terms to be defined by meta-level
recursion on types, terms and derivations of equalities

proofs of reflexivity, symmetry, transitivity
proofs that equivalences behave as congruences for every
user defined function
canonical isomorphisms between interpretation of
extensionally equal types
proofs that they are indeed isomorphisms
. . .

We are unable to directly use the proof of the paper as
they are often given in categorical terms.

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

The Main Issue

Subsumption becomes coercions
Equality used to fix mismatching (extensionally convertible)
types must become term translation.

x ∈ A A = B
x ∈ B

becomes x ∈ A ARB
σx ∈ B

σ is defined by recursion also over the proof of A = B
(compring the missing derivations of Eq(T , c,d))
Luckily we made proof search deterministic via let-ins and
restricting to congruence rules and context lookup
An example of an extensionally well typed term with
mismatching types
∀x∈1∀f∈(x=1F)→1(F =1 x) ⇒ f (rfl(F)) =1 f (rfl(F))

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Interpretation of Types

forall singleton x0 \
forall (colSigma (fun (propId singleton x0 star) singleton) x1 \
forall (propId singleton x0 star) x2 \
forall (propId singleton x0 star) x3 \
forall (propId singleton star star) x4 \
propId singleton (fun_app x1 x2) (fun_app x1 x3)) x1 \

forall (propId singleton star x0) x2 \ propId singleton
(fun_app (elim_colSigma x1 (x3 \

fun (propId singleton x0 star) singleton) x3 \ x4 \ x3)
(impl_app (impl_app (forall_app (forall_app (impl_app
(forall_app (forall_app (k_propId singleton) star) x0)
x2) star) star) (id singleton star)) (id singleton star)))

(fun_app (elim_colSigma x1 (x3 \
fun (propId singleton x0 star) singleton) x3 \ x4 \ x3)
(impl_app (impl_app (forall_app (forall_app (impl_app
(forall_app (forall_app (k_propId singleton) star) x0)
x2) star) star) (id singleton star)) (id singleton star)))

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Auxiliary Predicates for the Interpretation

tau (propEq T T1 T2) (propEq T T1’ T2’) (SIGMA) :-
(proof_eq T1 T1’ F1),
(proof_eq T2 T2’ F2),
(trad T1 T1i),
(trad T2 T2i),
(trad T1’ T1i’),
(trad T2’ T2i’),
(trad T Ti),
SIGMA = x\ impl_app (

impl_app (forall_app (forall_app (impl_app (forall_app (
forall_app (k_propId Ti) T1i) T1i’) F1) T2i) T2i’) F2) x.

proof_eq (fun_app F X1) (fun_app F X2) H :-
proof_eq X1 X2 G,
trad F F’,
P2F’ = elim_colSigma F’ _ (x\ y\ y),
trad X1 X1’,
trad X2 X2’,
H = forall_app (forall_app (forall_app P2F’ X1’) X2’) G.

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Outline

1 Introduction

2 Type checkers for the two levels of the Minimalist Foundation

3 Interpreting the extensional level in the intensional level

4 Conclusions and Future Works

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Conclusions

Implementing the Minimalist Foundation [Maietti 2009] is
non-trivial

Many different type constructors and rules.
Many terms need to be provided during the interpretation.
Extensional type theories pose issues to the implementors.
Implementation choices impact the calculus.
The good properties must be preserved.

But the constrained nature of the theory helps
Structural recursion on types is facilitated by their very rigid
structure.
The propositional equality (int./ext.) is the only type
constructor that directly takes terms as arguments.

Introduction Type checkers for the two levels of the Minimalist Foundation Interpreting the extensional level in the intensional level Conclusions and Future Works

Conclusions and Future Works

λProlog was a great choice

Takes away the pain due to binders, α-conversion, capture
avoiding substitution, etc.

The code is in 1-1 relation with the new syntax oriented version
of the formal inference rules.

Joint Bologna/INRIA effort to combine λProlog with Constraint
Programming to smoothly transition to proof assistant
implementation.

In the future we wish to extend our work

Complete and validate (in Abella) the type checkers and
interpretation.

Implement code extraction for the intensional level.

Implement a proof assistant for the extensional level.

Validate the proof assistant formalizing Sambin’s Basic Picture
book (porting proofs from Matita).

	Introduction
	Type checkers for the two levels of the Minimalist Foundation
	Interpreting the extensional level in the intensional level
	Conclusions and Future Works

