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@ Algebraic entropy has several variants (ent, by, hqg, ent,...)

@ Introduced (for one endomorphism) in
[Adler, Kohnheim, McAndrew ’65] and [Weiss ’75], became
popular after [Dikranjan, Goldsmith, Salce, Zanardo ’09]
@ Inspired by similar notions in:
» information theory (Shannon),
» ergodic theory (Kolmogorov and Sinai),
» topological dynamics (Peters and Weiss)
@ We will consider dynamical entropies (i.e.: entropies of
endomorphisms)
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Introduction

Introduction

Joint work with D. Dikranjan and A. Giordano Bruno

A short introduction to algebraic entropy,
with particular emphasis on the Addition Theorem.
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The algebraic entropy ent

Algebraic entropy of one endomorphism

@ B Abelian group

@ ¢ endomorphism of B

o {(B) := log|B|
Definition (Entropy)
Hi(9, By) = lim HE5 f’(Bo))

ent(¢) := sup{ H¢(¢, By) : By < Bfinite subgroup}.

The subgroup 3%, ¢'(B,) is the partial trajectory of B, under ¢.
H¢(9, By) is the average growth of € along the partial trajectory of B,.
The limit in the definition of H, exists (Fekete’s Lemma).
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The algebraic entropy ent

Amenable (semi-)groups

G cancellative semi-group.
G is right amenable if it there exists a Falner net (F;), for G:
each F; is a nonempty subset of G,

. |Fig AFi|
Vge G lim —— =
S IF
Equivalently, if it exists a nonempty *-finite set F C *G (in the
non-standard universe) such that

|Fg A F|

is infinitesimal
| Fl

Vge G

(Notice that g varies only among standard elements)
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The algebraic entropy ent

Basic properties

e (s additive: if 0 > A — B — C — 0 is an exact sequence of

(Abelian) groups,
£(B) = £(A) + £(C)

@ An Abelian group B with an endomorphism ¢ is the same object
as a Z[X]-module (X = b = ¢(b))

@ ent behaves as a “rank” function on Z[X]-modules (more
precisely, it is a length function for torsion Z[X]-modules)

e ent(¢4) depends only on the restriction of ¢ to the torsion of B
(since every finite group is torsion)

@ Two isomorphic Z[X]-modules have the same entropy
(ent is an invariant)

e If ¢ is an automorphism, then ent(¢) = ent(¢™").
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e Every Abelian (cancellative semi-)group is amenable.

e If G=Zor G=N,take F, := [0, n).

e If Gis countable, we can find Falner sequences: otherwise, a
net may be necessary.

e The free group in 2 generators, and any group containing it, is
not amenable.

e Right amenable groups are also left amenable;
the same is not true for cancellative semi-groups.

e Here by “amenable group” we mean “discrete amenable group”:
there is a definition of amenability also for topological groups.

e There are many equivalent definitions of amenability:

invariant mean, invariant measure, ...



The algebraic entropy ent

Algebraic entropy of a (semi-)group action

@ B Abelian group
@ G right-amenable cancellative semi-group

@ «a left action of G on B by group endomorphisms.
Definition (Entropy)
F By = ) a(g)(B),

the partial trajectory

geF
¢(Fi* B
i ) = iy

ent(a) == sup{ H¢(a, By) : By < B finite subgroup }
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The algebraic entropy ent

Basic properties

@ An Abelian group B with an action of a semigroup G
is the same object as a Z[G]-module (g * b = a(g)(b))

cisely, it is a length function for torsion Z[G]-modules)
e ent(@) depends only on the action on the torsion of B

@ Two isomorphic Z[G]-modules have the same entropy
(ent is an invariant)

1

e If G is commutative group, then o' is also a left action, and

ent(a™') = ent(a).
o hip(G ~ A) = ent(G ~ A), where A is the Pontryagin dual
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NOTES

e The limit in the definition of H; exists and is independent from

the choice of the Falner net:
[Ornstein, Weiss] for the case when G is a group,

[Ceccherini-Silberstein, Krieger, Coornaert *12] for cancellative

semigroups.

e Taking G =N and F, := [0, n), we recover the definition of
entropy for one endomorphism.

e Using non-standard analysis, one can define

He(a, By) := st( A ),

where F is a *-finite almost invariant subset of *G.

The Addition Theorem for algebraic entropy

Statement

@ Giis aright-amenable cancellative semigroup
@ Bis an Abelian group
@ «is a (left) action of G on B (by group endomorphisms)

@ Ais an a-invariant subgroup of B
(forevery ge G, g« AC A)

@ a4 is the induced action of Gon A

@ agp/4 is the induced action of G on B/A.

Theorem (Addition Theorem)

If B is a torsion group, then

ent(a) = ent(a,) + ent(agp/a)-
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NOTES
AT was already known for a single endomorphism:

see [Dikranjan, Goldsmith, Salce, Zanardo ’09] and its generalization
in [Salce, Virili ’15]

NOTES

Z[X] is the Bernoulli shift on the group Z,
and similarly Z/2Z[X] is the Bernoulli shift on the group Z/2Z

The Addition Theorem

Theorem (AT: equivalent formulation)

If 0-A—-B—->C—0
is an exact sequence of torsion Z|G|-modules, then

ent(B) = ent(A) + ent(C).

The assumption in AT that B is torsion is necessary: there are easy
examples when the conclusion fails for non-torsion groups.

Example

Let B := Z[X] as Z[X]-module. Let A := 2B.
Then, B and A are torsion-free, and therefore ent(B) = ent(A) = 0,
while ent(B/A) = log 2.
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The Addition Theorem

|dea of proof

We will give an idea of the proof of the Addition Theorem under a
simplifying assumption
(which include the cases when G = Z or G = N).
We will assume the following;:
Monotiling condition
@ G is countable;
@ There exists a Falner sequence (F,),ay for G such that 1€ F,
and each F, tiles F, 1:
that is, F,.; is the disjoint union of translates of F,.
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The Addition Theorem

For instance, N and Z satisfy the monotiling condition: F, := [0, n!).
N? and Z? also satisfy the monotiling condition.

Exercise
Q satisfies the monotiling condition. J
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The Addition Theorem

The proof
Main step
Notation: (X | Y) := log|(X + Y)/Y]|.

Remark
For every Ay, Ay, By, By finite subgroups of B,

C(By+ By | Ao+ Ay) < €(By | Ay) + €(By | Ay)

Corollary
Yn2>M, F, = |gp & Fum for some finite D C G:

C(Fy % By | Fy % Ag) < deDf(g*FM*BMg*FM*Ao)

= <
| Fl | Fal
<|D|€(FM*B()IFM*A0)_f(FM*BolFM*Ao)
B | DI | Fal | Fml

v
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NOTES

e Every countable locally finite group is amenable and satisfies
the monotiling condition.

e A variant of the monotiling condition was studied in [Ornstein,
Weiss ’87]

e The fundamental ingredient in the proof of AT in the general
case is Ornstein-Weiss Lemma, which proves that every
amenable group satisfies some version of tiling.

e Ornstein-Weiss Lemma has been extended to right amenable
cancelaltive semi-groups by [Ceccherini-Silberstein, Krieger,
Coornaert *12]

NOTES

e The main properties of the function £ are that it is positive,

submodular, and additive (on the family of finite subgroups of
B)

>0
((A+B| C)=¢t(A| B+ C)+¢(B| C)
¢(A| B) is increasing in A and decreasing in B

e For the Corollary, we are assuming that (F,) is a Falner
sequence for G witnessing the mono-tiling condition.



The only difficult part of AT is proving that

ent(@) < ent(a4) + ent(apa)-

(The opposite inequality is easy, and is the only place where the
assumption that B is torsion is used).

Let B, < B be a finite subgroup and C, := n(B,) < B/A. Fix & > 0.
Choose M such that, for every n > M,

g(Fn * Bo)
| Fl
f(Fn * BO | A)
| Fal

1

H(a; By) =~
H(ag/a; Co) =~

Let AO = (FM * Bo) N A.
We have the exact sequence of Abelian groups

0> Ay — FyxBy > FyyxCy — 0.
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The Addition Theorem

Let n > M.
C(F, % By | Fyx Ap) - C(Fp = By | Fagx Ag)
|Fal B | Ful

If we choose n > M large enough:
C(F,* Ap)
|Fl

= H(CVB/A, C()) < ent(aB/A)

= H(CZA,A()) < ent(ozA).

Therefore,

K(Fn*Bo) <€(Fn*Bo|Fn*A0)+g(Fn*A0) <

H(a, By) =, < <
(@ Bo) |Fl |F| |F|

< 2e + ent(apa) + ent(aa)

The above holds for every € > 0 and every B, finite subgroup of B:
ent(@) < ent(ap/a) +ent(as) O
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NOTES

1. The above sequence is exact only at M: this is the main
difficulty

2. We use the notation r ~; sif|r—s| < &.

3. m: B — B/Ais the canonical projection.

NOTES

The proof of AT used very few properties of Abelian groups and of the
function ¢; the same proof can be used for other entropies.

The function ¢ will change in the various situations.

For instance, for Kolmogorov-Sinai entropy, the role of ¢ is taken by
Shannon entropy H(- | -).



Rank entropy

Definition
R integral domain, with field of fraction R,
rkg rank function on R-modules: rkg(B) = dimg,(B®g Ry),

rkr(B | A) := rkg((A + B)/A).

G amenable (cancellative semi-)group with Falner net (F;)c;
a action of G on R-module B.

ker(F; * B
Entropy: Hy, (@, By) := lim %

he (@) = sup{ He, (@, By) : By < B, rkg(B) < 00}

h, satisfies AT.
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(o] TV I Some applications to logic

Dynamical entropy of matroids
(X, rk) finitary matroid/pregeometry

(rk : P(X) = N U {co} is the rank function)
@ action of a group G on (X, r)

Example
X field, rk(a) := tr.deg.(a), G groups of field automorphisms of X.

Definition (Entropy)
_ k(Uyer g% b
Hi(@. B) = lim - (Ug|;.|g* )
hu (@) = sup{ Hy(a, E) b C X, [_innite}

Lemma
If G = 2", then hy is a matroid on X.

4
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Other entropies

Example
Let G = N and B be an R[X]-module. Then,

hee (B) = rkgix)(B)
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NOTES

The only difficulty is the analogue of AT for hy




Example

K field, o field automorphism.

“Closure operator for h,” = “differential-algebraic closure”

x € cl7(A) iff there exists a differential-algebraic polynomial
F(X) = p(X, X7, X7, ...)

with coefficients in the field generated by AU o(A) U o?(A) U ...
such that f(x) = 0.

When K = ACFA,

U(a) = h(a) - o + o(w)
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e Riecan’s entropy is a “Kolmogorov-Sinai entropy for fuzzy sets”

e A different construction of dynamical entropy for MV-algebrae
with product is in [Petrovicova 01]

e Dynamical quantum entropy definition is also based on
partitions of unity.

e There is also a connection between algorithmic complexity and
entropy: for a fixed Bernoulli process, the average-case growth
rate of the algorithmic complexity of a string is equal to the
Shannon entropy of the source (up to a multiplicative
constant).

Dynamical entropy of MV-algebrae

Let A be a lattice-ordered Abelian group, and 0 < u € A.

The interval [0, u] (with suitable operations induced by the ones on
A) is an MV-algebra (and every such MV-algebra can be represented
this way [Mundici ’86]).

Let m: A — R be a homomorphism of ordered groups, with

m(u) = 1. Let ¢ : A — A be an automorphism preserving m.

Example
(X, u) probability space, A := (*(X), u =1, m(f) := fxfd,u. J

[Riecan '05] defined the entropy of ¢ (w.r.t. m), using partitions of
unity in [0, u].
His definition can be extended to actions of amenable groups on A.

A. Fornasiero (HUJI) Algebraic entropy AlLA 2017 19/20

(o1 LIV I Some applications to logic

€ € My greatest concern was what to call it. |
thought of calling it ‘information’, but the word
was overly used, so | decided to call it ‘uncer-
tainty’. When | discussed it with John von Neu-
mann, he had a better idea.

Von Neumann told me,

“You should call it entropy, for two
reasons. In the first place your uncertainty
function has been used in statistical mech-
anics under that name, so it already has
a name. In the second place, and more
important, nobody knows what entropy
really is, so in a debate you will always

have the advantage.” ’ ’

Claude Shannon
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