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The field of the Euclidean numbers

From the algebraic point of view, the Eucliean numbers are

a non-Archimedean ordered superfield of the reals E, with a

supplementary structure, the Euclidean structure, introduced

axiomatically by the operation of (ordinal-indexed) transfinite

sum: ∑
k<α

ak

where the aks are real numbers, while k and α are ordinals

smaller than the first inaccessible ordinal Ω.

We assume that a transfinite sum coincides with the ordinary

sum of the field E if the number of non-zero summands is finite.
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Let S(Ω,E) =
{
ξ ∈ EΩ | ∃j ∈ Ω, ∀β > j, ξj = 0

}
be the set of all eventually 0 Ω-sequences of elements of E, and

let Σ : S(Ω,E)→ E be an E-linear map.

For ξ = 〈ξk | k ∈ Ω〉 ∈ S(Ω,E) define Σ(ξ) :=
∑
k ξk,

(the transfinite sum of the Euclidean numbers ξk, k ∈ Ω).

We give three natural axioms that rule the behaviour of these

transfinite sums.

RA Real numbers Axiom:

For all ξ ∈ E there exists x ∈ S(Ω,R) = S(Ω) ∩ RΩ such that

Σ(x) = ξ
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Grounding on the axiom RA, in the follwing axioms we restrict

ourselves to considering transfinite sums of real numbers.

For sake of clarity, we denote general Euclidean numbers by

greek letters ξ, η, ζ, and real numbers by latin letters x, y, z.

DA Double sum axioms:

DA1
∑
h
∑
k xhk =

∑
k
∑
h xhk =

∑
i
∑
h∨k=i xhk.

So we may denote any of these double sums by
∑
h,k xhk.

DA2 Let xhk = 0 for h, k ≥ ωj. Then∑
h,k

xhk =
∑
i
yi where yi =

xhk if i = ωj � h+ k

0 otherwise
.
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CA Comparison Axiom:

For all x,y ∈ S(Ω) ∩ RΩ, if there exists β ∈ Ω such that∑
kvα

xk ≤
∑
kvα

yk for all α w β, then
∑
k
xk ≤

∑
k
yk.

The formal inclusion v between ordinals is a lattice partial or-

dering extending the natural ordering, such that

{ξ | ξ v α} is finite for all α ∈ Ω

It is defined according to the normal forms:∗

α =
N∑
n=1

ωjn�an v β =
N∑
n=1

ωjn�bn ⇐⇒ an 5 bn for 1 ≤ n ≤ N.

So all sums
∑
kvα are ordinary finite sums of real numbers.)

∗ The name formal inclusion should recall that the respective coefficient free normal forms,
considered as multisets, are indeed contained one inside of the other one.



5
These simple and natural axioms endow E with a very rich struc-

ture. First a few simple consequences.

• Product formula:

(
∑
h
xh)(

∑
k
yk) =

∑
i

∑
h∨k=i

xhyk.

• Translation invariance: Let xk = 0 for k ≥ ωj. Then

∑
k
xk =

∑
i
yi, where yi =

xk if i = ωj � h+ k

0 otherwise
.

• Associativity:

Put
∑
k∈[α,β) ξk =

∑
k ξk

(
χβ(k)− χα(k)

)
. Then∑

k∈[0,ωj�β)

xk =
∑

h∈[0,β)

∑
k∈[ωj�h, ωj�(h+1))

xk.
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The theory of the Euclidean numbers combines the Cantorian

theory of ordinal numbers with Non Standard Analysis (NSA).

1. Every Euclidean number can be obtained as a transfinite sum

of real numbers; a transfinite sum of Euclidean numbers is

well defined, and can be obtained as limit of ordinal-indexed

(finite) partial sums, when suitable topologies are given to E

and to the ordinals.

2. Any accessible ordinal α ∈ Ω can be identified with the trans-

finite sum of α ones in E; this identification is consistent with

the natural ordinal operations ⊕ and �, so E is a sort of nat-

ural extension of the semiring of the ordinal numbers in Ω.
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3. The Euclidean numbers are a hyperreal field; more precisely

E is the unique saturated real closed field having the cardi-

nality of Ω. It is isomorphic to the hyperreal Keisler field

[keisler76], and every ordered field of accessible cardinality is

(isomorphic to) a subfield of E.

The ordinals as embedded in E are a (proper) subsemiring

of the hypernatural numbers ∗N of E.

4. the Euclidean numbers are strictly related to the notion of

numerosity, introduced by Benci, Di Nasso and Forti in order

to save the five Euclidean common notions on magnitudines.

In fact, E can be charachterized as the hyperreal field gen-

erated by the real numbers and the semiring of numerosities



We have chosen to call E the field of the Euclidean numbers

for two main reasons: firstly, this field arises in a numerosity

theory (including all subsets of Ω), which saves all the Euclidean

common notions, including the fifth

The whole is greater than the part,

in contrast to the Cantorian theory of cardinal numbers.

Secondly, the field E describes the Euclidean continuum better

than the real field R, at least when considering the set theoretic

reduction of R. This last point has been extensively dealt with

in [Benci-Freg.]. As a simple example, note that, contrary to

the Euclidean requirement, a segment cannot be divided by a

point into two congruent pieces.
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The notion of numerosity
A measure of size for arbitrary sets should abide by the famous

five common notions of Euclids Elements, which traditionally

embody the properties of any kind of magnitudes,

1. Things equal to the same thing are also equal to one another.

2. And if equals be added to equals, the wholes are equal.

3. And if equals be subtracted from equals, the remainders are equal.

4. Things [exactly] applying onto one another are equal to one another.

5. The whole is greater than the part.

NB Translating εφαρµoζoντα by “applying [exactly] onto”, instead of the

usual “coinciding with” seems to give a more appropriate rendering of the

Euclidean usage of the verb εφαρµoζειν, which refers to superposition of

congruent figures.

see Euclid, The Elements (T.L. Heath translator), Dover, New York 1956.
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How to save the Euclidean common notions?

It is worth noticing that taditional geometry satisfies the Eu-

clidean common notions because there is a restricted class of

“exact applications” (e.g., the rigid equidecompositions of poly-

gons). So the question arises as to which correspondences can

be taken as “exact applications” in order to fulfill the five Eu-

clidean common notions.

Cantor himself, besides cardinals based on general bijections,

introduced ordinal numbers, assigned to sets endowed with a

wellordering, restricting the “exact applications” to the order

preserving bijections. But the Euclid’s principle EP still badly

fails.
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The Euclidean numbers are an extension of the ordinals, suitable

to provide a notion of size satisfying all the Euclidean common

notions for an appropriate class of “labelled sets”.

A labelled set can be viewed as a generalization of a wellordered

set, because the latter can be naturally labelled by the unique

order isomorphism with an (initial segment of an) ordinal. In

fact it will turn out that any labelled set is “equinumerous” to

a set of ordinals.

The idea is that by putting an appropriate labelling on arbi-

trary sets, the label preserving bijections (intended as “exact

applications”) might produce the “nonnegative integers” of the

Euclidean numbers (whence their name).
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Labelled sets

A labelled set is a pair (E, `), where

• E is a set of cardinality less than the first inaccessible Ω;

• ` : E → Ω is a function (the labelling function) such that

1. the set `−1(x) is finite for all x ∈ Ω;

2. `(x) = x for all x ∈ E ∩Ω.

• Two labelled sets (E1, `1) and (E2, `2) are isomorphic if there

is a biunique map φ : E1→ E2 such that

`2(φ(x)) = `1(x) for all x ∈ E1.

• Two labelled sets (E1, `1) and (E2, `2) are coherent if

`1(x) = `2(x) for all x ∈ E1 ∩ E2.



• The basic operations on labelled sets are the following:

1. Subset - A subset of a labelled set (E, `) is a labelled set(
F, `|F

)
where F ⊆ E;

2. Union - The union of two coherent labelled sets (E1, `1),

(E2, `2) is the labelled set

(E1 ∪ E2, `) where `(x) =

`1(x) if x ∈ E1

`2(x) if x ∈ E2

3. Cartesian product - The Cartesian product of two labelled

sets (E1, `1), (E2, `2) is the labelled set

(E1 × E2, `) where `(x1, x2) = `1(x1) ∨ `2(x2)

• A family (A, `) of pairwise coherent labelled sets is closed if

it is closed under the three basic operations.



14

The Euclidean numerosity

A Euclidean numerosity theory is a pair (U, n), where

• U is a closed family of labelled set, and

• n : U→ E is the Euclidean numerosity function associating

to each labelled set (E, `) ∈ U its euclidean numerosity

n(E, `) =
∑
k |`−1(k)| ∈ E;

• The set of numerosities of (U, n) is the range N = n[U] ⊆ E).

Remark Given a coherent family (A, `) of labelled sets, there

exists a least closed family U(A, `) including A, called the clo-

sure of (A, `). We omit the labelling function ` when it is clear

from the context.
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Canonical examples

Recall that we identify the natural numbers with the finite ordi-

nal numbers, and the accessible ordinals with the corresponding

Euclidean numbers.

• Let F ⊂ Ω be finite. Then U({F}) contains only finite sets,

so n is the finite cardinality, and N = n[U({F})] = N ⊂ E.

• (U[N], n) is the “simplest” numerosity theory containing in-

finite sets, and N = n[U(N)] ⊂ ∗N ⊂ E..

• The canonical numerosity theory (U(Ω), n) is the “simplest”

theory which contains all the (accessible) ordinal numbers,

and Ω ⊆ N = n[U(Ω)] ⊆ ∗N ⊂ E.
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Main properties of the Euclidean numerosities

Theorem Let (U, n) be a Euclidean numerosity theory. Then

one has, for all A,B ∈ U:

Sum-Difference: n(A ∪B) = n(A) + n(B)− n(A ∩B);

Part-Whole: A ⊂ B =⇒ n(A) < n(B);

Cartesian Product: n(A×B) = n(A) · n(B);

Comparison: if the 1-to-1 map T : A → B preserves labels,

then n(A) ≤ n(B).

Moreover, if Ω ⊆ A, then

- each (accessible Von Neumann) ordinal is its own numerosity,

- each set in U is equinumerous to a set of ordinals.
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Saving the five Euclidean common notions

The Euclidean numerosities satisfy all the five Euclidean com-

mon notions, when interpreted in the natural way:

1. Two labelled sets are equal (in size) if they have the same

numerosity;

2. The addition of two (disjoint) labelled sets is given by their

union;

3. The subtraction of a labelled set from a (coherent) superset

is given by relative complement;

4. Two labelled sets(exactly) apply onto one another if they

are isomorphic;

5. A part of a labelled set is just a (coherent) subset.
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Other properties of the Euclidean numerosities

Translation invariance: ∀E ⊆ ωj, n
(
{ωj + ξ | ξ ∈ E}

)
= n(E);

Homothety invariance: ∀E ⊆ ωωj, n (ωωjξ | ξ ∈ E}) = n(E);

Cartesian product: ∀α, β ∈ Ω, n(α× β) = αβ;†

Label the set Pω(E) of the finite parts of the labelled set (E, `)

by the label ∨` such that ∨` ({a1, ..., an}) =
∨n
k=1 `(ak).‡

If the family U is closed under the operation Pω, one has

Finite parts: n(Pω(E)) = 2n(E).

† Notice that the product of the field E agrees with the natural product of ordinals, so
absorption phaenomena are avoided.
‡ Remark that, if the ordered pair (a, b) is identified with the “Kuratowski doubleton”
{{a}, {a, b}}, then, ∨`(a, b) = ∨` ({{a}, {a, b}}) = `(a) ∨ `(b).. Hence the Cartesian product
of (E1, `1) and (E2, `2) is precisely the labelled set (E1 × E2, `1 ∨ `2) .
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Nonarchimedean probability

The numerosity theory can have natural application in consid-

ering the probability of infinite events: one can give the nat-

ural combinatory interpretation as the quotient between the

numerosity of the positive cases and that of all possible cases

(Of course in the case of elementary events of equal probabili-

ties, but the transfinite sums of the Euclidean field E allow for

dealing in similar way the case of elementary events of arbitrary

probabilities)

see V. Benci, H. Horsten, S. Wenmackers - Non-Archimedean probability.

Milan J. Math. 81 (2013), 121–151.
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The Euclidean probability

Let (U, n) be a Euclidean numerosity theory, and let U ∈ U be

the space of the events. The Euclidean probability associated

to n is p : P(U)→ E such that p(E) = n(E)
n(U) for all events E ⊆ U .

This probability satisfies the following axioms:

1. p(E) ∈ [0,1]E for all E ⊆ U

2. p(E) = 0 ⇐⇒ E = ∅ and p(E) = 1 ⇐⇒ E = U

3. p(E) + p(H) = p(E ∪H) + p(E ∩H)
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conditional probability

Define as usual the conditional probability of the event E given

the event H by p(E | H) = p(E∩H)
p(H) .

When the probability comes from a Euclidean numerosity, the

continuity property of Kolmogorov (or else the σ-additivity) is

replaced and strengthened as follows

4. If p(E |F ) ≤ p(H |F ) for any finite event F , then p(E) ≤ p(H).
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