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Mathematicians make statements of the form:

• Theorems Φ and Ψ are equivalent;

• Theorem Φ is (properly) stronger than theorem Ψ.

Taken literally, the first statement is trivially true, and the second
one is trivially false.

But we know what these assertions mean.

In the last decades, mathematical logic has tried to give a rigorous
meaning to statements of this kind. Reverse mathematics and
computable analysis are two programs addressing this topic.

The two approaches were brought together in the 2015 workshop I
co-organized in Dagstuhl.
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Equivalences

Reciprocation of premisses and conclusion is more frequent
in mathematics [than in] dialectical disputations

(Aristotle, Posterior Analytics, 78a10)

Aristotle had in mind equivalences such as “a triangle has two
congruent sides if and only if it has two congruent angles”.

On the other hands, modern mathematics includes many
equivalences between statements, such as the one between the
axiom of choice and Zorn’s lemma on the basis of ZF.

All results of this sort can be dubbed “reverse mathematics”.

However the term usually applies to research carried out in the
context of subsystems of second order arithmetic.



Second order arithmetic

The language of second order arithmetic L2 has two sorts of
variables:
one for natural numbers, the other for sets of natural numbers.

There are symbols for basic algebraic operations,
for equality between natural numbers,
and for membership between a number and a set.

We use classical logic.

Full second order arithmetic Z2 is the theory with algebraic axioms
for the natural numbers, full induction, and full comprehension:

∃X ∀n (n ∈ X ⇐⇒ ϕ(n)),

with X not free in ϕ(n).



Semantics of second order arithmetic

A model for L2 has the form

M = (|M |,SM , 0M , 1M ,+M , ·M , <M )

where |M | serves as the range of the number variables, SM is a set
of subsets of |M | serving as the range of the set variables.

An ω-model is an L2 model M whose first order part is standard,
i.e. of the form (ω, 0, 1,+, ·, <).

Thus M can be identified with the collection of sets of natural
numbers serving as the range of the set variables in L2.

For example REC is the ω-model consisting of the computable (or
recursive) sets.



Mathematics in second order
arithmetic

The idea that in (subsystems of) second order arithmetic it is
possible to state and prove many significant mathematical
theorems goes back to Hermann Weyl, Hilbert and Bernays.

The systematic search for the subsystems of second order
arithmetic which are sufficient and necessary to prove these
theorems was started by Harvey Friedman around 1970, and
pursued by Steve Simpson and many others.



Subsystems of second order
arithmetic

1 RCA0: algebraic axioms for the natural numbers,
Σ0

1-induction, and comprehension for ∆0
1 formulas ωω

2 WKL0 = RCA0+ König’s lemma for binary trees ωω

3 ACA0: comprehension extended to arithmetical formulas ε0

4 ATR0 = ACA0+ defin. by arithmetical transfinite recursion Γ0

5 Π1
1-CA0: comprehension extended to Π1

1 formulas ΨΩ1(Ωω)

RCA0 is the base theory for reverse mathematics:
it allows the development of “computable mathematics”.

RCA0 and WKL0 are Π0
2-conservative over PRA.

ACA0 is conservative over PA.



Reverse mathematics results: RCA0

RCA0 proves the following statements:

(1) The intersection of a sequence of intervals of R, each included
in the preceding one and with length going to 0, consists
exactly of a real number.

(2) A form of Baire category theorem.

(3) The intermediate value theorem.

(4) The Tietze extension theorem.

(5) A weak form of Gödel’s completeness theorem: every
countable set of first-order formulas closed under logical
consequence and consistent has a (countable) model.

(6) Every countable field has an algebraic closure.

(7) The uniform boundedness theorem for pointwise bounded
sequences of operators on Banach spaces.



Reverse mathematics results: WKL0

Over RCA0, WKL0 is equivalent to the following statements:

(1) The Heine-Borel compactness theorem for [0, 1].

(2) Every continuous function from [0, 1] to R is uniformly
continuous.

(3) The Cauchy-Peano local existence theorem for ordinary
differential equations.

(4) The Hahn-Banach theorem for separable Banach spaces.

(5) Every torsion free abelian group is orderable.

(6) Every countable commutative ring with identity has a prime
ideal.

(7) Every countable field has a unique algebraic closure.

(8) Gödel’s completeness theorem.



Reverse mathematics results: ACA0

Over RCA0, ACA0 is equivalent to the following statements:

(1) The Bolzano-Weierstraß theorem for bounded sequences of
reals.

(2) The Ascoli-Arzelà lemma about bounded and equicontinuous
sequences of functions on bounded intervals in R.

(3) Every countable commutative ring with identity has a maximal
ideal.

(4) Hahn’s theorem: every ordered abelian group can be
embedded in a product of copies of (R,+).

(5) König’s lemma.

(6) Ramsey theorem for exponent k when k ≥ 3: for every
c : [N]k → {0, . . . `− 1} there exists H ⊆ N infinite and such
that c � [H]k is constant. RTk

`



Reverse mathematics results: ATR0

Over RCA0, ATR0 is equivalent to the following statements:

(1) The perfect set theorem for uncountable closed subsets of R.

(2) Lusin separation theorem.

(3) The domain of a single-valued Borel set in the plane is Borel.

(4) Determinacy of open games in NN.

(5) The Galvin-Prikry theorem for open subsets of [N]N.

(6) Ulm classification theorem about abelian p-groups.

(7) Given two countable well orders, one of them embeds into the
other.

(8) Hausdorff classification of countable scattered linear orders.



Reverse mathematics results: Π1
1-CA0

Over RCA0, Π1
1-CA0 is equivalent to the following statements:

(1) Cantor-Bendixson theorem about closed subsets of R.

(2) Silver’s theorem about co-analytic equivalence relations on R.

(3) Determinacy of games with payoff the intersection of an open
and a closed set in NN.

(4) The Galvin-Prikry theorem for subsets of [N]N of finite Borel
rank.

(5) Every countable abelian group is the direct sum of a divisible
group and a reduced group.

(6) Mal’tsev theorem about the order type of countable ordered
groups.



The big five of reverse mathematics

RCA0, WKL0, ACA0, ATR0, and Π1
1-CA0 have been claimed to

correspond also to different approaches to the foundations of
mathematics.

They can also be viewed as assertions about the existence of more
and more incomputable sets and so connected to basic theorems
from computability theory.

The wealth of results showing their equivalence with mathematical
theorems led to the terminology the big five.



The zoo

In 1995 Seetapun showed that Ramsey Theorem for pairs RT2
2

does not imply ACA0.
It was already known that WKL0 does not prove RT2

2.
In 2012 Liu showed that RT2

2 does not imply WKL0.

After Seetapun’s result, many statements provable in ACA0,
unprovable in RCA0, and not equivalent to either ACA0 or WKL0,
have been discovered.

The neat five-levels building of XXth century reverse mathematics
is now much more complex, with lots of different beasts:
the zoo of XXIst century reverse mathematics.



A picture of a portion of the zoo
(from Ludovic Patey’s website)



Three beasts in the zoo

RT2
2 Ramsey Theorem for Pairs: for every
f : [N]2 → {0, 1}
there exist i < 2 and H ⊆ N infinite
such that f(n,m) = i for every n,m ∈ H

CAC Chain-Antichain: every infinite partial order has
either an infinite chain or an infinite antichain

ADS Ascending Sequence-Descending Sequence: every
infinite linear order has either an infinite ascending
sequence or an infinite descending sequence

ACA0
+3

�'

WKL0
+3 RCA0

RT2
2

+3 CAC +3 ADS

7?



A mutation in reverse mathematics

The original formulation of the reverse mathematics program
highlighted provability, and often reverse mathematics was viewed
as part of proof theory.

Nowadays the typical proof of a result in the zoo use computability
theory constructions based on forcing or hyperimmunity arguments.

These arguments are used to build ω-models of one statement but
not of the other.

These leads to concentrate more on logical consequence for a
semantics where interpretations are ω-models.

Shore and others put forward the idea of studying the web of
implications and non-implications considering only ω-models.



Some Italian contributors to reverse
mathematics

• Lorenzo Carlucci

• Emanuele Frittaion

• Mariagnese Giusto

• Alberto Marcone

• Silvia Steila
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Extending classical computability

Classical computability deals with functions and relation on the set
of the natural numbers or other countable sets.

Several nonequivalent approaches to computability theory for the
reals have been proposed in the literature.

Type-2 Theory of Effectivity (TTE) extends the ordinary notion of
Turing computability to second countable T0-topological spaces,
and therefore deals with computability over the reals as a particular
case within a more general theory of computability with
mathematical objects.



Computing with infinite objects

Concrete computing machines do not manipulate directly
mathematical objects, but they perform computations on
sequences of digits which are codings for such objects.

Most mathematical objects require an infinite amount of
information to be completely described, and we need to extend the
classical theory of computation to infinite sequences.

We assume that an infinite object is described by giving better and
better approximations and that the output of the computation is
also produced by approximations that become more precise as the
computation proceeds.

Thus we expect that the computation never halts.



The abstract model of computation

TTE Turing machines have one input tape, one working tape and
one output tape. Each tape has a head and can store a natural
number in every cell.

All ordinary instructions for Turing machines are allowed for the
working tape, while the head of the input tape can only read, and
the head of the output tape can only write and move forward.

In a computation we supply an element of NN on the input tape
and the machine will write an element of NN on the output tape.

Since we do not correct the output each partial output is reliable.

TTE Turing machines can also be realized as ordinary oracle
Turing machines: the oracle supplies the input and the n-th bit of
the output is computed by letting the oracle Turing machine work
on n.



TTE computability

The partial functions from NN to NN computed by TTE machines
are the computable partial functions from NN to NN (aka Lachlan
functionals).

Notice that every computable partial function is continuous.

So far we are only computing functions from NN to NN.



Represented spaces

A representation σX of a set X is a surjective partial function
σX : ⊆NN → X.

The pair (X,σX) is a represented space.

If x ∈ X a σX -name for x is any p ∈ NN such that σX(p) = x.

x ∈ X is computable (w.r.t. σX) if it has a computable σX -name.

Representations are analogous to the codings used in reverse
mathematics to speak about various mathematical objects in
subsystems of second order arithmetic.



Two examples of representations

Let (X,D, d) be a computable metric space.

Cauchy representation of X: p ∈ NN is a name for x ∈ X if p
lists a sequence xi ⊆ D such that d(xi, xi+1) ≤ 2−i

for every i and limxi = x.

negative representation of the set A−(X) of closed subsets of X:
p ∈ NN is a name for the closed set C if p lists a
sequence of open balls with center in D and rational
radius whose union is X \ C.

If X = NN the Cauchy representation of x essentially means giving
a digit of x at every step, and the negative representation is
computably equivalent to the representation of C by (the
characteristic function of) a tree T ⊆ N<N such that [T ] = C.



Computable functions between
represented spaces

If (X,σX) and (Y, σY ) are represented spaces and f : ⊆X ⇒ Y
we say that f is computable if there exists a computable
F : ⊆NN → NN such that σY (F (p)) ∈ f(σX(p)) whenever
f(σX(p)) is defined, i.e. p is a name for an element of dom(f).

Such an F is called a realizer of f .



Extending reducibilities

Reducibilities such as many-one, Turing or polynomial-time have
been an extraordinarily important tool in computability theory and
theoretical computer science from their very beginnings.

In recent years these reducibilities have been transferred to the
continuous setting, where they allow us to classify computational
problems on real numbers and other continuous data types.

In the late 1980s Klaus Weihrauch introduced a reducibility that
can be seen as an analogue of many-one reducibility for
(multi-valued) functions on infinite data types.

This reducibility, now called Weihrauch reducibility, was studied
since the 1990s by Weihrauch’s school of computable analysis and
starting from Gherardi-M 2009 it is used as a tool for comparing
the strength of mathematical statements.



Weihrauch reducibility

Let f : ⊆X ⇒ Y and g : ⊆Z ⇒W be partial multi-valued
functions between represented spaces.

f is Weihrauch reducible to g, f ≤W g, if there are computable
H : ⊆X ⇒ Z and K : ⊆X ×W ⇒ Y such that
K(x, gH(x)) ⊆ f(x) for all x ∈ dom(f):

H Kg

f

x f(x)

In other words, for all x ∈ dom(f), we have H(x) ⊆ dom(g) and
K(x,w) ⊆ f(x) for every w ∈ g(H(x)).



Weihrauch reducibility

H Kg

f

x f(x)

f ≤W g means that the problem of computing f can be
computably and uniformly solved by using in each instance a single
computation of g:

H modifies the input of f to feed it to g, while K, using also the
original input, transforms the output of g into the correct output
of f .

Another characterization of Weihrauch reducibility is provided by
the fact that f ≤W g if and only if there is a Turing machine that
computes (a realizer of) f using (a realizer of) g as an oracle
exactly once during its infinite computation.



The Weihrauch lattice

≤W is reflexive and transitive and induces the equivalence relation
≡W.

The ≡W-equivalence classes are called Weihrauch degrees.

The partial order on the sets of Weihrauch degrees is a distributive
bounded lattice with several natural and useful algebraic
operations: the Weihrauch lattice.



The Weihrauch lattice and
mathematical practice

The Weihrauch lattice allows a calculus of mathematical problems.

A mathematical problem can be identified with a partial
multi-valued function f : ⊆X ⇒ Y : there are sets of potential
inputs X and outputs Y , dom(f) ⊆ X contains the valid instances
of the problem, and f(x) is the set of solutions of the problem f
for instance x.

If X and Y are represented spaces and
∀x ∈ X(ϕ(x)→ ∃y ∈ Y ψ(x, y)) is a true statement, we consider
the mathematical problem with domain {x ∈ X | ϕ(x) } such that
f(x) = { y ∈ Y | ψ(x, y) }.
The Zero Problem for a topological space X is the partial
multi-valued function ZX : ⊆C(X,R) ⇒ X defined by
ZX(h) = {x ∈ X | h(x) = 0 };
dom(ZX) is the set of continuous functions with at least one zero.



Choice functions and parallelization

Let X be a computable metric space and A−(X) be the space of
its closed subsets represented by negative information.

CX : ⊆A−(X) ⇒ X is the choice function for X: it picks from a
nonempty closed set in X one of its elements.

It is easy to see that CX ≡W ZX and that already C2 is
noncomputable.

UCX : ⊆A−(X)→ X is the unique choice function for X: it picks
from a singleton (represented as a closed set) in X its unique
element.

UC2 is computable and, for example, UCN≡W UCR≡W CN.

If f : ⊆X ⇒ Y is a multi-valued function, the parallelization of f
is the multi-valued function f̂ : XN ⇒ Y N with
dom(f̂) = dom(f)N defined by f((xn)n∈N) =

∏
n∈N f(xn).

f̂ computes f countably many times in parallel.



A sample of results 1

• The multi-valued functions arising from the following theorems
are computable: Urysohn Extension Lemma, Urysohn-Tietze
Extension Lemma, Heine-Borel Theorem, Weierstraß
Approximation Theorem, Baire Category Theorem, . . .

• The multi-valued functions arising from the following
theorems are Weihrauch equivalent to CN: Banach Inverse
Mapping Theorem, Open Mapping Theorem, Closed Graph
Theorem, Uniform Boundedness Theorem, (contrapositive of)
Baire Category Theorem, . . .

• The multi-valued functions arising from the following
theorems are Weihrauch equivalent to C2N : Weak Kőnig
Lemma, Hahn-Banach Extension Theorem, Brouwer Fixed
Point Theorem, . . .



A sample of results 2

• The multi-valued functions arising from the following
theorems are Weihrauch equivalent to ĈN: limit, Monotone
Convergence Theorem, Radon-Nikodym Theorem, . . .

• The multi-valued functions arising from the following
theorems are Weihrauch equivalent to UCNN : Comparability of
Well-Orders, ∆0

1-determinacy, . . .

• The multi-valued functions arising from the following
theorems are Weihrauch equivalent to CNN : the Perfect Tree
Theorem, . . .



Some Italian contributors to
computable analysis

• Guido Gherardi

• Stefano Galatolo

• Alberto Marcone
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The Weihrauch lattice
and reverse mathematics

In most cases the Weihrauch lattice refines the classification
provided by reverse mathematics: statements which are equivalent
over RCA0 may give rise to functions with different Weihrauch
degrees.

Weihrauch reducibility is finer because requires both uniformity
and use of a single instance of the harder problem.

Moreover, although sometimes a mathematical theorem naturally
leads to a single function to be studied in the Weihrauch lattice, in
other cases several functions arise from the same theorem.

For example the Baire Category Theorem and its contrapositive are
reverse mathematically equivalent, yet give rise to functions which
are not Weihrauch equivalent.



An example: detecting iteration

Let RTn
k be the infinite Ramsey theorem for n-tuples and k colors

(n ≥ 1 and k ≥ 2).
We denote by RTn

k also the multi-valued function arising from it.

In reverse mathematics, the strength of RTn
k depends only on n.

Fix n: the obvious proof that RTn
j implies RTn

k for k > j uses
multiple applications of RTn

j .

Theorem (Hirschfeldt-Jockusch 2016, Patey 2016,
Rakotoniaina 2015)

If n ≥ 1 and k > j ≥ 2 then RTn
k �W RTn

j .



An example: lack of uniformity

The intermediate value theorem is provable in the base system
RCA0 by the standard proof: given f : [0, 1]→ R is continuous
and such that f(0) · f(1) < 0 then either there exists q ∈ Q such
that f(q) = 0 (and we are done), or we can run the bisection
method to find a zero for f .

This proof is non-uniform.

Let IVT be the multi-valued function arising from the intermediate
value theorem.

Theorem (Weihrauch 2000)

IVT is not computable.



Exceptions

There are however exceptions to the phenomena described above:
in some cases the reverse mathematics approach may detect
differences that Weihrauch reducibility misses:

“the computable analyst is allowed to conduct an unbounded
search for an object that is guaranteed to exist by
(nonconstructive) mathematical knowledge, whereas the reverse
mathematician has the burden of an existence proof with limited
means” (Gherardi-M 2009).



An example: searching on the basis
of mathematical knowledge

In reverse mathematics, the Heine-Borel compactness (every open
cover has a finite subcover) of [0, 1] is equivalent to WKL0, and
hence not computably true.

Weihrauch showed that the corresponding multi-valued functions is
computable: given an open cover we can search for a finite
subcover.
The compactness of [0, 1] insures that the search will succeed.

From the reverse mathematics viewpoint, this algorithm can be
defined in RCA0, but the proof of its termination requires WKL0.



The end

Thank you for your attention!
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