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Special features of ITT

1. It is based on various kinds of inductive definitions

2. Logic is built-in (logic-free, D. Scott: Constructive validity,
1970)

3. Distinction between “Propositions and Judgements”

4. Equality is specific to each set (Bishop), but in a “global” way
(Martin-Lof)

5. Propositional equality of a type is the least reflexive relation on
It

6. Decidability of type-checking

7. It is a programming language. Coquand et.al.: “this is a major
compeling aspect of ITT compared to non-constructive
foundations such as set theory”.



The canonicity property of ITT

Canonicity Property (CP): Every closed term of type N is
simplified (reduced) to a numeral.

Let A € {function-extensionality, univalence axiom, higher inductive
types, PEM, Brouwer's continuity axiom, bar induction}.

ITT does not prove A
ITT + A consistent, but loses canonicity

Coquand et.al.: “ITT still has a proof assistant, but the proof
language ceases to be a programming language”

Coquand et.al (2013): S=ITT + (¢, : 2A,)n has the CP, if S
doesn’t inhabit the empty type with a closed term.

CP is open in HoTT = ITT + UA + HITs

Huber (2016): Cubical type theory has CP (looks quite different
than ITT).



Formy—,,: If x : Aand y : A, the equality type x =4 y : U.
Introy— ,«:

refly: Hx =4 X.
x:A

c: I I] u

X,y: AP X=aYy

Ind_,: If

is a dependent family of types in U, and if
c: H C(x, x,refly)
x:A
is a dependent function, there is a dependent function
F: I II ¢ty.p)
X,y A P:X=aYy

such that
F(x,x,refly) = c(x).



This is the inductive definition of the type family =a: A > A —> U
with two indices in A and with constructor

x: A
refl, : x =4 X
The type x =4 y is NOT defined inductively, but the type family is.

ST T I I cern

AU C:Hx,y:A Hp:X:Ay u C:HXZA C(X7X7ref1><) Hx,y:A Hp:x:Ay
J(A, C,c,x, x,refly) = c(x)

LeastRefl:H H H H H R(X,y)

AU R:AA—A—=U ri[],. 4 R(x,x) X,y:Ap:Xx=ay

LeastRefl(A, R, r,x,x,refly) = r(x)



Transport:H H H H P(x) — P(y)

AU P:A—=U x,y:A p:X=paYy

Transport(A, P, x, x,refly) = idp(y)
pl

Application: H H H H f(x) =g f(y)

ABU F:A-B x,y:Ap:x=ay

Application(A, B, f, x,x,refly) = reflg(,

an(Xa}/)



Setoids

isProp(B) = H (x=8Y)

x,y:B
~a A= A= U
isProp(x ~a y)

II 1] 9 ~efW.

X,y A €xX~vpay
(x,¥) 2axg (X', y) = (x 2a X') x (y ~ ¥')

BA= > [l (x~ay— f(x)~e f(y))

f:A—=B x,y:A
(f,u) ~pa (g, w) = [ [(F(x) = g(x))
x:A
Setoids and setoid functions form a cartesian closed category.
We can realize function extensionality in ITT via the setoid BA.



Equivalence of types

frg —H(f ) =& g(x

A~y B = Z isequiv(f),
f:A—B

isequiv(f) := ( Z (fog)~ idB)) x( Z (hof)~ idA)> .

g:B—A h:B—A

qinv(f) : Z [(fog~idg) x (gof ~ida)].
g:B—A

qinv(f) <> isequiv(f).

eqvy,eqv, : isequiv(f) = eqv; = eqv,.



Function extensionality

intro: funext:f~g—f=g
elim:  happly:f=g—f~g
propcomprule : happly(funext(H), x) = H(x)

propuniqrule : funext(happly(p)) = p

funext(eqs) = refly,
eqs(x) = refly(y)
funext(happly(p) ) = p~ 1,
happly(p)~')(x) = happly(p,x)”

funext(happly(p*q)) = funext(happly(p))*funext(happly(q)),

1

happly(p * g, x) = happly(p, x) * happly(q, x).



Univalence axiom

intro : uva: A~ B—>A= B
elim : IdtoEqv: A=y B - A~y B
propcomprule : IdtoEqv(ua(f),x) = f(x)
propuniqrule : ua(IdtoEqv(p)) =p

ua(ida) = reflp
ua(g o f) = ua(f) xua(g)
ua(f)~! = ua(f) !



IfA:U,a: A;R:A— U and r: R(a), the structure (A,a,R,r) is
called an identity system at a, if for every

D: HHU d:D(a,r)

x:A p:R(x)
there is
F: H H D(x, p)
x:A p:R(x)
such that
F(a,r)=d.

Theorem (5.8.2 in HoTT-book)
(A, a, R, r) is an identity system at a iff for every x : A the function

uf : (a =4 x) = R(x)
uf(p) = pf(r)

PR+ R(a) = R(x)

is an equivalence.



A typoid is a structure A = (A, >4, eqv 4, %4, 4,2 4), s.t.

eqv 4 ¢ H(X ~ A X),

x:A

oo I I TT x=as

X,y,Z:Aex>= Ay diy~ 1z

—la H H Y >~ X

X,y:Aex~y

(i) (eqv, x4 €) Zaeand (exqeqv,) =4 e

(if) (exa e 14) = equ, and (e x4 €) =24 equ,,.
(i) (e1*4 €) %4 €3 =4 €1 x4 (€2 %4 €3).
(

iv) e Zadi —> e = dr — (e1 %4 &) =4 (dr x4 do).



Typoid(A Z Z Z

~a ], yAu eqv g:[ [ a(xax)

2. 2

*-A:Hx,y,z:A He:x:Ay Hd:y:Az X=AZ —ta :Hx,y:A He;ngy y=aAx

> ((/) x (i) x (iii) x (iv)).
E-/4:1_L<,y:A He,e/:x:Ay
Actually, this could be seen as a 2-typoid.

(eqv,) 4 =4 eq,

(e—lA) 14 NAe

egAd%eilgAdil



Using fundamental properties of equality p =,—,, g, of
concatenation p * g and inversion p~! of paths it is easy to see that

Ao = (A, =pa,refly, *,_1 , %A0)7
where =400 T[, . alleerxe,y U is defined by
g.AO (X7y7 e, e/) = (e =x=ay 6/),

for every x,y : Aand e, e : x =4 y, is a typoid. We call Ap the
equality typoid, and its typoid structure the equality typoid
structure on A.



—1
(A= B,~aB,eqVs_,p,*asB, 78, ZaB)

is the typoid of functions, where

f~a.gg= Hf(x) =B g(X),
x:A

while if HH' : f ~o_g g and G : g ~a_,g h, we define
Hxag G = Ax: A).(H(x) * G(x)),
H18 = A(x : A).(H(x) ™,
eqvs = A(x : A).refls(y,

H ZAB H = H H(X) =(f(x)=p&(x)) H,(X).
x:A



~

P -1
Unl:(u>:U7quU7*U7 Z/I’:u)

is the universal typoid, where

A~y B= Z isequiv(f),
f:A—B

while if (f,u),(f',u"): A~y B and (g,v): B~y C, we define
(fv U) *UY (g7 V) = (g of, W)7
(f,u) ™ = (FLu™h),
eqv, = (ida, 1),

(f,u) =y ( Hf —p f'(x

where w : isequiv(g o f),u ! : isequiv(f ') and

i : isequiv(ida). Note that the definition of (f,u) = (', ') is
based on the fact that all terms of type isequiv(f) are equal.



If A, B are typoids, f : A — B is a typoid function, if there are

o [T I ) =5 f(y),

X,y A ex~y

¢12‘: H H H cbf(X?y?e) chDf(X,y,d),

x,y:Aedix~y e d

an l-associate of f and a 2-associate of f w.r.t. ®f, s.t.

(I) q)f(XaX7 quX) gB quf(X),
(i) Pr(x,z,e1 x4 €2) =g Pr(x,y, e1) x5 Pr(y, z, €).

If ®(x, x, equ,) = eqvy,), f is strict w.r.t. ®r.

Of(y, x, e M) 25 [br(x, y, )] 18



1. If Ag, By are equality typoids and f : A — B, then f is a strict
typoid function with respect to its 1-associate ap; and the
2-associate ap? of f.

. If A,B,C are typoids and f : A— B, g : B — C are typoid
functlons with associates ¢+, be and ¢g7<b , respectively, then
gof:A— Cis a typoid function with associates

dgor: [T TI &(F)) ~c g(F(v)).

X,y:Aexx~ay

gof H H H <I>gof X,y,€e)=c (Dgof(X,y,d),

x,y:Aedix>~y e d

cbgof(X,y, e) = cbg (f(X)v f(y)a be(X,y, e))’
Cbéof(x,y, e,d,i) = ¢§<f(x), f(y), ®r(x,y,e),

qu(vavd))cb)%(X)yvea d7 I))

If f,g are strict w.rt. ®¢, &g, gof isstrict w.r.t. ®gor.



Proposition
If A is a typoid, the identity function ids : A — A is a typoid
function from Aq to A, which is strict with respect to its 1-associate

idtoEqv 4 : H H XAV,

X,y A PiX=aY

idtoEqv 4(X,y, p) = pl*(equ,),
where Py : A — U is defined by Py(z) = x ~4 z, for every z : A.

Note that px : Po(x) = Px(y) ie., pP*:x ~ax = x~4y. We
use path-induction to define idtoEqv?.



Proposition
If A, B are typoids, then the structure

_ -1 ~
A X B = (A X Ba = AxB, quAxBa *Ax B> AxB 7:A><B)

is a typoid, where for every z,w,u: Ax B and e, e : z =pxp w,
d:w =axp u we define

exaxpd = T(z,u,e x4 di, e *p d),
e laxs = T(w, z, el_lA, e2_15),
eape =(e12ae’) x (225 &).

Corollary
If A, B are typoids, then pry,pr, are typoid functions.



Our first motivation for the study of typoids
Definition

A typoid A is called univalent, if there are dependent functions

vas: [ T x=av.

X,y:Aex>y

Uail : H H H Ua(x,y,e) = Uay(x,y,d)

x,y:Aed:x>~y irex d

such that for every x,y : A,p: x =4 y and e : x >~ 4 y we have that
Ua(x,y, IdtoEqv 4(x, y, p)) = p,

IdtoEqv 4(x,y,Uas(x,y,e)) =4 e,

where IdtoEqv 4 is an l-associate of id4 (from Ag to A) w.r.t.
which id4 is strict. We call a univalent typoid strictly univalent, if

Ua(x, x,eqv, ) = refl,.



1. The equality typoid Ay is strictly univalent, if we consider
IdtoEqv 4(x,y,p) = p = Uau(x,y, p).

2. The function extensionality axiom implies that the typoid
structure on A — B is univalent:

if HLH' : f ~a_,g g such that H =,_,g H’, then
funext(H) = funext(H’), since there is p: H = H', hence
aPsunext (P) : funext(H) = funext(H’).

3. By UA the typoid Uni is univalent.

If (f,u),(g,w): A~y B such that (f,u) =y (g, w), then
ua((f, v)) = ua((g, w)), since

((f, u) =A~, B (g, W)) ~uy Z <piHisequiv(f)(u) — W).

pif=g

By ext. (f,u) =y (g, w) implies f = g, while a term of type
p:Hisequiv(f)(u) = w is found by equality of terms in isequiv(g).
(f,u) =y (g, w) implies (f, u) =a~,B (g, w) and by application of
ua to get a term in va((f, uv)) = ua((g, w)).



Proposition

If A is a univalent typoid, the identity function ida : A — A is a
typoid function from A to Agy, with Uail as a 2-associate of idy
w.r.t. its 1-associate Ua 4.

Theorem
Let A, B be typoids and f : A — B.

(i) If A is univalent, then f is a typoid function.
(i) If A is strictly univalent, then f is a strict typoid function w.r.t.
its 1-associate given in the proof of (i).

Proof.

X4y vrAbey) =AYy *prby) f(x) =g f(y)

f(x) ~5 f(y)
dr(x,y,e) = IdtoEqu<f(x), f(y),aps(x,y,Uaa(x,y, e))).
L]

IdtoEqvﬂX),f(y))



Theorem
If A, B are univalent typoids, then A x B is a univalent typoid.

Proposition

If A, B are typoids and A x B is univalent, then A, B are univalent.



Definition
If A:U, we call the typoid

At = (Au =At, quAtv *.At)ilAt 7g.At)
truncated, if for every x,y,z: A e, € i x>~ y,and d : y ~ 4t 2
xo~ ey =1,
eqv 4:(x) = 01,
*at(x,y,2,e,d) = 0p,
_1At(Xay7 e) EO],
> (x,y,e€)=(e=€).

The proof that A" is a typoid is immediate. One needs only to take
into account that isProp(1), hence isSet(1), where

isSet(A) = H H (p=q).

X,Y: A PG X=aY



Proposition
IfA:U, B is a typoid and f : B — A, then f is a typoid function
from B to A°.

Corollary

IFA,B:U and f : B — A, then f is a typoid function from Bt to
At

Proposition

If A: U such that isProp(A), then At is univalent.

Corollary

If A: U such that isProp(A), B is a typoid and f : A — B, then f
is a typoid function from At to B.



Our second motivation for the study of typoids

Proposition
IfA:U, B is a typoid such that isProp(B), and f : A— B, then f
is a typoid function from At to B.

Proof.

By Corollary f is a typoid function from A! to B¢, while by
Corollary idg is a typoid function from B to B. By composition of
typoid functions f = idg o f is a typoid function from A! to B. [

In the setting of typoids we can interpret the notion of the
propositional truncation ||A|| of a type A as the truncated
typoid A*.



Typoid-treatment for the HIT suspension 2 A of A.

If (A, a0) is a pointed type, the suspension typoid of A is
YA=(2,~5a,€q50 %54, 4, Z52)

0 >~y A 1= Z f(O) =A a0
f:2—A

1~5a0= ) g(1)=aa
g:2—A

054 0=1=1~541
merid: A— 0 ~ypl
merid(x) = (fx,refl,)
f(0) = ap, £(1) =x



Proposition

Let B be a typoid, by, b1 : B, m: A — by ~p by, and let f : 2 — B
such that f(0) = by and (1) = by. Then f is a typoid function
from LA to B with an l-associate ®¢ satisfying

®¢(0,1,merid(x)) = m(x),

for every x : A.
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Typfun(f) = >, [(H II II

cbf:Hx,y:A He:x':Ay f(x)=pf(y) Xy AeXAy diy~ pz
(be(x,x, eqv,) =g eqvf(x)> X

<¢f(xvz7e *A d) gB q)f(Xay)e) *B ¢f(yuza d))) X

X(H H H q’f(xay,e)gsq’f(X,y,d))].

x,y:Ae,d: x>y ice= d
A canonical element of Typfun(f) is a pair (®r, (U, $2)), or for
simplicity a triplet
(q)fv U7 (D%)v

where U is a term of the first type of the outer product and d)% is a
term of the second.



BA = Z Typfun(f).
f:A—B

If ¢ = (f,Pr, U, d2) and 0 = (g, Py, W,d)é) are two canonical
elements of B#, we define

QS =pA 0= Z ( H H (Df(x,y,e) *B @f,g(y) =B

Of gL a f(X)Bg(x) \x,y:Aex=ay

@f,g(x) *B ¢g(X>Y7 e)) :
A canonical element e of ¢ ~pga 0 is a pair (Of ¢, 07 ), where

@%7g : H H (Df(x7y7e) *B @fvg(y) gB @f,g(x) *B q)g(xv}/a e)

X,y:A€X=AY



If ¢ is a canonical element of B# we define eqvy : ¢ ~pa ¢ as the
pair (Or.r, 07 ;), where

Orr=Ax:A eqvf H f(x

and ©7 /(x,y, €) proves the commutativity of the obvious diagram.

If ¢ = (, 7, U, 2),0 = (g, Dy, W, D2), 7 = (h, &p, V, D2) are
canonical elements of B4 and e = (©r 07 ,) : ¢ ~ga b and
d= (eg,h’@;h) : 0 ~gan, we define

exgad = (Ofp, @,23,,) D ~pgan

Ofn = AMx : A).Or g(x) ¥ Og.n(x),
and we can find ©7 (x, y, e) of type

Prixy.e) *8 Or n(y) =B Of n(x) *5 Ph(x, y, €).



If e = (Ofy, @,%g) 1 ¢ ~pga 0, we define
eilBA = ( fg7 [e g]il) 10 =pA ¢7
where @;;  [L.a8(x) 2B f(x) is defined by

07 5 (x) = [Or,g(x)] 12,

for every x : A, and [@%g]_l(y,x, e) is a term of type
Sg(y,x; €) %5 O g(x) 1 25 Or g (y) T x5 Pr(y, x, €).

Proposition

If A, B are typoids, then BA = (BA,~ga, eqvga, ¥ga, 84 Zpga) is
a typoid.

Proposition

If A, B are typoids, then eva g : BA x A — B, where
evag((f,®r, U,®2),x) = f(x) is a typoid function.

Expected: If B is univalent, then B4 is univalent, and ~form of
CCC.



