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Recent popularity of type theory

Scientific American, Quanta Magazine, Nautilus, ...

Voevodsky’s Univalent Foundations require not just
one inaccessible cardinal but an infinite string of
cardinals, each inaccessible from its predecessor.

Michael Harris, Mathematics without apologies, 2015.

Ian Hacking, Why is there Philosophy of Mathematics at All?,
2014.
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Some “research” questions

I Take Martin-Löf type theory with all type constructors
(MLTT), including W -types and infinitely many universes

U0,U1,U2, . . .

I How strong is this theory?

I Not difficult to show that ZFC plus infinitely many
inaccessibles is an upper bound.

I How strong is MLTT plus univalence for all universes?

I Now add the impredicative type Prop of propositions together
with

Prop : U0
How strong is this theory? (aka Calculus of inductive
Constructions (CiC)).

I What are the set-theoretic counterparts (intuitionistic set
theories) of such type theories?
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Why Intuitionistic Theories?

I Philosophical Reasons: Brouwer, Dummett, Martin-Löf,
Feferman, Linnebo, ...

I Computational content: Witness and program extraction from
proofs.

I Intuitionistically proved theorems hold in more generality:
The internal logic of most topoi is intuitionistic logic.

I Axiomatic Freedom Adopt axioms that are classically refutable
but interesting and desirable.
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Axiomatic Freedom or “New Worlds”

I May be it would be nice

I if all f : N→ N were computable and those pesky
non-standard models of PA didn’t exist?

I if all f : R→ R were continuous and the world were
Brouwerian?

I if all functions between manifolds were differentiable?
(nilpotent non-zero infinitesimals)

I if there existed a set A with N ⊆ A such that A is in 1-1
correspondence with A→ A?

I if all f : R→ R were measurable?

I if all homotopically equivalent sets could be viewed as
identical (univalence)?
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Type theory

I Types are structured collections of objects such as natural
numbers.

I 1908 Russell:
Mathematical logic as based on the theory of types

I 1910, 1912, 1913 Russell & Whitehead:
Principia Mathematica

I 1926 Hilbert: Über das Unendliche

I 1940 Church: A formulation of the simple theory of types

I 1967 de Bruijn: AUTOMATH

I 1971 Martin-Löf: A Theory of Types
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MLTT Judgements

A judgement has one of the following four forms:

I A type
(“A is a well-formed type”)

I A = B type
(“A and B are equal well-formed types”)

I a : A
(“a is a well-formed term of type A”)

I a = b : A
(“a and b are equal well-formed terms of type A”)
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Martin-Löf type theory as a deductive systems

One deduces sequents
Γ ` A

where Γ, called the context, is made up of variable
declarations (x : A) in the “right” order of dependency, and
A is a judgement.

The rules are divided into formation, introduction, elimination
and equality rules.



41
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The basic dependent type theory MLTT
basic

MLTT
basic

is the dependent type theory with the following
forms of type:

I Bool, Empty and the type Nat of natural numbers.

I List(A), A + B and Id(A, a, b).

I Dependent product:
∏

x :A B(x)

I Dependent sum:
∑

x :A B(x)
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The Curry-Howard representation of the logical operations

I The standard approach of representing logic in Martin-Löf
type theory is to view propositions (formulae, sentences) as
types.

I The Σ type represents ∃.

I The Π type represents ∀.

I The × type represents ∧.

I The + type represents ∨.

I The → type represents ⊃.

I Empty represents falsum.

I Id(A, a, b) to represent equality on A.
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The full system MLTT

I has the W-type
Wx :AB(x)

which is the type of well-founded trees over the family of
types (B(x))x :A.

W-types are a generalization of such types as natural
numbers, lists, binary trees. They capture the “recursion”
aspect of any inductive type.

I And it has infinitely many universes

U0,U1,U2,U3, . . .

I A universes is a type inhabited by types. Every universe is
closed under all the previous type constructions and Ui : Ui+1.
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Universes and Notation

I Universes U are types that contain types as elements.

I They contain Bool, Empty, Nat, and are closed under all the
(other) type forming operations. E.g.

Γ ` A : U Γ, x : A ` B(x) : U
Γ ` (

∏
x :A

B(x) : U

I Denote by MLTT− the theory MLTT without W -types.

I MLTTn is the subsystem with only n universes U0, . . . ,Un−1.

Furthermore, MLTT−n also lacks the W -type constructor.
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Two Identities

I General equality rules (reflexivity, symmetry, transitivity) and
substitution rules, simultaneously at the level of terms and
types, apply to judgements. Re-write rules.

I But there is also propositional identity which gives rise to
types Id(A, s, t) and allows for internal reasoning about
identity.

Shall write s =A t rather than Id(A, s, t)
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Higher identity structure on any type A

a =A a′

p =a=Aa′ p
′

θ =p=a=Aa′p
′ θ′

...

In extensional type theory (Martin-Löf 1979, 1984) this
hierarchy collapses, since a =A a′ contains at most 1 element.

Not so in intensional type theory (Martin-Löf 1973, 1986).
Groupoid model (Hofmann, Streicher 1994), Kan simplicial
sets (Voevodsky 2010), Kan cubical sets (Bezem, Coquand,
Huber 2013).
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Extensional identity

(Id–Formation)
Γ ` A type Γ ` a : A Γ ` b : A

Γ ` a =A b type

(Id–Introduction)
Γ ` a : A

Γ ` 1a : a =A a

(Id–Uniqueness)
Γ ` p : a =A b

Γ ` p = 1a : a =A b

(Id–Reflection)
Γ ` p : a =A b

Γ ` a = b : A
.

I Reflection makes judgemental identity undecidable, i.e., the
(type checking) questions whether Γ ` a = b : A or Γ ` a : A
hold become undecidable.
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New identity laws, Martin-Löf 1973

Indiscernability of Identicals:

If p : a =A b and P(a) then P(b).

This entails a transport function t(p) : P(a)→ P(b).

Generalization: Now suppose that

d(x) : C (x , x , 1x)

holds for all x : A.

Then d can be extended to a function J̃d on∑
x ,y :A

x =A y

i.e., if a, b : A and p : a =A b then

J̃d(a, b, p) : C (a, b, p)

d(a) = J̃d(a, a, 1a) : C (a, a, 1a)
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Indiscernability of Identicals:

If p : a =A b and P(a) then P(b).

This entails a transport function t(p) : P(a)→ P(b).

Generalization: Now suppose that

d(x) : C (x , x , 1x)

holds for all x : A.

Then d can be extended to a function J̃d on∑
x ,y :A

x =A y

i.e., if a, b : A and p : a =A b then

J̃d(a, b, p) : C (a, b, p)

d(a) = J̃d(a, a, 1a) : C (a, a, 1a)



89

New identity laws, Martin-Löf 1973
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Rules for intensional identity

(Id–Elim)

Γ ` a : A
Γ ` b : A
Γ ` p : a =A b
Γ, x : A, y : A, z : x =A y ` C (x , y , z) type
Γ, x : A ` d(x) : C (x , x , 1x)

Γ ` J(d , a, b, p) : C (a, b, p)

(Id–Eq)

Γ ` a : A
Γ, x : A, y : A, p : x =A y ` C (x , y , p) type
Γ, x : A ` d(x) : C (x , x , 1x)

Γ ` J(d , a, a, 1a) = d(a) : C (a, a, 1a)
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Strengths of MLTT?

I 1980s work on Martin-Löf type theory by Aczel, Beeson,
Feferman, Hancock, Jervell, ....

I Early 1990’s: proof-theoretic tools were in place to determine
the exact strength of Martin-Löf type theories with finitely
many universes, infinitely many universes, W -types, no
W -types, super univ., Mahlo-univ., etc.

I E. Palmgren (1992)

I R. (1993)

I A. Setzer (1998)
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I 1980s work on Martin-Löf type theory by Aczel, Beeson,
Feferman, Hancock, Jervell, ....

I Early 1990’s: proof-theoretic tools were in place to determine
the exact strength of Martin-Löf type theories with finitely
many universes, infinitely many universes, W -types, no
W -types, super univ., Mahlo-univ., etc.

I E. Palmgren (1992)

I R. (1993)

I A. Setzer (1998)



94

Strengths of MLTT?
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Myhill’s Constructive set theory 1975

CST based on intuitionistic logic

Many sorted system: numbers, sets, functions

Axioms (simplified)

I Extensionality

I Pairing, Union, Infinity (or N is a set)

I Bounded Separation

I Exponentiation: A,B sets ⇒ AB set.

I Replacement

I Set Induction Scheme
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Moving between type theory and set theory

The types-as-sets interpretation (TaS).

type theory ↪→ set theory

Aczel (late 1970’s): The sets-as-trees interpretation (SaT )

set theory ↪→ type theory
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I R., S. Tupailo, Characterizing the interpretation of set theory
in Martin-Löf type theory, APAL 2006.

I Cesare Galozzi, Variations: Uses h-sets as index sets for the
interpretation.
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Constructive Zermelo-Fraenkel set theory, CZF

I Extensionality

I Pairing, Union, Infinity

I Bounded Separation

I Subset Collection

For all sets A,B there exists a “sufficiently large” set of
multi-valued functions from A to B.

I Strong Collection

(∀x ∈ a)∃y ϕ(x , y) →
∃b [ (∀x ∈ a) (∃y ∈ b) ϕ(x , y) ∧ (∀y ∈ b) (∃x ∈ a) ϕ(x , y) ]

I Set Induction scheme
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Three notions of large set

I A set A is said to be regular if it is inhabited and transitive
and whenever B ∈ A and R is a set relation such that
∀x ∈ B ∃y ∈ A R(x , y) then there exists C ∈ A such that
∀x ∈ B ∃y ∈ C R(x , y) and ∀y ∈ C ∃x ∈ B R(x , y).

I Denote by CZF− the theory CZF without the Set Induction
scheme.

I A set I is said to be weakly inaccessible if I is a regular set
such that I |= CZF−.

I A set I will be called inaccessible if I is weakly inaccessible
and for all x ∈ I there exists a regular set y ∈ I such that
x ∈ y .
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I A set I is said to be weakly inaccessible if I is a regular set
such that I |= CZF−.

I A set I will be called inaccessible if I is weakly inaccessible
and for all x ∈ I there exists a regular set y ∈ I such that
x ∈ y .
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An ‘algebraic’ characterization of “inaccessibility”

Proposition (CZF−)

A set I is weakly inaccessible iff I is a regular set such that the
following are satisfied:

1. ω ∈ I ,

2. ∀a ∈ I
⋃

a ∈ I ,

3. ∀a ∈ I [a inhabited ⇒
⋂

a ∈ I ],

4. ∀A,B ∈ I ∃C ∈ I C is full in mv(AB).
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How strong is MLTT− plus Univalence?

Recall that CZF− denotes the theory CZF without the Set
Induction scheme.

Theorem 1. (Crosilla, R. 2002)

The theory

CZF− + ∀x ∃I [x ∈ I ∧ I weakly inaccessible]

has the same strength as

ATR0

so has proof-theoretic ordinal Γ0.

Proposition. MLTT− can be interpreted in

CZF + weak-INACC

where weak-INACC stands for
∀x ∃I [x ∈ I ∧ I weakly inaccessible].
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Theorem 2. MLTT− + UA can be interpreted in
CZF + weak-INACC, too.

Here UA asserts that all universes are univalent.

The Bezem-Coquand-Huber constructive Kan cubical sets
model can be done in this theory.

Corollary. All the theories MLTT−, CZF + weak-INACC,
and MLTT− + UA are of the same strength.

It does not matter whether the identity type is extensional or
intensional.

It was known by work of Jervell 1978 and Feferman 1980 that
(extensional) MLTT− has strength Γ0.
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Univalence

I Let f , g :
∏

x :A P(x). A homotopy from f to g is a
dependent function of type

(f ' g) :≡
∏
x :A

(f (x) =P(x) g(x)).

I Let f : A ` B.

isequiv(f ) :≡ (
∑

g :B→A

(f ◦ g ' idB))× (
∑

h:B→A

(h ◦ f ' idA)).

I (A ' B) :≡
∑

f :A→B isequiv(f ).

I For types A,B : U there is a canonical function

idtoeqv : (A =U B) ` (A ' B).

The Univalence Axiom asserts that this function is itself an
equivalence:

(A =U B) ' (A ' B).



134

Univalence
I Let f , g :

∏
x :A P(x). A homotopy from f to g is a

dependent function of type

(f ' g) :≡
∏
x :A

(f (x) =P(x) g(x)).

I Let f : A ` B.

isequiv(f ) :≡ (
∑

g :B→A

(f ◦ g ' idB))× (
∑

h:B→A

(h ◦ f ' idA)).

I (A ' B) :≡
∑

f :A→B isequiv(f ).

I For types A,B : U there is a canonical function

idtoeqv : (A =U B) ` (A ' B).

The Univalence Axiom asserts that this function is itself an
equivalence:

(A =U B) ' (A ' B).



135

Univalence
I Let f , g :

∏
x :A P(x). A homotopy from f to g is a

dependent function of type

(f ' g) :≡
∏
x :A

(f (x) =P(x) g(x)).

I Let f : A ` B.

isequiv(f ) :≡ (
∑

g :B→A

(f ◦ g ' idB))× (
∑

h:B→A

(h ◦ f ' idA)).

I (A ' B) :≡
∑

f :A→B isequiv(f ).

I For types A,B : U there is a canonical function

idtoeqv : (A =U B) ` (A ' B).

The Univalence Axiom asserts that this function is itself an
equivalence:

(A =U B) ' (A ' B).



136

Univalence
I Let f , g :

∏
x :A P(x). A homotopy from f to g is a

dependent function of type

(f ' g) :≡
∏
x :A

(f (x) =P(x) g(x)).

I Let f : A ` B.

isequiv(f ) :≡ (
∑

g :B→A

(f ◦ g ' idB))× (
∑

h:B→A

(h ◦ f ' idA)).

I (A ' B) :≡
∑

f :A→B isequiv(f ).

I For types A,B : U there is a canonical function

idtoeqv : (A =U B) ` (A ' B).

The Univalence Axiom asserts that this function is itself an
equivalence:

(A =U B) ' (A ' B).



137

Univalence
I Let f , g :

∏
x :A P(x). A homotopy from f to g is a

dependent function of type

(f ' g) :≡
∏
x :A

(f (x) =P(x) g(x)).

I Let f : A ` B.

isequiv(f ) :≡ (
∑

g :B→A

(f ◦ g ' idB))× (
∑

h:B→A

(h ◦ f ' idA)).

I (A ' B) :≡
∑

f :A→B isequiv(f ).

I For types A,B : U there is a canonical function

idtoeqv : (A =U B) ` (A ' B).

The Univalence Axiom asserts that this function is itself an
equivalence:

(A =U B) ' (A ' B).



138

Strength of MLTT

Theorem:
The following theories prove the same arithmetical statements:

(i) MLTT.

(ii) The extensional type theory MLTText.

(iii) CZF plus for every n ∈ N, an axiom asserting that there is a
tower of n-many inaccessible sets, CZF +

⋃
n INACCn.

(iv) CZF +
⋃

n INACCn + RDC + Presentation Ax,

where RDC signifies the relativized dependent choices axiom.
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“Classical” Strength of MLTT

I It’s the same as

KP + {n-many recursively inaccessible ordinals}n∈N
or

∆1
2-CA + {n tower of β-models of ∆1

2-CA}n∈N

I The strength of all of these theories is considerable but tiny
when compared to Π1

2-CA0.

I Does the addition of the Univalence Axiom change that
picture?

I No, since the cubical model of Bezem, Coquand, Huber
can be done “constructively” in type theory, though not all
types have been included yet.

For details see M. Rathjen Proof Theory of Constructive
Systems: Inductive Types and Univalence, arXiv:1610.02191
(2016).
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Vicious circles

“... vicious circles ... [arise] from supposing that a collection of
objects may contain members which can only be defined by means
of the collection as a whole. [....] We shall, therefore, have to say
that statements about ‘all propositions’ are meaningless. By saying
that a set has ‘no total,’ we mean, primarily, that no significant
statement can be made about ‘all its members.’ In such cases, it is
necessary to break up our set into smaller sets, each of which is
capable of a total. This is what the theory of types aims at
effecting.” Whitehead & Russell
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I So we must be very careful about introducing the notion of
proposition.

I There are predicative approaches to this which lead to level
restrictions as in Principia and allow only “smaller collections”
into which Prop is broken, such as Martin-Löf’s universes.

I Or one sticks to the impredicative approach but restricts the
type forming operations in other ways as for instance done in
system F.
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I Or one sticks to the impredicative approach but restricts the
type forming operations in other ways as for instance done in
system F.



148

We shall, therefore, not assume anything of what may
seem to be involved in the common-sense admission of
classes, except this, that every propositional function is
equivalent, for all its values, to some predicative function
of the same arguments. [...] We will call this assumption
the axiom of classes, or the axiom of reducibility.
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The Russell-Prawitz interpretation of logic

I Papers by Russell from 1903 and 1906 contain the idea of
possible definitions of

∧,∨,¬,∃

in terms of → and ∀ via quantification over propositions ∀p:

ϕ ∧ ψ ≡ ∀p[(ϕ→ (ψ → p))→ p]

ϕ ∨ ψ ≡ ∀p[(ϕ→ p)→ ((ψ → p)→ p)]

¬ϕ ≡ ∀p[ϕ→ p]

∃xϕ(x) ≡ ∀p[∀x(ϕ(x)→ p)→ p]

I Prawitz showed in (1965) that the above equivalences hold in
second order intuitionist logic.
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The type Prop

I In fact, the above equivalences can be used as definitions in
the →,∀ fragment of second order intuitionistic logic, thereby
reducing full intuitionistic second order logic to this fragment.

I This idea is also used to express logic in Girard’s system F
(1971) and is the standard approach to representing logic in
the calculus of constructions (Coquand 1990) and
extensions.

I The standard approach to representing logic in the type
theory Lego (Luo & Pollack 1992; Luo 1994) and also,
sometimes, the type theory of Coq (Barras et al. 1996), is to
use the above Russell-Prawitz representation, where the
variable p ranges over the the impredicative type called

Prop
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The central rule for Prop

I Propositions are represented as objects of type Prop. These
objects are themselves types (or names of types in the Tarski
treatment).

Γ, x : A ` B(x) : Prop
Γ `

∏
x :A B(x) : Prop

I Note that this rule is highly impredicative as A can be any
type (e.g. Prop).
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The type Prop in more detail

Prop : U0 Empty : Prop
A : Prop

A type

A type x : A ` B(x) : Prop∏
x :A

B(x) : Prop

A : Prop b1 : A b2 : A

b1 = b2 : A
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How strong is MLTT + Prop?

I ZFC plus infinitely many inaccessible cardinals suffices.

I Seems to be a difficult problem.

I Let’s treat restricted cases first.
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Prop embodies Powerset

Theorem. The following theories have the same proof-theoretic
strength

(i) MLTT1V + Prop reflecting types in U0.

(i) Power Kripke-Platek set theory, KP(P)

(ii) CZF + Powerset

Now let’s stick to one universe but strengthen the rules for
Prop so that it reflects all types A.

A : type x : A ` B : Prop∏
x :A

B(x) : Prop
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Intuitionistic Zermelo-Fraenkel set theory, IZF

I Extensionality

I Pairing, Union, Infinity

I Full Separation

I Powerset

I Collection

(∀x ∈ a)∃y ϕ(x , y) ` ∃b (∀x ∈ a) (∃y ∈ b) ϕ(x , y)

I Set Induction

(IND∈) ∀a (∀x ∈ a ϕ(x) → ϕ(a)) → ∀a ϕ(a),

I IZF has the same strength as ZF (Friedman).
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Two set-theoretic axioms pertaining to Prop

I Gambino 2000

I Negative Separation

∃y ∀x [x ∈ y ↔ x ∈ a ∧ ¬¬ϕ(x)]

for all formulae ϕ(x).

I Negative Power Set

∃z ∀x [x ∈ z ↔ x ⊆ a ∧ ∀u ∈ a (¬¬u ∈ x ` u ∈ x)]
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Negative Intuitionistic Zermelo-Fraenkel set theory, IZF¬¬

I Extensionality

I Pairing, Union, Infinity

I Bounded Separation

I Negative Separation

I Subset Collection

I Negative Powerset

I Strong Collection

I Set Induction
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Negative Intuitionistic Zermelo-Fraenkel set theory, IZF¬¬
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A model of IZF¬¬ which is not a model of IZF

I Andrew Swan (2012)

I Class realizability over V (A) where A is a class order pca.

I Works for all axioms of CZF except maybe Bounded
Separation.

I If A satisfies an extra condition, dubbed uniformity by Swan,
then also V (A) |= Bounded Separation.

I Let Λ(V ) be the λ-terms over V . Let T be the set of
equivalence classes modulo β-reduction.
Then V (T ) |= CZF but refutes Powerset.

I V (T ) |= negative Powerset + negative Separation.
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The strength of IZF¬¬

Theorem: IZF¬¬ is of the same strength as MLTT1V + Prop

Conjecture: IZF¬¬ is much weaker in strength than ZFC.
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Impredicative Moves in HoTT

isProp(P) :=
∏

x ,y :P x =P y

PropU := {A : U | isProp(A)}.

Axiom of Propositional Resizing

PropUi → PropUi+1

is an equivalence.

Ω := PropU0

P(A) := (A→ Ω).
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Grazie mille


