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De�nition

Recall that a monad on a category C is a triple Q := (Q,m,u) , where

Q : C → C is a functor,

m : QQ→ Q and u : IdC → Q are functorial morphisms s.t.

QQQ

mQ ��

Qm // QQ

m��
QQ m

// Q

Q
uQ //

IdQ $$

QQ

m��

Q
Quoo

IdQzz
Q

A Q-algebra is a pair (X ,µ) where X ∈ C and µ : QX → X is a morphism
in C s.t.

QQX

mX ��

Qµ // QX
µ
��

QX
µ

// X

X
uX //

IdX $$

QX
µ
��
X

Q-algebras and their morphisms form the so-called Eilenberg-Moore
category QC of the monad Q. When the multiplication and unit of the
monad are clear from the context, we will just write Q instead of Q.
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A monad Q on C gives rise to an adjunction (F ,U) := (QF ,QU) where
U : QC → C is the forgetful functor and F : C → QC is the free functor.

Explicitly:

U (X ,µ) := X , Uf := f and FX := (QX ,mX ) , Ff := Qf .

Note that

UF = Q.

The unit of the adjunction (F ,U) is given by the unit
u : IdC → UF = Q of the monad Q.

The counit λ : FU → IdQC is uniquely determined by the equality
Uλ (X ,µ) = µ for every (X ,µ) ∈ QC .

the forgetful functor U : QC → C is faithful and re�ects isomorphisms.
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Monadic decomposition

Let (L : B→A ,R : A →B) be an adjunction with unit η and counit ε .

Then (RL,RεL,η) is a monad on B and we can assign to it the so-called
comparison functor K : A → RLB which is de�ned by

KX := (RX ,RεX ) and Kf := Rf .

We have this
commutative diagram.

A

R
��

A

K
��

IdAoo

B

L

OO

RLB
RLUoo

De�nition

A functor R is monadic (tripleable in Beck's terminology) if it has a left
adjoint L such that the functor K , as above, is an equivalence of categories.

An easy example

The functor RLU is always monadic!!!
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Let us consider again our diagram but changing the notation as follows

Old notation New notation

A

R��

A

K��

IdAoo

B

L

OO

RLB
RLUoo

A

R0��

A

R1��

IdAoo

B0

L0

OO

B1

U0,1oo

Suppose that R1 has a left adjoint L1.

Then we can consider (L1,R1) as a starting adjunction and, if we are lucky,
extend the diagram as follows

A

R0

��

A

R1

��

IdAoo A

R2

��

IdAoo . . .
IdAoo

B0

L0

OO

B1

L1

OO

U0,1oo B2

L2

OO

U1,2oo . . .
U2,3oo

For all i ∈ N, the unit and counit of the adjunction (Li ,Ri ) will be denoted
by ηi and εi respectively.
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We are very lucky if ∃ minimal N ∈ N such that LN is full and faithful.

A

R0��

A

R1��

IdAoo A

R2��

IdAoo · · · A

RN��

IdAoo A
RN+1��

IdAoo

B0

L0

OO

B1

L1

OO

U0,1

oo B2

L2

OO

U1,2

oo · · · BN

LN

OO

UN−1,N
oo BN+1UN,N+1

oo

Lemma

LN f.f. ⇔ UN,N+1 : BN+1→BN is an isomorphism of categories.

Proof.

It relies on the fact that, by Rafael Theorem, LN f.f. ⇔ the unit ηN is an
isomorphism.

Thus, if such an N exists, then BN+1
∼= BN and the diagram is stationary.
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Note that, by the commutativity of the diagram,

A

R0��

A

R1��

IdAoo A

R2��

IdAoo · · · A

RN��

IdAoo

B0

L0

OO

B1

L1

OO

U0,1oo B2

L2

OO

U1,2oo · · · BN

LN

OO

UN−1,Noo

we can write
R = R0 = U0,1 ◦U1,2 · · ·UN−1,N ◦RN

where U0,1,U1,2, · · · ,UN−1,N are N monadic functors but not category
isomorphisms.

Moreover this is a maximal decomposition of this form.

For this reason we will say that such an R has a

monadic decomposition of (monadic) length N.
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The investigation of monadic decompositions goes back to

[MS] J. L. MacDonald, A. Stone, The tower and regular decomposition.

Cahiers Topologie Géom. Di�érentielle 23. (1982), no. 2, 197-213.

[AHW] J. Adámek, H. Herrlich, W. Tholen, Monadic decompositions. J. Pure

Appl. Algebra 59 (1989), no. 2, 111-123.

Note that the notion of comonadic decomposition of (comonadic) length N
can be easily introduced and to distinguish it we will use the notations

(Ln,Rn)

with superscripts and require that RN be full and faithful.

Next aim is to investigate some properties of functors with a �nite length
monadic decomposition.
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The image of a functor

Notation

Given a functor R : A →B, denote by ImR the full subcategory of B
consisting of objects B ∈B such that B ∼= RA for some object A ∈A .

Recall that a functor R : A →B is essentially surjective if ImR = B.

Proposition

Given a functor R : A →B having a monadic decomposition of length

N ∈ N, then ImR = ImU0,N , where we set U0,N := U0,1 ◦U1,2 ◦ · · · ◦UN−1,N .

Proof.

The monadic decomposition rewrites as R = U0,N ◦RN . By assumption the
left adjoint LN of RN is full and faithful so that the unit
ηN : IdBN

→ RNLN is an isomorphism. Hence RN is essentially surjective
and we get ImR = ImU0,N .
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Hence, monadic decomposition is a good tool to determine images of
functors.

Let us give an example connected to Descent theory.

Let A,B be rings. Given a (B,A)-bimodule M, consider the adjunction

L : MB →MA : X 7→ X ⊗B M R : MA→MB : Y 7→ HomA (M,Y ) .

Here ME = Mod-E category of right modules over the ring E = A,B .

Now the comparison functors R1 and L1 have adjoints as follows.

(MA)1
U0,1

//

R1

��

MA

R
��

MA

R1��

IdMAoo

MB IdMB

//
L1
OO

MB

L

OO

(MB)1

L1

OO

U0,1oo

Focus on the right-hand side diagram and assume that MA is projective.
Then R = R0 is exact so that, Beck's Theorem ensures that L1 is full and
faithful, and R has a monadic decomposition of length at most 1.
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(MA)1
U0,1

//

R1

��

MA

R
��

MA

R1��

IdMAoo

MB IdMB

//
L1
OO

MB

L

OO

(MB)1

L1

OO

U0,1oo

Focus on the left-hand side diagram and assume BM is �at.

BM �at⇒ L = L0 exact
dual Beck's Thm.⇒ R1 full and faithful.

Therefore, L admits a comonadic decomposition of length at most 1.

CONSEQUENCE: ImL = ImU0,1 i.e. the objects of MA which are
isomorphic to objects of the form LX = X ⊗B M, for some X ∈MB , are
exactly those of the form U0,1X 1 where X 1 ∈ (MA)1. Hence the category
(MA)1 solves the descent problem for modules.

Note: when MA is also �nitely generated and projective, then (MA)1 is
precisely the category of comodules over the A-coring M∗⊗B M (the
so-called comatrix coring associated to BMA).
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Idempotent monads and adjunctions

The notion of an idempotent monad is, as we will see below, related with
the monadic length of a functor.

De�nition

A monad (Q,m,u) is idempotent if m is an isomorphism.

An adjunction (L,R) is idempotent if the associated monad is.

There are several basic characterizations of idempotent adjunctions, see

[AT] H. Appelgate, M. Tierney, Categories with models. 1969 Sem. on

Triples and Categorical Homology Theory (ETH, zürich, 1966/67) pp.

156�244 Springer, Berlin.

[MS] J. L. MacDonald, A. Stone, The tower and regular decomposition.

Cahiers Topologie Géom. Di�érentielle 23 (1982), no. 2, 197-213.

In particular, idempotency of an adjunction means equivalently that any
one of εL,Rε,ηR,Lη is an isomorphism ([MS, Proposition 2.8]).
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Proposition

For our diagram,

in the general case,

TFAE.

A

R��

A

R1��

IdAoo

B

L

OO

B1

U0,1oo

(a) (L,R) is idempotent.

(b) ∀(X ,RLX
µ→ X ) ∈B1 we have that µ is an isomorphism.

(c) L1 := LU0,1 is a left adjoint of R1, ηU0,1 = U0,1η1 and ε1 = ε .

Moreover, if one of these conditions holds, then L1 is full and faithful.

Corollary

(L,R) idempotent =⇒ R has a monadic decomposition of length ≤ 1.

(Li ,Ri ) idempotent for some i ∈ N =⇒ R has a monadic

decomposition of length ≤ i +1.

Moreover one checks that (L,R) idempotent ⇐⇒ ηU0,1 is an isomorphism.
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Vector spaces and bialgebras

Fix an arbitrary �eld k.

All vector spaces, (co)algebras and bialgebras will
be over k.
Let Vec := category of vector spaces and Bialg := category of bialgebras.

Consider the following well-known adjunction

Bialg

P��

Bialg

P1��

IdBialgoo

Vec

T

OO

Vec1
U0,1oo

Here P sends a bialgebra B to its subspace of primitive elements

PB := {b ∈ B |∆(b) = 1⊗b+b⊗1},
while T sends a vector space V to the tensor algebra TV (which is indeed
a bialgebra).
The unit ηV : V → PTV of the adjunction is just the canonical inclusion.
The counit εB : TPB → B sends any tensor product of primitive elements
to their product in B .
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Now P1 has a left adjoint T1.

Bialg

P��

Bialg

P1��

IdBialgoo

Vec

T

OO

Vec1
U0,1oo

T1

OO

∀(V ,µ) ∈ Vec1, by construction, T1(V ,µ) is de�ned to be the coequalizer

TPTV
Tµ //

εTV
// TV

π // TV
(z−µ(z)|z∈PTV ) =: T1(V ,µ) .

Now, note that PTV =⊕n≥1PnTV where PnTV := PTV ∩V⊗n.
In particular, P1TV = V . Moreover z−µ(z) = 0, for z ∈ V , so that

T1(V ,µ) =
TV

(z−µ(z) | z ∈ PnTV ,n ≥ 2)
.

Consider now

S(V ) :=
TV

(z | z ∈ PnTV ,n ≥ 2)
=

TV

(PnTV | n ≥ 2)
.

We have the following result.
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Proposition

char(k) = 0 =⇒ SV =
TV

(x⊗y −y ⊗x | x ,y ∈ V )
.

char(k) = p > 0 =⇒ SV =
TV

(x⊗y −y ⊗x ,xp | x ,y ∈ V )
.

In both cases PSV ∼= V .

Proof.

We sketch it for char(k) = 0 (the other case is similar).

Since x⊗y −y ⊗x ∈ P2TV ,∀x ,y ∈ V , there is a bialgebra projection

A := TV
(x⊗y−y⊗x |x ,y∈V )

γ // TV
(PnTV |n≥2) = SV .

It is well-known that PA∼= V . Hence, γ|PA is injective.
By Heyneman-Radford Theorem, γ is injective whence bijective i.e.
SV = A.
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Since x⊗y −y ⊗x ∈ P2TV ,∀x ,y ∈ V , there is a bialgebra projection

A := TV
(x⊗y−y⊗x |x ,y∈V )

γ // TV
(PnTV |n≥2) = SV .

It is well-known that PA∼= V . Hence, γ|PA is injective.
By Heyneman-Radford Theorem, γ is injective whence bijective i.e.
SV = A.
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We have the following result.

Theorem

The adjunction (T1,P1) is idempotent.

Proof.

Take V2 ∈ Vec2. In particular we can write

V2 = (V1,P1T1V1

µ1→ V1) where V1 = (V ,µ) ∈ Vec1.

Using that µ1 ◦η1V1 = IdV1
and PS(V )∼= V one gets that

U0,1η1V1 : V → U0,1P1T1V1 = PT1V1

has inverse U0,1µ1, where U0,1 : Vec1→ Vec0.
Since U0,1 re�ects isomorphisms, this implies η1V1 : V1→ P1T1V1 is an
isomorphism.

Thus we conclude that η1U1,2 is an isomorphism and we know this is
equivalent to (T1,P1) idempotent.

A. Ardizzoni (Univ. Torino - Italy) Lie Theory & Monads June 19, 2014 17 / 20



We have the following result.

Theorem

The adjunction (T1,P1) is idempotent.

Proof.

Take V2 ∈ Vec2. In particular we can write

V2 = (V1,P1T1V1

µ1→ V1) where V1 = (V ,µ) ∈ Vec1.

Using that µ1 ◦η1V1 = IdV1
and PS(V )∼= V one gets that

U0,1η1V1 : V → U0,1P1T1V1 = PT1V1

has inverse U0,1µ1, where U0,1 : Vec1→ Vec0.
Since U0,1 re�ects isomorphisms, this implies η1V1 : V1→ P1T1V1 is an
isomorphism.

Thus we conclude that η1U1,2 is an isomorphism and we know this is
equivalent to (T1,P1) idempotent.

A. Ardizzoni (Univ. Torino - Italy) Lie Theory & Monads June 19, 2014 17 / 20



We have the following result.

Theorem

The adjunction (T1,P1) is idempotent.

Proof.

Take V2 ∈ Vec2.

In particular we can write

V2 = (V1,P1T1V1

µ1→ V1) where V1 = (V ,µ) ∈ Vec1.

Using that µ1 ◦η1V1 = IdV1
and PS(V )∼= V one gets that

U0,1η1V1 : V → U0,1P1T1V1 = PT1V1

has inverse U0,1µ1, where U0,1 : Vec1→ Vec0.
Since U0,1 re�ects isomorphisms, this implies η1V1 : V1→ P1T1V1 is an
isomorphism.

Thus we conclude that η1U1,2 is an isomorphism and we know this is
equivalent to (T1,P1) idempotent.

A. Ardizzoni (Univ. Torino - Italy) Lie Theory & Monads June 19, 2014 17 / 20



We have the following result.

Theorem

The adjunction (T1,P1) is idempotent.

Proof.

Take V2 ∈ Vec2. In particular we can write

V2 = (V1,P1T1V1

µ1→ V1) where V1 = (V ,µ) ∈ Vec1.

Using that µ1 ◦η1V1 = IdV1
and PS(V )∼= V one gets that

U0,1η1V1 : V → U0,1P1T1V1 = PT1V1

has inverse U0,1µ1, where U0,1 : Vec1→ Vec0.
Since U0,1 re�ects isomorphisms, this implies η1V1 : V1→ P1T1V1 is an
isomorphism.

Thus we conclude that η1U1,2 is an isomorphism and we know this is
equivalent to (T1,P1) idempotent.

A. Ardizzoni (Univ. Torino - Italy) Lie Theory & Monads June 19, 2014 17 / 20



We have the following result.

Theorem

The adjunction (T1,P1) is idempotent.

Proof.

Take V2 ∈ Vec2. In particular we can write

V2 = (V1,P1T1V1

µ1→ V1) where V1 = (V ,µ) ∈ Vec1.

Using that µ1 ◦η1V1 = IdV1
and PS(V )∼= V one gets that

U0,1η1V1 : V → U0,1P1T1V1 = PT1V1

has inverse U0,1µ1, where U0,1 : Vec1→ Vec0.

Since U0,1 re�ects isomorphisms, this implies η1V1 : V1→ P1T1V1 is an
isomorphism.

Thus we conclude that η1U1,2 is an isomorphism and we know this is
equivalent to (T1,P1) idempotent.

A. Ardizzoni (Univ. Torino - Italy) Lie Theory & Monads June 19, 2014 17 / 20



We have the following result.

Theorem

The adjunction (T1,P1) is idempotent.

Proof.

Take V2 ∈ Vec2. In particular we can write

V2 = (V1,P1T1V1

µ1→ V1) where V1 = (V ,µ) ∈ Vec1.

Using that µ1 ◦η1V1 = IdV1
and PS(V )∼= V one gets that

U0,1η1V1 : V → U0,1P1T1V1 = PT1V1

has inverse U0,1µ1, where U0,1 : Vec1→ Vec0.
Since U0,1 re�ects isomorphisms, this implies η1V1 : V1→ P1T1V1 is an
isomorphism.

Thus we conclude that η1U1,2 is an isomorphism and we know this is
equivalent to (T1,P1) idempotent.

A. Ardizzoni (Univ. Torino - Italy) Lie Theory & Monads June 19, 2014 17 / 20



We have the following result.

Theorem

The adjunction (T1,P1) is idempotent.

Proof.

Take V2 ∈ Vec2. In particular we can write

V2 = (V1,P1T1V1

µ1→ V1) where V1 = (V ,µ) ∈ Vec1.

Using that µ1 ◦η1V1 = IdV1
and PS(V )∼= V one gets that

U0,1η1V1 : V → U0,1P1T1V1 = PT1V1

has inverse U0,1µ1, where U0,1 : Vec1→ Vec0.
Since U0,1 re�ects isomorphisms, this implies η1V1 : V1→ P1T1V1 is an
isomorphism.

Thus we conclude that η1U1,2 is an isomorphism and we know this is
equivalent to (T1,P1) idempotent.
A. Ardizzoni (Univ. Torino - Italy) Lie Theory & Monads June 19, 2014 17 / 20



By the properties of idempotent adjunctions we have seen, we can
complete the diagram to

Bialg

P��

Bialg

P1��

IdBialgoo Bialg

P2��

IdBialgoo

Vec

T

OO

Vec1
U0,1oo

T1

OO

Vec2
U1,2oo

T2

OO

where we can choose T2 := T1U1,2 and this is full and faithful.

In particular
P has a monadic decomposition of length ≤ 2

By the foregoing, we know that ImP = ImU0,2 so that the vector spaces
arising as primitive part of some bialgebra are those isomorphic to the
underlying vector space of some V2 ∈ Vec2.

Moreover we have T2V2 = T1U1,2V2 = T1V1 = T1(V ,µ).

Indeed we can be more precise....
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Theorem

Take V2 := ((V ,µ) ,µ1) ∈ Vec2.

chark = 0) We have that (V , [−,−]) is a Lie algebra where

[−,−] : V ⊗V → V , [x ,y ] := µ (xy −yx) .

Moreover T2V2 is the universal enveloping algebra

T2V2 =
TV

(xy −yx− [x ,y ] | x ,y ∈ V )
.

chark = p)
We have that

(
V , [−,−] ,−[p]

)
is a restricted Lie algebra where

[−,−] :V ⊗V →V , [x ,y ] := µ (xy −yx) and −[p] :V →V ,x [p] := µ (xp) .

Moreover T2V2 is the restricted enveloping algebra

T2V2 =
TV(

xy −yx− [x ,y ] ,xp−x [p] | x ,y ∈ V
) .
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Work in progress

As a consequence, in a work in progress with I. Goyvaerts and C. Menini,
we prove that there is an equivalence of categories Λ such that Λ◦P2 = P
and H ◦Λ = U0,2 where

Bialg

P

��

Bialg

P1

��

IdBialgoo Bialg

P2

��

IdBialgoo

IdBialguu
Bialg

P

��

IdBialg

mm

Vec

T

OO

Vec1

T1

OO

U0,1oo Vec2

T2

OO

U1,2oo

Λuu
Lie

U

OO

H

mm

Here Lie denotes either the category of Lie algebras or the category of
restricted Lie algebras depending on the characteristic, and U is the
corresponding universal enveloping algebra.

Thus Vec2 ∼= Lie so that monadic decomposition leads to Lie.
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