CLASSICAL LIE THEORY FROM THE POINT OF VIEW OF MONADS

Based on [A. Ardizzoni, J. Gómez-Torrecillas and C. Menini, Monadic Decompositions and Classical Lie Theory, Appl. Categor. Struct., Online First.]

Alessandro Ardizzoni*, José Gómez-Torrecillas and Claudia Menini

ALGEBRAIC STRUCTURES AND THEIR APPLICATIONS

with a day dedicated to Alberto Facchini on the occasion of his 60th birthday
June 16-20 2014, Spineto (Siena)

Definition

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

Definition

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,

Definition

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

Definition

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

Definition

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

A \mathbb{Q}-algebra is a pair (X, μ) where $X \in \mathscr{C}$ and $\mu: Q X \rightarrow X$ is a morphism in \mathscr{C} s.t.

Definition

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

A \mathbb{Q}-algebra is a pair (X, μ) where $X \in \mathscr{C}$ and $\mu: Q X \rightarrow X$ is a morphism in \mathscr{C} s.t.

Definition

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

$$
\begin{array}{cc}
Q Q Q \xrightarrow{Q m} & Q Q \\
m Q \downarrow & \\
& \downarrow^{m} \\
Q Q \xrightarrow[m]{ } & Q
\end{array}
$$

A \mathbb{Q}-algebra is a pair (X, μ) where $X \in \mathscr{C}$ and $\mu: Q X \rightarrow X$ is a morphism in \mathscr{C} s.t.

\mathbb{Q}-algebras and their morphisms form the so-called Eilenberg-Moore category $\mathbb{Q} \mathscr{C}$ of the monad \mathbb{Q}.

Definition

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

$$
\begin{array}{cc}
Q Q Q \xrightarrow{Q m} & Q Q \\
m Q \downarrow & \\
& \downarrow^{m} \\
Q Q \xrightarrow[m]{ } & Q
\end{array}
$$

A \mathbb{Q}-algebra is a pair (X, μ) where $X \in \mathscr{C}$ and $\mu: Q X \rightarrow X$ is a morphism in \mathscr{C} s.t.

\mathbb{Q}-algebras and their morphisms form the so-called Eilenberg-Moore category $\mathbb{Q} \mathscr{C}$ of the monad \mathbb{Q}. When the multiplication and unit of the monad are clear from the context, we will just write Q instead of \mathbb{Q}.

A monad \mathbb{Q} on \mathscr{C} gives rise to an adjunction $(F, U):=\left({ }_{\mathbb{Q}} F, \mathbb{Q} U\right)$ where $U: \mathbb{Q} \mathscr{C} \rightarrow \mathscr{C}$ is the forgetful functor and $F: \mathscr{C} \rightarrow \mathbb{Q} \mathscr{C}$ is the free functor.

A monad \mathbb{Q} on \mathscr{C} gives rise to an adjunction $(F, U):=\left({ }_{\mathbb{Q}} F, \mathbb{Q} U\right)$ where $U: \mathbb{Q} \mathscr{C} \rightarrow \mathscr{C}$ is the forgetful functor and $F: \mathscr{C} \rightarrow \mathbb{Q} \mathscr{C}$ is the free functor. Explicitly:

$$
U(X, \mu):=X, \quad U f:=f \quad \text { and } \quad F X:=(Q X, m X), \quad F f:=Q f
$$

A monad \mathbb{Q} on \mathscr{C} gives rise to an adjunction $(F, U):=\left({ }_{\mathbb{Q}} F, \mathbb{Q} U\right)$ where $U: \mathbb{Q} \mathscr{C} \rightarrow \mathscr{C}$ is the forgetful functor and $F: \mathscr{C} \rightarrow \mathbb{Q} \mathscr{C}$ is the free functor. Explicitly:

$$
U(X, \mu):=X, \quad U f:=f \quad \text { and } \quad F X:=(Q X, m X), \quad F f:=Q f
$$

Note that

- $U F=Q$.

A monad \mathbb{Q} on \mathscr{C} gives rise to an adjunction $(F, U):=\left({ }_{\mathbb{Q}} F, \mathbb{Q} U\right)$ where $U: \mathbb{Q} \mathscr{C} \rightarrow \mathscr{C}$ is the forgetful functor and $F: \mathscr{C} \rightarrow \mathbb{Q}^{\mathscr{C}}$ is the free functor. Explicitly:

$$
U(X, \mu):=X, \quad U f:=f \quad \text { and } \quad F X:=(Q X, m X), \quad F f:=Q f
$$

Note that

- $U F=Q$.
- The unit of the adjunction (F, U) is given by the unit $u: \operatorname{Id}_{\mathscr{C}} \rightarrow U F=Q$ of the monad \mathbb{Q}.

A monad \mathbb{Q} on \mathscr{C} gives rise to an adjunction $(F, U):=\left({ }_{\mathbb{Q}} F, \mathbb{Q} U\right)$ where $U: \mathbb{Q} \mathscr{C} \rightarrow \mathscr{C}$ is the forgetful functor and $F: \mathscr{C} \rightarrow \mathbb{Q} \mathscr{C}$ is the free functor. Explicitly:

$$
U(X, \mu):=X, \quad U f:=f \quad \text { and } \quad F X:=(Q X, m X), \quad F f:=Q f
$$

Note that

- $U F=Q$.
- The unit of the adjunction (F, U) is given by the unit $u: \operatorname{Id}_{\mathscr{C}} \rightarrow U F=Q$ of the monad \mathbb{Q}.
- The counit $\lambda: F U \rightarrow \operatorname{Id}_{\mathscr{Q}}^{\mathscr{C}}$ is uniquely determined by the equality $U \lambda(X, \mu)=\mu$ for every $(X, \mu) \in \mathbb{Q} \mathscr{C}$.

A monad \mathbb{Q} on \mathscr{C} gives rise to an adjunction $(F, U):=(\mathbb{Q} F, \mathbb{Q} U)$ where $U: \mathbb{Q} \mathscr{C} \rightarrow \mathscr{C}$ is the forgetful functor and $F: \mathscr{C} \rightarrow \mathbb{Q} \mathscr{C}$ is the free functor. Explicitly:

$$
U(X, \mu):=X, \quad U f:=f \quad \text { and } \quad F X:=(Q X, m X), \quad F f:=Q f
$$

Note that

- $U F=Q$.
- The unit of the adjunction (F, U) is given by the unit $u: \operatorname{Id}_{\mathscr{C}} \rightarrow U F=Q$ of the monad \mathbb{Q}.
- The counit $\lambda: F U \rightarrow \operatorname{Id}_{\mathscr{Q}}^{\mathscr{C}}$ is uniquely determined by the equality $U \lambda(X, \mu)=\mu$ for every $(X, \mu) \in \mathbb{Q} \mathscr{C}$.
- the forgetful functor $U: \mathbb{Q} \mathscr{C} \rightarrow \mathscr{C}$ is faithful and reflects isomorphisms.

Monadic decomposition

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction with unit η and counit ε.

Monadic decomposition

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction with unit η and counit ε. Then $(R L, R \varepsilon L, \eta)$ is a monad on \mathscr{B} and we can assign to it the so-called comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ which is defined by

$$
K X:=(R X, R \varepsilon X) \quad \text { and } \quad K f:=R f
$$

Monadic decomposition

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction with unit η and counit ε. Then $(R L, R \varepsilon L, \eta)$ is a monad on \mathscr{B} and we can assign to it the so-called comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ which is defined by

$$
K X:=(R X, R \varepsilon X) \quad \text { and } \quad K f:=R f
$$

We have this commutative diagram.

Monadic decomposition

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction with unit η and counit ε. Then $(R L, R \varepsilon L, \eta)$ is a monad on \mathscr{B} and we can assign to it the so-called comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ which is defined by

$$
K X:=(R X, R \varepsilon X) \quad \text { and } \quad K f:=R f
$$

We have this commutative diagram.

Definition

A functor R is monadic (tripleable in Beck's terminology) if it has a left adjoint L such that the functor K, as above, is an equivalence of categories.

Monadic decomposition

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction with unit η and counit ε. Then $(R L, R \varepsilon L, \eta)$ is a monad on \mathscr{B} and we can assign to it the so-called comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ which is defined by

$$
K X:=(R X, R \varepsilon X) \quad \text { and } \quad K f:=R f
$$

We have this commutative diagram.

Definition

A functor R is monadic (tripleable in Beck's terminology) if it has a left adjoint L such that the functor K, as above, is an equivalence of categories.

An easy example

The functor $R_{L} U$ is always monadic!!!

Let us consider again our diagram but changing the notation as follows

Let us consider again our diagram but changing the notation as follows

Old notation

New notation

Let us consider again our diagram but changing the notation as follows

Old notation

New notation

Suppose that R_{1} has a left adjoint L_{1}.

Let us consider again our diagram but changing the notation as follows

Old notation

New notation

Suppose that R_{1} has a left adjoint L_{1}.
Then we can consider (L_{1}, R_{1}) as a starting adjunction and, if we are lucky, extend the diagram as follows

Let us consider again our diagram but changing the notation as follows

Old notation

New notation

Suppose that R_{1} has a left adjoint L_{1}.
Then we can consider (L_{1}, R_{1}) as a starting adjunction and, if we are lucky, extend the diagram as follows

For all $i \in \mathbb{N}$, the unit and counit of the adjunction $\left(L_{i}, R_{i}\right)$ will be denoted by η_{i} and ε_{i} respectively.

We are very lucky if \exists minimal $N \in \mathbb{N}$ such that L_{N} is full and faithful.

We are very lucky if \exists minimal $N \in \mathbb{N}$ such that L_{N} is full and faithful.

We are very lucky if \exists minimal $N \in \mathbb{N}$ such that L_{N} is full and faithful.

$$
\cdots \leftarrow \stackrel{\mathrm{Id}_{\mathscr{A}}}{\mathscr{A}} \nprec \mathrm{Id}_{\mathscr{A}}
$$

$$
\cdots \longleftarrow_{U_{N-1, N}} \mathscr{B}_{N} \longleftarrow_{U_{N, N+1}} \mathscr{B}_{N+1}
$$

Lemma

L_{N} f.f. $\Leftrightarrow U_{N, N+1}: \mathscr{B}_{N+1} \rightarrow \mathscr{B}_{N}$ is an isomorphism of categories.

$$
\begin{aligned}
& \mathscr{A} \leftarrow{ }^{\mathrm{Id}_{\mathscr{A}}} \mathscr{A} \leftarrow \stackrel{\mathrm{Id}_{\mathscr{A}}}{\mathscr{A}} \\
& \left.\left.\left.L_{0}{ }_{0}^{\hat{A}}\right|_{R_{0}} \quad L_{1}{ }^{\hat{A}}\right|_{R_{1}} \quad L_{2} \hat{A}\right|_{R_{2}} \\
& \mathscr{B}_{0} \longleftarrow U_{0,1} \mathscr{B}_{1} \longleftarrow_{U_{1,2}} \mathscr{B}_{2}
\end{aligned}
$$

We are very lucky if \exists minimal $N \in \mathbb{N}$ such that L_{N} is full and faithful.

$$
\cdots<\mathrm{Id}_{\mathscr{A}} \mathscr{A}<\mathrm{Id}_{\mathscr{A}} \mathscr{A}
$$

$$
\cdots \longleftarrow_{U_{N-1, N}} \mathscr{B}_{N} \varkappa_{U_{N, N+1}} \mathscr{B}_{N+1}
$$

Lemma

L_{N} f.f. $\Leftrightarrow U_{N, N+1}: \mathscr{B}_{N+1} \rightarrow \mathscr{B}_{N}$ is an isomorphism of categories.

Proof.

It relies on the fact that, by Rafael Theorem, L_{N} f.f. \Leftrightarrow the unit η_{N} is an isomorphism.

$$
\begin{aligned}
& \mathscr{B}_{0} \longleftarrow \overleftarrow{U 0,1}^{\mathscr{B}_{1}} \longleftarrow_{U_{1,2}} \mathscr{B}_{2}
\end{aligned}
$$

We are very lucky if \exists minimal $N \in \mathbb{N}$ such that L_{N} is full and faithful.

$$
\cdots<\mathrm{Id}_{\mathscr{A}} \mathscr{A}<\mathrm{Id}_{\mathscr{A}} \mathscr{A}
$$

$$
\cdots \longleftarrow_{U_{N-1, N}} \mathscr{B}_{N}{\overleftarrow{U_{N, N+1}}}^{\mathscr{B}_{N+1}}
$$

Lemma

L_{N} f.f. $\Leftrightarrow U_{N, N+1}: \mathscr{B}_{N+1} \rightarrow \mathscr{B}_{N}$ is an isomorphism of categories.

Proof.

It relies on the fact that, by Rafael Theorem, L_{N} f.f. \Leftrightarrow the unit η_{N} is an isomorphism.

Thus, if such an N exists, then $\mathscr{B}_{N+1} \cong \mathscr{B}_{N}$ and the diagram is stationary.

$$
\begin{aligned}
& \mathscr{B}_{0} \longleftarrow \overleftarrow{U 0,1}^{\mathscr{B}_{1}} \longleftarrow_{U_{1,2}} \mathscr{B}_{2}
\end{aligned}
$$

Note that, by the commutativity of the diagram,

Note that, by the commutativity of the diagram,

we can write

$$
R=R_{0}=U_{0,1} \circ U_{1,2} \cdots U_{N-1, N} \circ R_{N}
$$

where $U_{0,1}, U_{1,2}, \cdots, U_{N-1, N}$ are N monadic functors but not category isomorphisms.

Note that, by the commutativity of the diagram,

we can write

$$
R=R_{0}=U_{0,1} \circ U_{1,2} \cdots U_{N-1, N} \circ R_{N}
$$

where $U_{0,1}, U_{1,2}, \cdots, U_{N-1, N}$ are N monadic functors but not category isomorphisms.

Moreover this is a maximal decomposition of this form.

Note that, by the commutativity of the diagram,

we can write

$$
R=R_{0}=U_{0,1} \circ U_{1,2} \cdots U_{N-1, N} \circ R_{N}
$$

where $U_{0,1}, U_{1,2}, \cdots, U_{N-1, N}$ are N monadic functors but not category isomorphisms.

Moreover this is a maximal decomposition of this form.

For this reason we will say that such an R has a monadic decomposition of (monadic) length N.

The investigation of monadic decompositions goes back to
[[MS] J. L. MacDonald, A. Stone, The tower and regular decomposition. Cahiers Topologie Géom. Différentielle 23. (1982), no. 2, 197-213.

围 [AHW] J. Adámek, H. Herrlich, W. Tholen, Monadic decompositions. J. Pure Appl. Algebra 59 (1989), no. 2, 111-123.

The investigation of monadic decompositions goes back to
围 [MS] J. L. MacDonald, A. Stone, The tower and regular decomposition. Cahiers Topologie Géom. Différentielle 23. (1982), no. 2, 197-213.
[AHW] J. Adámek, H. Herrlich, W. Tholen, Monadic decompositions. J. Pure Appl. Algebra 59 (1989), no. 2, 111-123.

Note that the notion of comonadic decomposition of (comonadic) length N can be easily introduced and to distinguish it we will use the notations

$$
\left(L^{n}, R^{n}\right)
$$

with superscripts and require that R^{N} be full and faithful.

The investigation of monadic decompositions goes back to
围 [MS] J. L. MacDonald, A. Stone, The tower and regular decomposition. Cahiers Topologie Géom. Différentielle 23. (1982), no. 2, 197-213.

E [AHW] J. Adámek, H. Herrlich, W. Tholen, Monadic decompositions. J. Pure Appl. Algebra 59 (1989), no. 2, 111-123.

Note that the notion of comonadic decomposition of (comonadic) length N can be easily introduced and to distinguish it we will use the notations

$$
\left(L^{n}, R^{n}\right)
$$

with superscripts and require that R^{N} be full and faithful.

Next aim is to investigate some properties of functors with a finite length monadic decomposition.

The image of a functor

Notation

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$, denote by $\operatorname{Im} R$ the full subcategory of \mathscr{B} consisting of objects $B \in \mathscr{B}$ such that $B \cong R A$ for some object $A \in \mathscr{A}$.

The image of a functor

Notation

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$, denote by $\operatorname{Im} R$ the full subcategory of \mathscr{B} consisting of objects $B \in \mathscr{B}$ such that $B \cong R A$ for some object $A \in \mathscr{A}$.

Recall that a functor $R: \mathscr{A} \rightarrow \mathscr{B}$ is essentially surjective if $\operatorname{Im} R=\mathscr{B}$.

The image of a functor

Notation

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$, denote by $\operatorname{Im} R$ the full subcategory of \mathscr{B} consisting of objects $B \in \mathscr{B}$ such that $B \cong R A$ for some object $A \in \mathscr{A}$.

Recall that a functor $R: \mathscr{A} \rightarrow \mathscr{B}$ is essentially surjective if $\operatorname{Im} R=\mathscr{B}$.

Proposition

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$ having a monadic decomposition of length $N \in \mathbb{N}$, then $\operatorname{Im} R=\operatorname{Im} U_{0, N}$, where we set $U_{0, N}:=U_{0,1} \circ U_{1,2} \circ \cdots \circ U_{N-1, N}$.

The image of a functor

Notation

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$, denote by $\operatorname{Im} R$ the full subcategory of \mathscr{B} consisting of objects $B \in \mathscr{B}$ such that $B \cong R A$ for some object $A \in \mathscr{A}$.

Recall that a functor $R: \mathscr{A} \rightarrow \mathscr{B}$ is essentially surjective if $\operatorname{Im} R=\mathscr{B}$.

Proposition

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$ having a monadic decomposition of length $N \in \mathbb{N}$, then $\operatorname{Im} R=\operatorname{Im} U_{0, N}$, where we set $U_{0, N}:=U_{0,1} \circ U_{1,2} \circ \cdots \circ U_{N-1, N}$.

Proof.

The monadic decomposition rewrites as $R=U_{0, N} \circ R_{N}$.

The image of a functor

Notation

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$, denote by $\operatorname{Im} R$ the full subcategory of \mathscr{B} consisting of objects $B \in \mathscr{B}$ such that $B \cong R A$ for some object $A \in \mathscr{A}$.

Recall that a functor $R: \mathscr{A} \rightarrow \mathscr{B}$ is essentially surjective if $\operatorname{Im} R=\mathscr{B}$.

Proposition

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$ having a monadic decomposition of length $N \in \mathbb{N}$, then $\operatorname{Im} R=\operatorname{Im} U_{0, N}$, where we set $U_{0, N}:=U_{0,1} \circ U_{1,2} \circ \cdots \circ U_{N-1, N}$.

Proof.

The monadic decomposition rewrites as $R=U_{0, N} \circ R_{N}$. By assumption the left adjoint L_{N} of R_{N} is full and faithful so that the unit $\eta_{N}: \operatorname{Id}_{\mathscr{B}_{N}} \rightarrow R_{N} L_{N}$ is an isomorphism.

The image of a functor

Notation

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$, denote by $\operatorname{Im} R$ the full subcategory of \mathscr{B} consisting of objects $B \in \mathscr{B}$ such that $B \cong R A$ for some object $A \in \mathscr{A}$.

Recall that a functor $R: \mathscr{A} \rightarrow \mathscr{B}$ is essentially surjective if $\operatorname{Im} R=\mathscr{B}$.

Proposition

Given a functor $R: \mathscr{A} \rightarrow \mathscr{B}$ having a monadic decomposition of length $N \in \mathbb{N}$, then $\operatorname{Im} R=\operatorname{Im} U_{0, N}$, where we set $U_{0, N}:=U_{0,1} \circ U_{1,2} \circ \cdots \circ U_{N-1, N}$.

Proof.

The monadic decomposition rewrites as $R=U_{0, N} \circ R_{N}$. By assumption the left adjoint L_{N} of R_{N} is full and faithful so that the unit $\eta_{N}: \operatorname{Id}_{\mathscr{B}_{N}} \rightarrow R_{N} L_{N}$ is an isomorphism. Hence R_{N} is essentially surjective and we get $\operatorname{Im} R=\operatorname{Im} U_{0, N}$.

Hence, monadic decomposition is a good tool to determine images of functors.

Hence, monadic decomposition is a good tool to determine images of functors. Let us give an example connected to Descent theory.

Hence, monadic decomposition is a good tool to determine images of functors. Let us give an example connected to Descent theory.

Let A, B be rings. Given a (B, A)-bimodule M, consider the adjunction

$$
L: \mathscr{M}_{B} \rightarrow \mathscr{M}_{A}: X \mapsto X \otimes_{B} M \quad R: \mathscr{M}_{A} \rightarrow \mathscr{M}_{B}: Y \mapsto \operatorname{Hom}_{A}(M, Y)
$$

Here $\mathscr{M}_{E}=$ Mod- E category of right modules over the ring $E=A, B$.

Hence, monadic decomposition is a good tool to determine images of functors. Let us give an example connected to Descent theory.

Let A, B be rings. Given a (B, A)-bimodule M, consider the adjunction

$$
L: \mathscr{M}_{B} \rightarrow \mathscr{M}_{A}: X \mapsto X \otimes_{B} M \quad R: \mathscr{M}_{A} \rightarrow \mathscr{M}_{B}: Y \mapsto \operatorname{Hom}_{A}(M, Y)
$$

Here $\mathscr{M}_{E}=$ Mod- E category of right modules over the ring $E=A, B$.

Now the comparison functors R_{1} and L^{1} have adjoints as follows.

Hence, monadic decomposition is a good tool to determine images of functors. Let us give an example connected to Descent theory.

Let A, B be rings. Given a (B, A)-bimodule M, consider the adjunction

$$
L: \mathscr{M}_{B} \rightarrow \mathscr{M}_{A}: X \mapsto X \otimes_{B} M \quad R: \mathscr{M}_{A} \rightarrow \mathscr{M}_{B}: Y \mapsto \operatorname{Hom}_{A}(M, Y)
$$

Here $\mathscr{M}_{E}=$ Mod- E category of right modules over the ring $E=A, B$.

Now the comparison functors R_{1} and L^{1} have adjoints as follows.

Focus on the right-hand side diagram and assume that M_{A} is projective.

Hence, monadic decomposition is a good tool to determine images of functors. Let us give an example connected to Descent theory.

Let A, B be rings. Given a (B, A)-bimodule M, consider the adjunction

$$
L: \mathscr{M}_{B} \rightarrow \mathscr{M}_{A}: X \mapsto X \otimes_{B} M \quad R: \mathscr{M}_{A} \rightarrow \mathscr{M}_{B}: Y \mapsto \operatorname{Hom}_{A}(M, Y)
$$

Here $\mathscr{M}_{E}=$ Mod- E category of right modules over the ring $E=A, B$.

Now the comparison functors R_{1} and L^{1} have adjoints as follows.

Focus on the right-hand side diagram and assume that M_{A} is projective. Then $R=R_{0}$ is exact so that, Beck's Theorem ensures that L_{1} is full and faithful, and R has a monadic decomposition of length at most 1 .

$$
\begin{aligned}
& \left(\mathscr{M}_{A}\right)^{1} \ldots \ldots \ldots U^{0,1} \ldots \ldots \ldots . \mathscr{M}_{A} \longleftarrow \mathrm{Id}_{\mathscr{M}_{A}} \mathscr{M}_{A}
\end{aligned}
$$

$$
\begin{array}{cccc}
\left(\mathscr{M}_{A}\right)^{1} \ldots \ldots U^{0,1} & & \mathscr{M}_{A} \leftarrow & \mathrm{Id}_{\mathscr{M}_{A}} \\
L^{1} \wedge \mathscr{M}_{A} & \mathscr{M}_{A} \\
\mathscr{M}_{B} & \left.L^{\wedge}\right|_{R} & & L_{1}{ }^{\wedge} \|_{R_{1}} \\
\mathrm{Id}_{\mathscr{M}_{B}} & >\mathscr{M}_{B} \leftarrow & U_{0,1} \\
\left(\mathscr{M}_{B}\right)_{1}
\end{array}
$$

Focus on the left-hand side diagram and assume ${ }_{B} M$ is flat.

$$
{ }_{B} M \text { flat } \Rightarrow L=L^{0} \text { exact } \stackrel{\text { dual Beck's Thm. }}{\Rightarrow} R^{1} \text { full and faithful. }
$$

$$
\begin{array}{rlrl}
\left(\mathscr{M}_{A}\right)^{1} \ldots \ldots \ldots U^{0,1} & \mathscr{M}_{A} \leftarrow & \mathrm{Id}_{\mathscr{M}_{A}} & \mathscr{M}_{A} \\
L^{1} \wedge \downarrow_{R^{1}} & \left.L^{\wedge}\right|_{R} & & L_{1}{ }^{\wedge} \downarrow_{R_{1}} \\
\mathscr{M}_{B} & \mathrm{Id}_{\mathscr{M}_{B}} & >\mathscr{M}_{B} \leftarrow & U_{0,1} \\
\left(\mathscr{M}_{B}\right)_{1}
\end{array}
$$

Focus on the left-hand side diagram and assume ${ }_{B} M$ is flat.

$$
{ }_{B} M \text { flat } \Rightarrow L=L^{0} \text { exact } \stackrel{\text { dual Beck's Thm. }}{\Rightarrow} R^{1} \text { full and faithful. }
$$

Therefore, L admits a comonadic decomposition of length at most 1 .

Focus on the left-hand side diagram and assume ${ }_{B} M$ is flat.

$$
{ }_{B} M \text { flat } \Rightarrow L=L^{0} \text { exact } \stackrel{\text { dual Beck's Thm. }}{\Rightarrow} R^{1} \text { full and faithful. }
$$

Therefore, L admits a comonadic decomposition of length at most 1 .
CONSEQUENCE: $\operatorname{Im} L=\operatorname{Im} U^{0,1}$ i.e. the objects of \mathscr{M}_{A} which are isomorphic to objects of the form $L X=X \otimes_{B} M$, for some $X \in \mathscr{M}_{B}$, are exactly those of the form $U^{0,1} X^{1}$ where $X^{1} \in\left(\mathscr{M}_{A}\right)^{1}$.

Focus on the left-hand side diagram and assume ${ }_{B} M$ is flat.

$$
{ }_{B} M \text { flat } \Rightarrow L=L^{0} \text { exact } \stackrel{\text { dual Beck's Thm. }}{\Rightarrow} R^{1} \text { full and faithful. }
$$

Therefore, L admits a comonadic decomposition of length at most 1 .
CONSEQUENCE: $\operatorname{Im} L=\operatorname{Im} U^{0,1}$ i.e. the objects of \mathscr{M}_{A} which are isomorphic to objects of the form $L X=X \otimes_{B} M$, for some $X \in \mathscr{M}_{B}$, are exactly those of the form $U^{0,1} X^{1}$ where $X^{1} \in\left(\mathscr{M}_{A}\right)^{1}$. Hence the category $\left(\mathscr{M}_{A}\right)^{1}$ solves the descent problem for modules.

$$
\begin{array}{rlrl}
\left(\mathscr{M}_{A}\right)^{1} \ldots \ldots \ldots U^{0,1} & \mathscr{M}_{A} \leftarrow & \mathrm{Id}_{\mathscr{M}_{A}} & \mathscr{M}_{A} \\
L^{1} \wedge \downarrow_{R^{1}} & \left.L^{\wedge}\right|_{R} & & L_{1}{ }^{\wedge} \downarrow_{R_{1}} \\
\mathscr{M}_{B} & { }_{\mathrm{Id} \mathscr{M}_{B}} & >\mathscr{M}_{B} \leftarrow & U_{0,1} \\
\left(\mathscr{M}_{B}\right)_{1}
\end{array}
$$

Focus on the left-hand side diagram and assume ${ }_{B} M$ is flat.

$$
{ }_{B} M \text { flat } \Rightarrow L=L^{0} \text { exact } \stackrel{\text { dual Beck's Thm. }}{\Rightarrow} R^{1} \text { full and faithful. }
$$

Therefore, L admits a comonadic decomposition of length at most 1 .
CONSEQUENCE: $\operatorname{Im} L=\operatorname{Im} U^{0,1}$ i.e. the objects of \mathscr{M}_{A} which are isomorphic to objects of the form $L X=X \otimes_{B} M$, for some $X \in \mathscr{M}_{B}$, are exactly those of the form $U^{0,1} X^{1}$ where $X^{1} \in\left(\mathscr{M}_{A}\right)^{1}$. Hence the category $\left(\mathscr{M}_{A}\right)^{1}$ solves the descent problem for modules.

Note: when M_{A} is also finitely generated and projective, then $\left(\mathscr{M}_{A}\right)^{1}$ is precisely the category of comodules over the A-coring $M^{*} \otimes_{B} M$ (the so-called comatrix coring associated to ${ }_{B} M_{A}$).

Idempotent monads and adjunctions

The notion of an idempotent monad is, as we will see below, related with the monadic length of a functor.

Idempotent monads and adjunctions

The notion of an idempotent monad is, as we will see below, related with the monadic length of a functor.

Definition

- A monad (Q, m, u) is idempotent if m is an isomorphism.

Idempotent monads and adjunctions

The notion of an idempotent monad is, as we will see below, related with the monadic length of a functor.

Definition

- A monad (Q, m, u) is idempotent if m is an isomorphism.
- An adjunction (L, R) is idempotent if the associated monad is.

Idempotent monads and adjunctions

The notion of an idempotent monad is, as we will see below, related with the monadic length of a functor.

Definition

- A monad (Q, m, u) is idempotent if m is an isomorphism.
- An adjunction (L, R) is idempotent if the associated monad is.

There are several basic characterizations of idempotent adjunctions, see
[AT] H. Appelgate, M. Tierney, Categories with models. 1969 Sem. on Triples and Categorical Homology Theory (ETH, zürich, 1966/67) pp. 156-244 Springer, Berlin.
[in [MS] J. L. MacDonald, A. Stone, The tower and regular decomposition. Cahiers Topologie Géom. Différentielle 23 (1982), no. 2, 197-213.

Idempotent monads and adjunctions

The notion of an idempotent monad is, as we will see below, related with the monadic length of a functor.

Definition

- A monad (Q, m, u) is idempotent if m is an isomorphism.
- An adjunction (L, R) is idempotent if the associated monad is.

There are several basic characterizations of idempotent adjunctions, see
围 [AT] H. Appelgate, M. Tierney, Categories with models. 1969 Sem. on Triples and Categorical Homology Theory (ETH, zürich, 1966/67) pp. 156-244 Springer, Berlin.
囲 [MS] J. L. MacDonald, A. Stone, The tower and regular decomposition.
Cahiers Topologie Géom. Différentielle 23 (1982), no. 2, 197-213.
In particular, idempotency of an adjunction means equivalently that any one of $\varepsilon L, R \varepsilon, \eta R, L \eta$ is an isomorphism ([MS, Proposition 2.8]).

Proposition

For our diagram, in the general case, TFAE.

Proposition

For our diagram, in the general case, TFAE.

(a) (L, R) is idempotent.

Proposition

For our diagram, in the general case, TFAE.

(a) (L, R) is idempotent.
(b) $\forall(X, R L X \xrightarrow{\mu} X) \in \mathscr{B}_{1}$ we have that μ is an isomorphism.

Proposition

For our diagram, in the general case, TFAE.

(a) (L, R) is idempotent.
(b) $\forall(X, R L X \xrightarrow{\mu} X) \in \mathscr{B}_{1}$ we have that μ is an isomorphism.
(c) $L_{1}:=L U_{0,1}$ is a left adjoint of $R_{1}, \eta U_{0,1}=U_{0,1} \eta_{1}$ and $\varepsilon_{1}=\varepsilon$.

Proposition

For our diagram, in the general case, TFAE.

(a) (L, R) is idempotent.
(b) $\forall(X, R L X \xrightarrow{\mu} X) \in \mathscr{B}_{1}$ we have that μ is an isomorphism.
(c) $L_{1}:=L U_{0,1}$ is a left adjoint of $R_{1}, \eta U_{0,1}=U_{0,1} \eta_{1}$ and $\varepsilon_{1}=\varepsilon$.

Moreover, if one of these conditions holds, then L_{1} is full and faithful.

Proposition

For our diagram, in the general case, TFAE.

(a) (L, R) is idempotent.
(b) $\forall(X, R L X \xrightarrow{\mu} X) \in \mathscr{B}_{1}$ we have that μ is an isomorphism.
(c) $L_{1}:=L U_{0,1}$ is a left adjoint of $R_{1}, \eta U_{0,1}=U_{0,1} \eta_{1}$ and $\varepsilon_{1}=\varepsilon$.

Moreover, if one of these conditions holds, then L_{1} is full and faithful.

Corollary

- (L, R) idempotent $\Longrightarrow R$ has a monadic decomposition of length ≤ 1.

Proposition

For our diagram, in the general case, TFAE.

(a) (L, R) is idempotent.
(b) $\forall(X, R L X \xrightarrow{\mu} X) \in \mathscr{B}_{1}$ we have that μ is an isomorphism.
(c) $L_{1}:=L U_{0,1}$ is a left adjoint of $R_{1}, \eta U_{0,1}=U_{0,1} \eta_{1}$ and $\varepsilon_{1}=\varepsilon$.

Moreover, if one of these conditions holds, then L_{1} is full and faithful.

Corollary

- (L, R) idempotent $\Longrightarrow R$ has a monadic decomposition of length ≤ 1.
- $\left(L_{i}, R_{i}\right)$ idempotent for some $i \in \mathbb{N} \Longrightarrow R$ has a monadic decomposition of length $\leq i+1$.

Proposition

For our diagram, in the general case, TFAE.

(a) (L, R) is idempotent.
(b) $\forall(X, R L X \xrightarrow{\mu} X) \in \mathscr{B}_{1}$ we have that μ is an isomorphism.
(c) $L_{1}:=L U_{0,1}$ is a left adjoint of $R_{1}, \eta U_{0,1}=U_{0,1} \eta_{1}$ and $\varepsilon_{1}=\varepsilon$.

Moreover, if one of these conditions holds, then L_{1} is full and faithful.

Corollary

- (L, R) idempotent $\Longrightarrow R$ has a monadic decomposition of length ≤ 1.
- $\left(L_{i}, R_{i}\right)$ idempotent for some $i \in \mathbb{N} \Longrightarrow R$ has a monadic decomposition of length $\leq i+1$.

Moreover one checks that (L, R) idempotent $\Longleftrightarrow \eta U_{0,1}$ is an isomorphism.

Vector spaces and bialgebras

Fix an arbitrary field \mathbb{k}.

Vector spaces and bialgebras

Fix an arbitrary field \mathbb{k}. All vector spaces, (co)algebras and bialgebras will be over \mathbb{k}.

Vector spaces and bialgebras

Fix an arbitrary field \mathbb{k}. All vector spaces, (co)algebras and bialgebras will be over \mathbb{k}.
Let Vec $:=$ category of vector spaces and Bialg := category of bialgebras.

Vector spaces and bialgebras

Fix an arbitrary field \mathbb{k}. All vector spaces, (co)algebras and bialgebras will be over \mathbb{k}.

Let Vec $:=$ category of vector spaces and Bialg $:=$ category of bialgebras.
Consider the following well-known adjunction

Vector spaces and bialgebras

Fix an arbitrary field \mathbb{k}. All vector spaces, (co)algebras and bialgebras will be over \mathbb{k}.

Let Vec $:=$ category of vector spaces and Bialg $:=$ category of bialgebras.
Consider the following well-known adjunction
Bialg $\stackrel{I_{\text {Bialg }}}{\leftarrow}$ Bialg

Here P sends a bialgebra B to its subspace of primitive elements

$$
P B:=\{b \in B \mid \Delta(b)=1 \otimes b+b \otimes 1\}
$$

Vector spaces and bialgebras

Fix an arbitrary field \mathbb{k}. All vector spaces, (co)algebras and bialgebras will be over \mathbb{k}.

Let Vec := category of vector spaces and Bialg := category of bialgebras.
Consider the following well-known adjunction

Here P sends a bialgebra B to its subspace of primitive elements

$$
P B:=\{b \in B \mid \Delta(b)=1 \otimes b+b \otimes 1\}
$$

while T sends a vector space V to the tensor algebra $T V$ (which is indeed a bialgebra).

Vector spaces and bialgebras

Fix an arbitrary field \mathbb{k}. All vector spaces, (co)algebras and bialgebras will be over \mathbb{k}.

Let Vec := category of vector spaces and Bialg := category of bialgebras.
Consider the following well-known adjunction

Here P sends a bialgebra B to its subspace of primitive elements

$$
P B:=\{b \in B \mid \Delta(b)=1 \otimes b+b \otimes 1\},
$$

while T sends a vector space V to the tensor algebra $T V$ (which is indeed a bialgebra).
The unit $\eta V: V \rightarrow P T V$ of the adjunction is just the canonical inclusion.

Vector spaces and bialgebras

Fix an arbitrary field \mathbb{k}. All vector spaces, (co)algebras and bialgebras will be over \mathbb{k}.

Let Vec $:=$ category of vector spaces and Bialg $:=$ category of bialgebras.
Consider the following well-known adjunction

Here P sends a bialgebra B to its subspace of primitive elements

$$
P B:=\{b \in B \mid \Delta(b)=1 \otimes b+b \otimes 1\},
$$

while T sends a vector space V to the tensor algebra $T V$ (which is indeed a bialgebra).
The unit $\eta V: V \rightarrow P T V$ of the adjunction is just the canonical inclusion. The counit $\varepsilon B: T P B \rightarrow B$ sends any tensor product of primitive elements to their product in B.

Now P_{1} has a left adjoint T_{1}.
Bialg $\stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows}$ Bialg

Now P_{1} has a left adjoint T_{1}.
Bialg $\stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows}$ Bialg

$\forall(V, \mu) \in \operatorname{Vec}_{1}$, by construction, $T_{1}(V, \mu)$ is defined to be the coequalizer $T P T V \underset{\varepsilon T V}{T \mu} T V \quad \pi \quad>\frac{T V}{(z-\mu(z) \mid z \in P T V)}=: T_{1}(V, \mu)$.

Now P_{1} has a left adjoint T_{1}.
Bialg $\stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows}$ Bialg

$$
\begin{array}{lll}
T \stackrel{\wedge}{\wedge}{ }_{P} & U_{1,1} & T_{1}{ }_{\curlyvee} P_{1} \\
\mathrm{Vec} \longleftarrow & \mathrm{Vec}_{0,1}
\end{array}
$$

$\forall(V, \mu) \in \operatorname{Vec}_{1}$, by construction, $T_{1}(V, \mu)$ is defined to be the coequalizer

$$
T P T V \underset{\varepsilon T V}{T \mu} T V{ }^{\pi}>\frac{T V}{(z-\mu(z) \mid z \in P T V)}=: T_{1}(V, \mu) .
$$

Now, note that $P T V=\oplus_{n \geq 1} P_{n} T V$ where $P_{n} T V:=P T V \cap V^{\otimes n}$.

Now P_{1} has a left adjoint T_{1}.
Bialg $\stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows}$ Bialg

$$
\begin{array}{lll}
T \stackrel{\wedge}{\wedge}\rangle_{P} & U_{1} & T_{1}{ }_{\curlyvee} P_{1} \\
\mathrm{Vec} \longleftarrow & U_{0,1} & \mathrm{Vec}_{1}
\end{array}
$$

$\forall(V, \mu) \in \operatorname{Vec}_{1}$, by construction, $T_{1}(V, \mu)$ is defined to be the coequalizer

$$
T P T V \underset{\varepsilon T V}{T \mu} T V{ }^{\pi}>\frac{T V}{(z-\mu(z) \mid z \in P T V)}=: T_{1}(V, \mu) .
$$

Now, note that $P T V=\oplus_{n \geq 1} P_{n} T V$ where $P_{n} T V:=P T V \cap V^{\otimes n}$. In particular, $P_{1} T V=V$.

Now P_{1} has a left adjoint T_{1}.
Bialg $\stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows}$ Bialg
$\forall(V, \mu) \in \mathbf{V e c}_{1}$, by construction, $T_{1}(V, \mu)$ is defined to be the coequalizer

$$
T P T V \underset{\varepsilon T V}{T \mu} T V{ }^{\pi}>\frac{T V}{(z-\mu(z) \mid z \in P T V)}=: T_{1}(V, \mu) .
$$

Now, note that $P T V=\oplus_{n \geq 1} P_{n} T V$ where $P_{n} T V:=P T V \cap V^{\otimes n}$. In particular, $P_{1} T V=V$. Moreover $z-\mu(z)=0$, for $z \in V$, so that

$$
T_{1}(V, \mu)=\frac{T V}{\left(z-\mu(z) \mid z \in P_{n} T V, n \geq 2\right)}
$$

Now P_{1} has a left adjoint T_{1}.
Bialg $\stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows}$ Bialg

$$
\begin{aligned}
& T \stackrel{A}{\wedge} \quad U_{0,1} \quad T_{1}{ }^{\wedge}{ }^{\dagger}{ }^{\prime} P_{1} \\
& \mathrm{Vec} \stackrel{\mathrm{U}_{0,1}}{\leftrightarrows} \mathrm{Vec}_{1}
\end{aligned}
$$

$\forall(V, \mu) \in \operatorname{Vec}_{1}$, by construction, $T_{1}(V, \mu)$ is defined to be the coequalizer

$$
T P T V \underset{\varepsilon T V}{T \mu} T V \stackrel{\pi}{>} \frac{T V}{(z-\mu(z) \mid z \in P T V)}=: T_{1}(V, \mu) .
$$

Now, note that $P T V=\oplus_{n \geq 1} P_{n} T V$ where $P_{n} T V:=P T V \cap V^{\otimes n}$. In particular, $P_{1} T V=V$. Moreover $z-\mu(z)=0$, for $z \in V$, so that

$$
\frac{T V}{\left.z \in P_{n} T V, n \geq 2\right)}
$$

Consider now

$$
S(V):=\frac{T V}{\left(z \mid z \in P_{n} T V, n \geq 2\right)}=\frac{T V}{\left(P_{n} T V \mid n \geq 2\right)}
$$

Now P_{1} has a left adjoint T_{1}.
Bialg $\stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows}$ Bialg

$$
\begin{aligned}
& T \stackrel{A}{\wedge} \quad U_{0,1} \quad T_{1}{ }^{\wedge}{ }^{\dagger}{ }^{\prime} P_{1} \\
& \mathrm{Vec} \underset{ }{0_{0,1}} \mathrm{Vec}_{1}
\end{aligned}
$$

$\forall(V, \mu) \in \operatorname{Vec}_{1}$, by construction, $T_{1}(V, \mu)$ is defined to be the coequalizer

$$
T P T V \underset{\varepsilon T V}{T \mu} T V{ }^{\pi}>\frac{T V}{(z-\mu(z) \mid z \in P T V)}=: T_{1}(V, \mu) .
$$

Now, note that $P T V=\oplus_{n \geq 1} P_{n} T V$ where $P_{n} T V:=P T V \cap V^{\otimes n}$. In particular, $P_{1} T V=V$. Moreover $z-\mu(z)=0$, for $z \in V$, so that

$$
\frac{T V}{\left.z \in P_{n} T V, n \geq 2\right)}
$$

Consider now

$$
S(V):=\frac{T V}{\left(z \mid z \in P_{n} T V, n \geq 2\right)}=\frac{T V}{\left(P_{n} T V \mid n \geq 2\right)}
$$

We have the following result.

Proposition

$$
\operatorname{char}(\mathbb{k})=0 \quad \Longrightarrow \quad S V=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} .
$$

Proposition

$$
\begin{aligned}
\operatorname{char}(\mathbb{k})=0 & \Longrightarrow S V=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} \\
\operatorname{char}(\mathbb{k})=p>0 & \Longrightarrow S V=\frac{T V}{\left(x \otimes y-y \otimes x, x^{p} \mid x, y \in V\right)}
\end{aligned}
$$

Proposition

$$
\begin{aligned}
\operatorname{char}(\mathbb{k})=0 & \Longrightarrow S V=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} \\
\operatorname{char}(\mathbb{k})=p>0 & \Longrightarrow S V=\frac{T V}{\left(x \otimes y-y \otimes x, x^{p} \mid x, y \in V\right)}
\end{aligned}
$$

In both cases $P S V \cong V$.

Proof.

We sketch it for $\operatorname{char}(\mathbb{k})=0$ (the other case is similar).

Proposition

$$
\begin{array}{cc}
\operatorname{char}(\mathbb{k})=0 \quad \Longrightarrow \quad S V=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} . \\
\operatorname{char}(\mathbb{k})=p>0 \quad \Longrightarrow \quad S V=\frac{T V}{\left(x \otimes y-y \otimes x, x^{p} \mid x, y \in V\right)} .
\end{array}
$$

In both cases $P S V \cong V$.

Proof.

We sketch it for char $(\mathbb{k})=0$ (the other case is similar).
Since $x \otimes y-y \otimes x \in P_{2} T V, \forall x, y \in V$, there is a bialgebra projection

$$
A:=\frac{T V}{(x \otimes y-y \otimes \mid x, y \in V)} \xrightarrow{\gamma} \frac{T V}{\left(P_{n} T V n \geq 2\right)}=S V .
$$

Proposition

$$
\begin{aligned}
\operatorname{char}(\mathbb{k})=0 & \Longrightarrow S V=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} \\
\operatorname{char}(\mathbb{k})=p>0 & \Longrightarrow S V=\frac{T V}{\left(x \otimes y-y \otimes x, x^{p} \mid x, y \in V\right)} .
\end{aligned}
$$

In both cases $P S V \cong V$.

Proof.

We sketch it for $\operatorname{char}(\mathbb{k})=0$ (the other case is similar).

Since $x \otimes y-y \otimes x \in P_{2} T V, \forall x, y \in V$, there is a bialgebra projection

$$
A:=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} \xrightarrow{\gamma} \frac{T V}{\left(P_{n} T V \mid n \geq 2\right)}=S V .
$$

It is well-known that $P A \cong V$.

Proposition

$$
\begin{aligned}
\operatorname{char}(\mathbb{k})=0 & \Longrightarrow S V=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} \\
\operatorname{char}(\mathbb{k})=p>0 & \Longrightarrow S V=\frac{T V}{\left(x \otimes y-y \otimes x, x^{p} \mid x, y \in V\right)} .
\end{aligned}
$$

In both cases $P S V \cong V$.

Proof.

We sketch it for $\operatorname{char}(\mathbb{k})=0$ (the other case is similar).

Since $x \otimes y-y \otimes x \in P_{2} T V, \forall x, y \in V$, there is a bialgebra projection

$$
A:=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} \xrightarrow{\gamma} \frac{T V}{\left(P_{n} T V \mid n \geq 2\right)}=S V .
$$

It is well-known that $P A \cong V$. Hence, $\gamma_{\mid P A}$ is injective.

Proposition

$$
\begin{array}{cc}
\operatorname{char}(\mathbb{k})=0 \quad \Longrightarrow \quad S V=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} . \\
\operatorname{char}(\mathbb{k})=p>0 \quad \Longrightarrow \quad S V=\frac{T V}{\left(x \otimes y-y \otimes x, x^{p} \mid x, y \in V\right)} .
\end{array}
$$

In both cases $P S V \cong V$.

Proof.

We sketch it for char $(\mathbb{k})=0$ (the other case is similar).
Since $x \otimes y-y \otimes x \in P_{2} T V, \forall x, y \in V$, there is a bialgebra projection

$$
A:=\frac{T V}{(x \otimes y-y \otimes x \mid x, y \in V)} \xrightarrow{\gamma} \frac{T V}{\left(P_{n} T V n \geq 2\right)}=S V .
$$

It is well-known that $P A \cong V$. Hence, $\gamma_{P A}$ is injective.
By Heyneman-Radford Theorem, γ is injective whence bijective i.e.
$S V=A$.

We have the following result.

We have the following result.

Theorem

The adjunction (T_{1}, P_{1}) is idempotent.

We have the following result.

Theorem
The adjunction (T_{1}, P_{1}) is idempotent.
Proof.
Take $V_{2} \in \mathbf{V e c}_{2}$.

We have the following result.

Theorem

The adjunction (T_{1}, P_{1}) is idempotent.

Proof.

Take $V_{2} \in \mathbf{V e c}_{2}$. In particular we can write

$$
V_{2}=\left(V_{1}, P_{1} T_{1} V_{1} \xrightarrow{\mu_{1}} V_{1}\right) \quad \text { where } \quad V_{1}=(V, \mu) \in \mathbf{V e c}_{1} .
$$

We have the following result.

Theorem

The adjunction $\left(T_{1}, P_{1}\right)$ is idempotent.

Proof.

Take $V_{2} \in \mathbf{V e c}_{2}$. In particular we can write

$$
V_{2}=\left(V_{1}, P_{1} T_{1} V_{1} \xrightarrow{\mu_{1}} V_{1}\right) \quad \text { where } \quad V_{1}=(V, \mu) \in \mathbf{V e c}_{1} .
$$

Using that $\mu_{1} \circ \eta_{1} V_{1}=\operatorname{Id}_{V_{1}}$ and $P S(V) \cong V$ one gets that

$$
U_{0,1} \eta_{1} V_{1}: V \rightarrow U_{0,1} P_{1} T_{1} V_{1}=P T_{1} V_{1}
$$

has inverse $U_{0,1} \mu_{1}$, where $U_{0,1}: \operatorname{Vec}_{1} \rightarrow \operatorname{Vec}_{0}$.

We have the following result.

Theorem

The adjunction $\left(T_{1}, P_{1}\right)$ is idempotent.

Proof.

Take $V_{2} \in \mathbf{V e c}_{2}$. In particular we can write

$$
V_{2}=\left(V_{1}, P_{1} T_{1} V_{1} \xrightarrow{\mu_{1}} V_{1}\right) \quad \text { where } \quad V_{1}=(V, \mu) \in \mathbf{V e c}_{1} .
$$

Using that $\mu_{1} \circ \eta_{1} V_{1}=\operatorname{Id}_{V_{1}}$ and $P S(V) \cong V$ one gets that

$$
U_{0,1} \eta_{1} V_{1}: V \rightarrow U_{0,1} P_{1} T_{1} V_{1}=P T_{1} V_{1}
$$

has inverse $U_{0,1} \mu_{1}$, where $U_{0,1}: \mathrm{Vec}_{1} \rightarrow \mathrm{Vec}_{0}$.
Since $U_{0,1}$ reflects isomorphisms, this implies $\eta_{1} V_{1}: V_{1} \rightarrow P_{1} T_{1} V_{1}$ is an isomorphism.

We have the following result.

Theorem

The adjunction $\left(T_{1}, P_{1}\right)$ is idempotent.

Proof.

Take $V_{2} \in \mathbf{V e c}_{2}$. In particular we can write

$$
V_{2}=\left(V_{1}, P_{1} T_{1} V_{1} \xrightarrow{\mu_{1}} V_{1}\right) \quad \text { where } \quad V_{1}=(V, \mu) \in \mathbf{V e c}_{1} .
$$

Using that $\mu_{1} \circ \eta_{1} V_{1}=\operatorname{Id}_{V_{1}}$ and $P S(V) \cong V$ one gets that

$$
U_{0,1} \eta_{1} V_{1}: V \rightarrow U_{0,1} P_{1} T_{1} V_{1}=P T_{1} V_{1}
$$

has inverse $U_{0,1} \mu_{1}$, where $U_{0,1}: \operatorname{Vec}_{1} \rightarrow$ Vec $_{0}$.
Since $U_{0,1}$ reflects isomorphisms, this implies $\eta_{1} V_{1}: V_{1} \rightarrow P_{1} T_{1} V_{1}$ is an isomorphism.

Thus we conclude that $\eta_{1} U_{1,2}$ is an isomorphism and we know this is equivalent to (T_{1}, P_{1}) idempotent.

By the properties of idempotent adjunctions we have seen, we can complete the diagram to

$$
\begin{aligned}
& \text { Bialg } \stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows} \text { Bialg } \underset{T^{I d_{\text {Bialg }}}}{\leftrightarrows} \text { Bialg }
\end{aligned}
$$

where we can choose $T_{2}:=T_{1} U_{1,2}$ and this is full and faithful.

By the properties of idempotent adjunctions we have seen, we can complete the diagram to

$$
\begin{aligned}
& \text { Bialg } \stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows} \text { Bialg } \stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows} \text { Bialg }
\end{aligned}
$$

where we can choose $T_{2}:=T_{1} U_{1,2}$ and this is full and faithful. In particular P has a monadic decomposition of length ≤ 2

By the properties of idempotent adjunctions we have seen, we can complete the diagram to

$$
\begin{aligned}
& \text { Bialg } \stackrel{\text { Id }_{\text {Bialg }}}{\leftrightarrows} \text { Bialg } \stackrel{\mathrm{Id}_{\text {Bialg }}}{\leftrightarrows} \text { Bialg }
\end{aligned}
$$

where we can choose $T_{2}:=T_{1} U_{1,2}$ and this is full and faithful. In particular P has a monadic decomposition of length ≤ 2

By the foregoing, we know that $\operatorname{Im} P=\operatorname{Im} U_{0,2}$ so that the vector spaces arising as primitive part of some bialgebra are those isomorphic to the underlying vector space of some $V_{2} \in \mathbf{V e c}_{2}$.

By the properties of idempotent adjunctions we have seen, we can complete the diagram to

$$
\begin{aligned}
& \text { Bialg } \stackrel{\text { Id }_{\text {Bialg }}}{\leftrightarrows} \text { Bialg } \stackrel{\text { Id }_{\text {Bialg }}}{\leftrightarrows} \text { Bialg }
\end{aligned}
$$

where we can choose $T_{2}:=T_{1} U_{1,2}$ and this is full and faithful. In particular P has a monadic decomposition of length ≤ 2

By the foregoing, we know that $\operatorname{Im} P=\operatorname{Im} U_{0,2}$ so that the vector spaces arising as primitive part of some bialgebra are those isomorphic to the underlying vector space of some $V_{2} \in \mathbf{V e c}_{2}$.

Moreover we have $T_{2} V_{2}=T_{1} U_{1,2} V_{2}=T_{1} V_{1}=T_{1}(V, \mu)$.

By the properties of idempotent adjunctions we have seen, we can complete the diagram to
where we can choose $T_{2}:=T_{1} U_{1,2}$ and this is full and faithful. In particular P has a monadic decomposition of length ≤ 2

By the foregoing, we know that $\operatorname{Im} P=\operatorname{Im} U_{0,2}$ so that the vector spaces arising as primitive part of some bialgebra are those isomorphic to the underlying vector space of some $V_{2} \in \mathbf{V e c}_{2}$.

Moreover we have $T_{2} V_{2}=T_{1} U_{1,2} V_{2}=T_{1} V_{1}=T_{1}(V, \mu)$.
Indeed we can be more precise....

Theorem

Take $V_{2}:=\left((V, \mu), \mu_{1}\right) \in \mathbf{V e c}_{2}$.

Theorem

Take $V_{2}:=\left((V, \mu), \mu_{1}\right) \in \mathbf{V e c}_{2}$.
chark $=0)$ We have that $(V,[-,-])$ is a Lie algebra where

$$
[-,-]: V \otimes V \rightarrow V, \quad[x, y]:=\mu(x y-y x)
$$

Theorem

Take $V_{2}:=\left((V, \mu), \mu_{1}\right) \in \mathbf{V e c}_{2}$.
chark $=0)$ We have that $(V,[-,-])$ is a Lie algebra where

$$
[-,-]: V \otimes V \rightarrow V, \quad[x, y]:=\mu(x y-y x)
$$

Moreover $T_{2} V_{2}$ is the universal enveloping algebra

$$
T_{2} V_{2}=\frac{T V}{(x y-y x-[x, y] \mid x, y \in V)}
$$

Theorem

Take $V_{2}:=\left((V, \mu), \mu_{1}\right) \in \mathbf{V e c}_{2}$.
chark $=0)$ We have that $(V,[-,-])$ is a Lie algebra where

$$
[-,-]: V \otimes V \rightarrow V, \quad[x, y]:=\mu(x y-y x)
$$

Moreover $T_{2} V_{2}$ is the universal enveloping algebra

$$
T_{2} V_{2}=\frac{T V}{(x y-y x-[x, y] \mid x, y \in V)}
$$

chark $=p$)
We have that $\left(V,[-,-],-{ }^{[p]}\right)$ is a restricted Lie algebra where
$[-,-]: V \otimes V \rightarrow V,[x, y]:=\mu(x y-y x) \quad$ and $\quad \quad^{[p]}: V \rightarrow V, x^{[p]}:=\mu\left(x^{p}\right)$.

Theorem

Take $V_{2}:=\left((V, \mu), \mu_{1}\right) \in \mathbf{V e c}_{2}$.
chark $=0)$ We have that $(V,[-,-])$ is a Lie algebra where

$$
[-,-]: V \otimes V \rightarrow V, \quad[x, y]:=\mu(x y-y x)
$$

Moreover $T_{2} V_{2}$ is the universal enveloping algebra

$$
T_{2} V_{2}=\frac{T V}{(x y-y x-[x, y] \mid x, y \in V)}
$$

chark $=p$)
We have that $\left(V,[-,-],-{ }^{[p]}\right)$ is a restricted Lie algebra where
$[-,-]: V \otimes V \rightarrow V,[x, y]:=\mu(x y-y x) \quad$ and $\quad \quad^{[p]}: V \rightarrow V, x^{[p]}:=\mu\left(x^{p}\right)$.
Moreover $T_{2} V_{2}$ is the restricted enveloping algebra

$$
T_{2} V_{2}=\frac{T V}{\left(x y-y x-[x, y], x^{p}-x^{[p]} \mid x, y \in V\right)}
$$

Work in progress

As a consequence, in a work in progress with I. Goyvaerts and C. Menini, we prove that there is an equivalence of categories Λ such that $\Lambda \circ P_{2}=\mathscr{P}$ and $H \circ \Lambda=U_{0,2}$ where

Work in progress

As a consequence, in a work in progress with I. Goyvaerts and C. Menini, we prove that there is an equivalence of categories Λ such that $\Lambda \circ P_{2}=\mathscr{P}$ and $H \circ \Lambda=U_{0,2}$ where

Here Lie denotes either the category of Lie algebras or the category of restricted Lie algebras depending on the characteristic, and \mathscr{U} is the corresponding universal enveloping algebra.

Work in progress

As a consequence, in a work in progress with I. Goyvaerts and C. Menini, we prove that there is an equivalence of categories Λ such that $\Lambda \circ P_{2}=\mathscr{P}$ and $H \circ \Lambda=U_{0,2}$ where

Here Lie denotes either the category of Lie algebras or the category of restricted Lie algebras depending on the characteristic, and \mathscr{U} is the corresponding universal enveloping algebra.

Thus $\mathrm{Vec}_{2} \cong$ Lie so that monadic decomposition leads to Lie.

