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Definition
Recall that a monad on a category % is a triple Q := (Q, m,u), where

@ Q:% — ¥ is a functor,
e m: QQ — Q and u:Idy — Q are functorial morphisms s.t.

QQ—" -0 Q%02 ¢
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Q——Q Q

A Q-algebra is a pair (X,u) where X € € and p: QX — X is a morphism
in € s.t.
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Recall that a monad on a category % is a triple Q := (Q, m,u), where

@ Q:% — ¥ is a functor,
e m: QQ — Q and u:Idy — Q are functorial morphisms s.t.

QQ—" -0 Q%02 ¢

mQ) (l?m m lm%o

QQ Q

A Q-algebra is a pair (X,u) where X € € and p: QX — X is a morphism
in € s.t.

m

QOX — ¥ _ox XX Qx

le/ lu h |u
QX X X

(QQ-algebras and their morphisms form the so-called Eilenberg-Moore
category @% of the monad Q.
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Recall that a monad on a category % is a triple Q := (Q, m,u), where

@ Q:% — ¥ is a functor,
e m: QQ — Q and u:Idy — Q are functorial morphisms s.t.

QQ—" -0 Q%02 ¢

mQ) (%m m lmA

QQ Q

A Q-algebra is a pair (X,u) where X € € and p: QX — X is a morphism
in € s.t.

m

QOX — ¥ _ox XX Qx

mX\L iu h |u
QX X X

(QQ-algebras and their morphisms form the so-called Eilenberg-Moore
category @@ of the monad Q. When the multiplication and unit of the
monad are clear from the context, we will just write @ instead of Q.
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A monad Q on ¥ gives rise to an adjunction (F,U) := (gF,qU) where
U:q% — € is the forgetful functor and F : € — % is the free functor.
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A monad Q on ¥ gives rise to an adjunction (F,U) := (gF,qU) where
U:q% — € is the forgetful functor and F : € — % is the free functor.
Explicitly:

uX,u)==X, Uf:=f and FX:=(QX,mX), Ff:=Qf.
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U:q% — € is the forgetful functor and F : € — % is the free functor.
Explicitly:

uX,u)==X, Uf:=f and FX:=(QX,mX), Ff:=Qf.

Note that
o UF =Q.

@ The unit of the adjunction (F,U) is given by the unit
u:Idy — UF = Q of the monad Q.

@ The counit A : FU — Id,« is uniquely determined by the equality
UA (X, 1) = p for every (X, 1) € o%.
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A monad Q on ¥ gives rise to an adjunction (F,U) := (gF,qU) where
U:q% — € is the forgetful functor and F : € — % is the free functor.
Explicitly:

uX,u)==X, Uf:=f and FX:=(QX,mX), Ff:=Qf.

Note that
o UF =Q.

@ The unit of the adjunction (F,U) is given by the unit
u:Idy — UF = Q of the monad Q.

@ The counit A : FU — Id,« is uniquely determined by the equality
UA (X, 1) = p for every (X, 1) € o%.

o the forgetful functor U: % — € is faithful and reflects isomorphisms.
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Monadic decomposition

Let (L: B — &/,R: o/ — ) be an adjunction with unit 1 and counit €.
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Monadic decomposition

Let (L: B — &/,R: o/ — ) be an adjunction with unit 1 and counit €.
Then (RL,ReL,n) is a monad on 8 and we can assign to it the so-called
comparison functor K : o/ — g% which is defined by

KX :=(RX,ReX)  and  Kf:=Rf.
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Monadic decomposition

Let (L: B — &/,R: o/ — ) be an adjunction with unit 1 and counit €.
Then (RL,ReL,n) is a monad on 8 and we can assign to it the so-called
comparison functor K : o/ — g% which is defined by

KX :=(RX,ReX)  and  Kf:=Rf.

o Id,, of

We have this A

commutative diagram. L%l"’ lK
B nY B
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Monadic decomposition

Let (L: B — &/,R: o/ — ) be an adjunction with unit 1 and counit €.
Then (RL,ReL,n) is a monad on 8 and we can assign to it the so-called
comparison functor K : o/ — g% which is defined by

KX :=(RX,ReX)  and  Kf:=Rf.

o

We have this A

commutative diagram. LilR lK
B

Definition

A functor R is monadic (tripleable in Beck’s terminology) if it has a left
adjoint L such that the functor K, as above, is an equivalence of categories.
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Monadic decomposition

Let (L: B — &/,R: o/ — ) be an adjunction with unit 1 and counit €.
Then (RL,ReL,n) is a monad on 8 and we can assign to it the so-called
comparison functor K : o/ — g% which is defined by

KX :=(RX,ReX)  and  Kf:=Rf.

Id,,

We have this
commutative diagram.

Definition

A functor R is monadic (tripleable in Beck’s terminology) if it has a left
adjoint L such that the functor K, as above, is an equivalence of categories.

An easy example
The functor g, U is always monadic!!!
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Let us consider again our diagram but changing the notation as follows
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Old notation
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4 a o
A
LR J/K
rRLU
RLA

New notation

4 4
LoA\LRo Uos \LRI
Py P
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Let us consider again our diagram but changing the notation as follows

Old notation New notation
1d d
o 4 o o &4 o
A A
Li|R \LK Lo \LRO \LRI
RLU U0,1
RLA Bo i

Suppose that R; has a left adjoint L;.
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Let us consider again our diagram but changing the notation as follows

Old notation New notation
1d d
o s o o &4 o
A A
Li|R J/K Lo \LRO J/Rl
RLU U0,1
RLA Bo i

Suppose that R; has a left adjoint L;.

Then we can consider (L3, Ry) as a starting adjunction and, if we are lucky,
extend the diagram as follows

1d,, Id,, Idxz/
o o o
A A A
Lo:|Ro Li:| R Ly:|Ra
Uo1 Ui Uz
PBo 0 !
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Let us consider again our diagram but changing the notation as follows

Old notation New notation
1d., Id,
o s o o &4 o
A A
Li|R J/K Lo \LRO J/Rl
RLU U0,1
RLA Bo i

Suppose that R; has a left adjoint L;.

Then we can consider (L3, Ry) as a starting adjunction and, if we are lucky,
extend the diagram as follows

1d., Idy Id
o o o
A A A
Lo:|Ro Li:| R Ly:|Ra
Uo1 Ui Uz
PBo 0 !

For all i € N, the unit and counit of the adjunction (L;, R;) will be denoted
by n; and &; respectively.
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We are very lucky if 3 minimal N € N such that Ly is full and faithful.

A. Ardizzoni (Univ. Torino - ltaly) Lie Theory & Monads June 19, 2014 6 /20



We are very lucky if 3 minimal N € N such that Ly is full and faithful.

1d,, 1d,, 1d,, 1d,,
A ~—L o L A A
A A A A
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0 Uo,1 ! U2 2 Un-1n Un,ns N+1
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We are very lucky if 3 minimal N € N such that Ly is full and faithful.

1d,, 1d 1d,, 1d,,
A ~—L o L A A
A A A A
Lo l/Ro Ly gl/ﬁ Lp gle Ly \LRN \LRNJA
B 7 P B
0 Uo,1 ! U2 2 Un-1n Un,ns N+1

Ly £f. & Unnt1: Bny1 — By is an isomorphism of categories.
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Lo \LRO Ly i/Rl Lo \LRz Ly i/RN i/RNH
B 7 P B
0 Uo,1 ! U2 2 Un-1n Un,ns N+1

Ly £f. & Unnt1: Bny1 — By is an isomorphism of categories.

It relies on the fact that, by Rafael Theorem, Ly f.f. < the unit ny is an
isomorphism. Ol
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We are very lucky if 3 minimal N € N such that Ly is full and faithful.

1d,, 1d,, 1d,, 1d,,
A ~—L o L A A
A A A A
Lo \LRO Ly i/Rl Lo \LRz Ly i/RN i/RNH
B 7 P B
0 Uo,1 ! U2 2 Un-1n Un,ns N+1

Ly f£f. < Unntt i B — By is an isomorphism of categories.

It relies on the fact that, by Rafael Theorem, Ly f.f. < the unit ny is an
isomorphism. Ol

Thus, if such an N exists, then By, 1 = By and the diagram is stationary.
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Note that, by the commutativity of the diagram,

Id,, Id,, 1d,,
4 4 4 4
A A A A
Lo iRo " Ly iRl ” L, iRz " Ly iRN
0,1 1,2 N—1,N
PBo P B B
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Note that, by the commutativity of the diagram,

Id,, Id,, Idy
o o of of
A A A A
Lo iRo " L1 iRl U L» iRz U Ly iRN
0,1 1,2 N-1,N
e%)o ,%)1 ,%)2 %N

we can write
R=Ry=Uy10U12---Un-1n0Rpn

where Ug1,U12, -+, Un—1,n are N monadic functors but not category
isomorphisms.
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we can write
R=Ry=Uy10U12---Un-1n0Rpn

where Ug1,U12, -+, Un—1,n are N monadic functors but not category
isomorphisms.

Moreover this is a maximal decomposition of this form.
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Note that, by the commutativity of the diagram,

Id, Id, Id

o 4 o 7 o 4 o

A A A A
Lo iRo ” Ly iRl ” Ly iRz ” Ly iRN

0,1 1,2 N—1,N

PBo : & B Bn

we can write
R=Ry=Uy10U12---Un-1n0Rpn

where Ug1,U12, -+, Un—1,n are N monadic functors but not category

isomorphisms.
Moreover this is a maximal decomposition of this form.

For this reason we will say that such an R has a

monadic decomposition of (monadic) length N.
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The investigation of monadic decompositions goes back to

@ [MS] J. L. MacDonald, A. Stone, The tower and regular decomposition.
Cahiers Topologie Géom. Différentielle 23. (1982), no. 2, 197-213.

[§ [AHW] J. Adémek, H. Herrlich, W. Tholen, Monadic decompositions. J. Pure
Appl. Algebra 59 (1989), no. 2, 111-123.
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[§ [AHW] J. Adémek, H. Herrlich, W. Tholen, Monadic decompositions. J. Pure
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Note that the notion of comonadic decomposition of (comonadic) length N
can be easily introduced and to distinguish it we will use the notations

(L R")

with superscripts and require that RV be full and faithful.
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The investigation of monadic decompositions goes back to

@ [MS] J. L. MacDonald, A. Stone, The tower and regular decomposition.
Cahiers Topologie Géom. Différentielle 23. (1982), no. 2, 197-213.

[§ [AHW] J. Adémek, H. Herrlich, W. Tholen, Monadic decompositions. J. Pure
Appl. Algebra 59 (1989), no. 2, 111-123.

Note that the notion of comonadic decomposition of (comonadic) length N
can be easily introduced and to distinguish it we will use the notations

(L",R")
with superscripts and require that RV be full and faithful.

Next aim is to investigate some properties of functors with a finite length
monadic decomposition.
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The image of a functor

Given a functor R : &/ — 9B, denote by ImR the full subcategory of &
consisting of objects B € % such that B = RA for some object A € <7 .
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The image of a functor

Given a functor R : &/ — 9B, denote by ImR the full subcategory of &
consisting of objects B € % such that B = RA for some object A € <7 .

Recall that a functor R: &7 — A is essentially surjective if InR = 4.
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The image of a functor

Given a functor R : &/ — 9B, denote by ImR the full subcategory of &
consisting of objects B € % such that B = RA for some object A € <7 .

Recall that a functor R: &7 — A is essentially surjective if InR = 4.

Proposition

Given a functor R : &/ — 9 having a monadic decomposition of length
N €N, then ImR =ImUy y, where we set Uy y := Up10Ui20---0Un_1n.
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The image of a functor

Given a functor R : &/ — 9B, denote by ImR the full subcategory of &
consisting of objects B € % such that B = RA for some object A € <7 .

Recall that a functor R: &7 — A is essentially surjective if InR = 4.

Proposition

Given a functor R : &/ — 9 having a monadic decomposition of length
N €N, then ImR =ImUy y, where we set Uy y := Up10Ui20---0Un_1n.

The monadic decomposition rewrites as R = Uy y o Ry.
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The image of a functor

Given a functor R : &/ — 9B, denote by ImR the full subcategory of &
consisting of objects B € % such that B = RA for some object A € <7 .

Recall that a functor R: &7 — A is essentially surjective if InR = 4.

Proposition

Given a functor R : &/ — 9 having a monadic decomposition of length
N €N, then ImR =ImUy y, where we set Uy y := Up10Ui20---0Un_1n.

The monadic decomposition rewrites as R = Uy y o Ry. By assumption the
left adjoint Ly of Ry is full and faithful so that the unit
Ny :Idg, — RyLy is an isomorphism.
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The image of a functor

Given a functor R : &/ — 9B, denote by ImR the full subcategory of &
consisting of objects B € % such that B = RA for some object A € <7 .

Recall that a functor R: &7 — A is essentially surjective if InR = 4.

Proposition

Given a functor R : &/ — 9 having a monadic decomposition of length
N €N, then ImR =ImUy y, where we set Uy y := Up10Ui20---0Un_1n.

The monadic decomposition rewrites as R = Uy y o Ry. By assumption the
left adjoint Ly of Ry is full and faithful so that the unit

Nn :Idg, — RyLy is an isomorphism. Hence Ry is essentially surjective
and we get ImR =ImUp . Ol
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Hence, monadic decomposition is a good tool to determine images of
functors.
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Hence, monadic decomposition is a good tool to determine images of
functors. Let us give an example connected to Descent theory.

Let A, B be rings. Given a (B, A)-bimodule M, consider the adjunction
L: Mg — MMp:- X—>XRgM R:///A—L///B:Yv—)HomA(I\/I,Y).

Here .4 = Mod-E category of right modules over the ring E = A, B.
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Hence, monadic decomposition is a good tool to determine images of
functors. Let us give an example connected to Descent theory.

Let A, B be rings. Given a (B, A)-bimodule M, consider the adjunction
L: Mg — MMp:- X—>XRgM R:///A—L//ZB:Yv—)HomA(I\/I,Y).

Here .4 = Mod-E category of right modules over the ring E = A, B.

Now the comparison functors R; and L! have adjoints as follows.

1d

(Ma)t P s “ a

L1AJ/R1 LA\LR ., LlA\LRl
s e, Mg = ()1
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Hence, monadic decomposition is a good tool to determine images of
functors. Let us give an example connected to Descent theory.

Let A, B be rings. Given a (B, A)-bimodule M, consider the adjunction
L: Mg — MMp:- X—>XRgM R:///A—L//ZB:Yv—)HomA(I\/I,Y).

Here .4 = Mod-E category of right modules over the ring E = A, B.

Now the comparison functors R; and L! have adjoints as follows.

) Id 4
() i M
Ll/\\LR:l LA\LR U L1A\LR1
s e, Mg 2 (M)

Focus on the right-hand side diagram and assume that My is projective.
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Hence, monadic decomposition is a good tool to determine images of
functors. Let us give an example connected to Descent theory.

Let A, B be rings. Given a (B, A)-bimodule M, consider the adjunction
L: Mg — MMp:- X—>XRgM R:///A—L///B:Yv—)HomA(M,Y).
Here .4 = Mod-E category of right modules over the ring E = A, B.

Now the comparison functors R; and L! have adjoints as follows.

) Id ,
() “ M
Ll/\i/,‘?1 LA\LR U L1A\LR1
s e, Mg 2 (M)

Focus on the right-hand side diagram and assume that My is projective.
Then R = Ry is exact so that, Beck's Theorem ensures that Ly is full and
faithful, and R has a monadic decomposition of length at most 1.
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U0.1 ldj/
(///A)l > ///A A .///A
A A A
H N U01 H
.///B > //B ( 3)1
Id‘%B
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1.,

(M)t P Mp
LIA\LRl LAiR ) LlAlRl
Mg - > M5 - (AB)1
g

Focus on the left-hand side diagram and assume gM is flat.

dual Beck s Thm.

gM flat = L = L° exact R! full and faithful.
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1.,

(M)t P Mp
LIA\LRl LAiR ) LlAlRl
Mg - > M5 - (AB)1
/g

Focus on the left-hand side diagram and assume gM is flat.

| Beck’'s Th
dual Beck's Thm. o1 11l and faithful.

Therefore, L admits a comonadic decomposition of length at most 1.

gM flat = L = L° exact
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1.,

(M)t P Mp
LIA\LRl LAiR ) LlAlRl
Mg - > M5 - (AB)1
Mg

Focus on the left-hand side diagram and assume gM is flat.

gM flat = L = L° exact dual Beck's Thm- o1 £,11 and faithful.
Therefore, L admits a comonadic decomposition of length at most 1.
CONSEQUENCE: ImL = ImU®%! i.e. the objects of .#, which are

isomorphic to objects of the form LX = X ®g M, for some X € .#g, are
exactly those of the form U%1X! where X! € (.#x)'.
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yo-L ldk%/A

(Mp) > M Mp
LIAJ/Rl LAiR ., LlAlRl
Mp > Mg 2 (M)

1./,
Focus on the left-hand side diagram and assume gM is flat.

gM flat = L = L° exact dual Beck's Thm- o1 £,11 and faithful.

Therefore, L admits a comonadic decomposition of length at most 1.

CONSEQUENCE: ImL = ImU®%! i.e. the objects of .#, which are
isomorphic to objects of the form LX = X ®g M, for some X € .#5, are
exactly those of the form U%1X! where X! € (.#4)". Hence the category
()" solves the descent problem for modules.
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1 1d 4
07 KR
LIA\LR:‘ LAiR y LlAiRl
Mg - > M5 - (AB)1
M

Focus on the left-hand side diagram and assume gM is flat.

| Beck’'s Th
dual Beck's Thm. o1 11l and faithful.

Therefore, L admits a comonadic decomposition of length at most 1.

gM flat = L = L° exact

CONSEQUENCE: ImL = ImU®%! i.e. the objects of .#, which are
isomorphic to objects of the form LX = X ®g M, for some X € .#5, are
exactly those of the form U%1X! where X! € (.#4)". Hence the category
()" solves the descent problem for modules.

Note: when My is also finitely generated and projective, then (.#4)" is
precisely the category of comodules over the A-coring M* ®g M (the
so-called comatrix coring associated to gMa).
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|ldempotent monads and adjunctions

The notion of an idempotent monad is, as we will see below, related with
the monadic length of a functor.
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e A monad (@, m,u) is idempotent if m is an isomorphism.
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|ldempotent monads and adjunctions

The notion of an idempotent monad is, as we will see below, related with
the monadic length of a functor.

Definition

e A monad (@, m,u) is idempotent if m is an isomorphism.

@ An adjunction (L, R) is idempotent if the associated monad is.

There are several basic characterizations of idempotent adjunctions, see

El [AT] H. Appelgate, M. Tierney, Categories with models. 1969 Sem. on
Triples and Categorical Homology Theory (ETH, ziirich, 1966/67) pp.
156244 Springer, Berlin.

[§ [MS] J. L. MacDonald, A. Stone, The tower and regular decomposition.
Cahiers Topologie Géom. Différentielle 23 (1982), no. 2, 197-213.
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|ldempotent monads and adjunctions

The notion of an idempotent monad is, as we will see below, related with
the monadic length of a functor.

Definition

e A monad (@, m,u) is idempotent if m is an isomorphism.

@ An adjunction (L, R) is idempotent if the associated monad is.

There are several basic characterizations of idempotent adjunctions, see

El [AT] H. Appelgate, M. Tierney, Categories with models. 1969 Sem. on
Triples and Categorical Homology Theory (ETH, ziirich, 1966/67) pp.
156244 Springer, Berlin.

[§ [MS] J. L. MacDonald, A. Stone, The tower and regular decomposition.
Cahiers Topologie Géom. Différentielle 23 (1982), no. 2, 197-213.

In particular, idempotency of an adjunction means equivalently that any

one of eL,Re, R, LN is an isomorphism ([MS, Proposition 2.8]).
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For our diagram, o o 4
in the general case, L?lR lRl
TFAE. B
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For our diagram, o o 4
in the general case, L?lR lRl
TFAE. B

(a) (L,R) is idempotent.
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For our diagram, o o 4
in the general case, L?lR lRl
TFAE. B

(a) (L,R) is idempotent.
(b) V(X,RLX A X) € %, we have that U is an isomorphism.
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(a) (L,R) is idempotent.
(b) V(X,RLX A X) € %1 we have that | is an isomorphism.
(C) Ly := LUO’1 is a left adjoint of Ry, T]Uo71 = U071T]1 and € = €.
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(a) (L,R) is idempotent.
(b) V(X,RLX A X) € %1 we have that | is an isomorphism.
(C) Ly := LUO’1 is a left adjoint of Ry, T]Uo71 = U071T]1 and € = €.

Moreover, if one of these conditions holds, then Ly is full and faithful.
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(b) V(X,RLX A X) € %1 we have that | is an isomorphism.
(C) Ly := LUO’1 is a left adjoint of Ry, T]Uo71 = U071T]1 and € = €.

Moreover, if one of these conditions holds, then Ly is full and faithful.

o (L,R) idempotent—> R has a monadic decomposition of length < 1.

o (Lj,R;) idempotent for some i € N==- R has a monadic
decomposition of length < i+1.
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For our diagram, o Mo 4
in the general case, L?lR lRl
TFAE. B

(a) (L,R) is idempotent.
(b) V(X,RLX A X) € %1 we have that | is an isomorphism.
(C) Ly := LUO’1 is a left adjoint of Ry, T]Uo71 = U071T]1 and € = €.

Moreover, if one of these conditions holds, then Ly is full and faithful.

o (L,R) idempotent—> R has a monadic decomposition of length < 1.

o (Lj,R;) idempotent for some i € N==- R has a monadic
decomposition of length < i+1.

Moreover one checks that (L, R) idempotent <= 1 Uy is an isomorphism.
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Vector spaces and bialgebras

Fix an arbitrary field k.
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Fix an arbitrary field k. All vector spaces, (co)algebras and bialgebras will
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Vector spaces and bialgebras

Fix an arbitrary field k. All vector spaces, (co)algebras and bialgebras will
be over k.

Let Vec := category of vector spaces and Bialg := category of bialgebras.

Consider the following well-known adjunction

Idgia .
Bialg <~ Bialg
T’i\LP lPl

: Uo1
Vec Vecy
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Consider the following well-known adjunction

Idgia .
Bialg <~ Bialg
T’i\LP lPl

: Uo1
Vec Vecy

Here P sends a bialgebra B to its subspace of primitive elements
PB:={beB|A(b)=1@b+b®1},
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Vector spaces and bialgebras

Fix an arbitrary field k. All vector spaces, (co)algebras and bialgebras will
be over k.

Let Vec := category of vector spaces and Bialg := category of bialgebras.
Consider the following well-known adjunction
Bialg _ldsels Bialg
M i
Vec ‘ Vecy
Here P sends a bialgebra B to its subspace of primitive elements
PB:={bcB|A(b)=1&b+b®1},

while T sends a vector space V to the tensor algebra TV (which is indeed
a bialgebra).
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Vector spaces and bialgebras

Fix an arbitrary field k. All vector spaces, (co)algebras and bialgebras will
be over k.

Let Vec := category of vector spaces and Bialg := category of bialgebras.

Consider the following well-known adjunction
Idgia .

Bialg <~ Bialg

T)ﬁ\l/P \LPI

: Uo1
Vec Vecy

Here P sends a bialgebra B to its subspace of primitive elements
PB:={beB|A(b)=1®b+b®1},
while T sends a vector space V to the tensor algebra TV (which is indeed

a bialgebra).
The unit nV : V — PTV of the adjunction is just the canonical inclusion.
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Vector spaces and bialgebras

Fix an arbitrary field k. All vector spaces, (co)algebras and bialgebras will
be over k.

Let Vec := category of vector spaces and Bialg := category of bialgebras.

Consider the following well-known adjunction
Idgia .

Bialg <~ Bialg

T)ﬁ\l/P lP1

: Uo1
Vec Vecy

Here P sends a bialgebra B to its subspace of primitive elements
PB:={beB|A(b)=1@b+b®1},

while T sends a vector space V to the tensor algebra TV (which is indeed
a bialgebra).

The unit nV : V — PTV of the adjunction is just the canonical inclusion.
The counit €B: TPB — B sends any tensor product of primitive elements
to their product in B.
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Now P; has a left adjoint T3.
Id, ia .
Bialg ~ e Bialg
TAJ/P TlA\LPl

Uo1
Vec

Vecy
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Now P; has a left adjoint T3.
Id, ia .
Bialg ~ e Bialg
TAJ/P TlA\LPl

Uo1
Vec

Vecy

V(V,u) € Vecy, by construction, T;(V,u) is defined to be the coequalizer

TPTV TV e IV — Ty (V,u) .

(z—u(z)|zePTV)

eTV
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Bialg ~ e Bialg
TAJ/P TlA\LPl

Uo1
Vec

Vecy

V(V,u) € Vecy, by construction, T;(V,u) is defined to be the coequalizer

TPTV TV e IV — Ty (V,u) .

(z—u(z)|zePTV)

eTV
Now, note that PTV = &,>1 P, TV where P, TV := PTV N V®".
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Now P; has a left adjoint T3.
Id, ia .
Bialg ~ e Bialg
TAJ/P TlA\LPl

Uo1
Vec

Vecy

V(V,u) € Vecy, by construction, T;(V,u) is defined to be the coequalizer

TPTV TV e IV — Ty (V,u) .

(z—u(z)|zePTV)

eTV

Now, note that PTV = &,>1 P, TV where P, TV := PTV N V®".
In particular, P, TV = V.
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Now P; has a left adjoint T3.
Id, ia .
Bialg ~ e Bialg
TAJ/P TlA\LPl

Uo1
Vec

Vecy

V(V,u) € Vecy, by construction, T;(V,u) is defined to be the coequalizer

TPTV TV e IV — Ty (V,u) .

(z—u(z)|zePTV)

eTV
Now, note that PTV = &,>1 P, TV where P, TV := PTV N V®".
In particular, P, TV = V. Moreover z— u(z) =0, for z € V, so that
TV
(z—u(z)|ze P,TV,n>2)

Tl(V7u) =
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Now P; has a left adjoint T3.
Id, ia .
Bialg ~ e Bialg
TAJ/P TlA\LPl

Uo1
Vec

Vecy

V(V,u) € Vecy, by construction, T;(V,u) is defined to be the coequalizer

TPTV

n TV _.
eTV v = eaEeertyy = (V. u).

Now, note that PTV = &,>1 P, TV where P, TV := PTV N V®".
In particular, P, TV = V. Moreover z— u(z) =0, for z € V, so that
TV

TVop) = (z—u(z)|ze P, TV,n>2)

Consider now

TV TV
V = = .
SV = Cl2ep Vs ~ (P TV [ n50)
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Now P; has a left adjoint T3.
Id, ia .
Bialg ~ e Bialg
TAJ/P TlA\LPl

Uo1
Vec Vecy

V(V,u) € Vecy, by construction, T;(V,u) is defined to be the coequalizer

TV e IV — Ty (V,u) .

TPTV (z—u(z)|zePTV)

eTV

Now, note that PTV = &,>1 P, TV where P, TV := PTV N V®".
In particular, P, TV = V. Moreover z— u(z) =0, for z € V, so that

TV
TVop) = (z—u(z)|ze P,TV,n>2)

Consider now
TV TV
V = g .
5(V) (z|zeP,TV,n>2) (P,TV|n>2)

We have the following result.
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TV
char(k)=0 = SV = .
(x®y—y®x|x,y € V)
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TV
char(k)=0 = SV = .
(x®y—y®x|x,y € V)

TV
(x®@y—y®x,xP|x,y € V)’

char(k)=p>0 = SV =

A. Ardizzoni (Univ. Torino - ltaly) Lie Theory & Monads June 19, 2014 16 / 20



TV
char(k)=0 = SV = .
(x®y—-—yox|x,yeV)

TV

char(k)=p>0 = SV= )
(k)=p (x®@y—y®x,xP|x,y € V)

In both cases PSV =2 V.

Proof.
We sketch it for char(k) =0 (the other case is similar).
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TV
char(k)=0 = SV = .
(x®y—-—yox|x,yeV)

TV

char(k)=p>0 = SV= )
(k)=p (x®@y—y®x,xP|x,y € V)

In both cases PSV =2 V.

Proof.
We sketch it for char(k) =0 (the other case is similar).

Since x®y —y®x € P,TV,Vx,y € V, there is a bialgebra projection

o TV 4 TV _
A= (x®y—y®x|x,yeV) (PaTV|n>2) — SvV.
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char(k)=p>0 = SV= )
(k)=p (x®@y—y®x,xP|x,y € V)

In both cases PSV =2 V.

Proof.
We sketch it for char(k) =0 (the other case is similar).

Since x®y —y®x € P,TV,Vx,y € V, there is a bialgebra projection

o TV 4 TV _
A= (x®y—y®x|x,yeV) (PaTV|n>2) — SvV.

It is well-known that PA= V. Hence, yp4 is injective.
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TV
char(k)=0 = SV = .
(x®y—-—yox|x,yeV)

TV

char(k)=p>0 = SV= )
(k)=p (x®y—y®x,xP|x,y € V)

In both cases PSV =2 V.

Proof.
We sketch it for char(k) =0 (the other case is similar).

Since x®y —y®x € P,TV,Vx,y € V, there is a bialgebra projection

o TV 4 TV _
A= (x®y—y®x|x,yeV) (PaTV|n>2) — SvV.

It is well-known that PA= V. Hence, yp4 is injective.
By Heyneman-Radford Theorem, ¥ is injective whence bijective i.e.
SV =A O
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We have the following result.
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The adjunction (T, Py) is idempotent.

Take V» € Vecs. In particular we can write

Vo=(Vi,PiTiVi B3 Vi) where Vi =(V,u) € Vec;.
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We have the following result.

The adjunction (T, Py) is idempotent.

Take V» € Vecs. In particular we can write

Vo=(Vi,PiTiVi B3 Vi) where Vi =(V,u) € Vec;.
Using that ujom; Vi =1dy, and PS(V) = V one gets that
U071TI1 V1 V- U071P1 T1 V1 = PT1 V1

has inverse Up 11, where Up : Vec; — Vecy.
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We have the following result.

The adjunction (T, Py) is idempotent.

Take V» € Vecs. In particular we can write

Vo=(Vi,PiTiVi B3 Vi) where Vi =(V,u) € Vec;.
Using that ujom; Vi =1dy, and PS(V) = V one gets that
UimWi:V = U1 PiTiVi=PT1 4
has inverse Up 11, where Up : Vec; — Vecy.

Since Up 1 reflects isomorphisms, this implies n; V4 : Vi — Py T1 V4 is an
isomorphism.
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We have the following result.

The adjunction (T, Py) is idempotent.

Take V» € Vecs. In particular we can write

Vo=(Vi,PiTiVi B3 Vi) where Vi =(V,u) € Vec;.
Using that ujom; Vi =1dy, and PS(V) = V one gets that
U071TI1 V1 V- U071P1 T1 V1 = PT1 V1

has inverse Up 11, where Up : Vec; — Vecy.
Since Up 1 reflects isomorphisms, this implies n; V4 : Vi — Py T1 V4 is an
isomorphism.

Thus we conclude that 1y U; 2 is an isomorphism and we know this is

equivalent to (1, P1) idempotent. O
A. Ardizzoni (Univ. Torino - ltaly) Lie Theory & Monads June 19, 2014 17 / 20




By the properties of idempotent adjunctions we have seen, we can
complete the diagram to

. Idgjal . Idg;al .
Bialg <——— Bialg <——— Bialg
TA\LP TlAJ/Pl TgA\LPg

Uo.1 Uiz
Vec Vecy Vec,

where we can choose T, := T Ui » and this is full and faithful.
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. Idg;al . Idg;al .
Bialg <——— Bialg <——— Bialg
TA\LP TlAJ/Pl TgAin

Uo.1 Uiz

Vec Vec,

Vecy

where we can choose T, := T Ui » and this is full and faithful. In particular

P has a monadic decomposition of length <2

June 19, 2014 18 / 20

A. Ardizzoni (Univ. Torino - ltaly) Lie Theory & Monads



By the properties of idempotent adjunctions we have seen, we can
complete the diagram to

. Idg;al . Idg;al .
Bialg <——— Bialg <——— Bialg
TA\LP TlA\LPl TgAin

Uo.1 Uiz

Vec

Vecy

Vec,

where we can choose T, := T Ui » and this is full and faithful. In particular
P has a monadic decomposition of length <2

By the foregoing, we know that ImP =1ImUjp so that the vector spaces
arising as primitive part of some bialgebra are those isomorphic to the
underlying vector space of some V, € Vec,.
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where we can choose T, := T Ui » and this is full and faithful. In particular

P has a monadic decomposition of length <2

By the foregoing, we know that ImP =1ImUjp so that the vector spaces
arising as primitive part of some bialgebra are those isomorphic to the
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By the properties of idempotent adjunctions we have seen, we can
complete the diagram to

. Idg;al . Idg;al .
Bialg <——— Bialg <——— Bialg
TA\LP TlA\LPl TgAin

Uo.1 Uiz

Vec

Vecy

Vec,

where we can choose T, := T Ui » and this is full and faithful. In particular
P has a monadic decomposition of length <2

By the foregoing, we know that ImP =1ImUjp so that the vector spaces
arising as primitive part of some bialgebra are those isomorphic to the
underlying vector space of some V, € Vec,.

Moreover we have ToVo = T1 Ui 2 Vo = T1 Vi = T1(V, ).

Indeed we can be more precise....
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Take V.= ((V,u), 1) € Vec,.
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Take V.= ((V,u), 1) € Vec,.
chark = 0) We have that (V,[—,—]) is a Lie algebra where

[-,—-]: VeV -V, [x,y] == (xy —yx).
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Take V.= ((V,u), 1) € Vec,.
chark = 0) We have that (V,[—,—]) is a Lie algebra where

[-,—-]: VeV -V, [x,y] == (xy —yx).

Moreover T, V4 is the universal enveloping algebra

TV
(xy —yx—[x,y] | x,y € V)’

T Vo =
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Take V.= ((V,u), 1) € Vec,.
chark = 0) We have that (V,[—,—]) is a Lie algebra where

[-,—-]: VeV -V, [x,y] == (xy —yx).

Moreover T, V4 is the universal enveloping algebra

TV

T,V = .
22T Gy —yx— oyl [ xy e V)

chark = p)
We have that (V,[—,~],~IPl) is a restricted Lie algebra where

[—,—]: VeV = V. [x,y]i=p(xy—yx) and —IPl.v v xIPl.=p(xP).
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Take V.= ((V,u), 1) € Vec,.
chark = 0) We have that (V,[—,—]) is a Lie algebra where

[-,—-]: VeV -V, [x,y] == (xy —yx).

Moreover T, V4 is the universal enveloping algebra

TV

T,V = .
22T Gy —yx— oyl [ xy e V)

chark = p)
We have that (V,[—,~],~IPl) is a restricted Lie algebra where

[—,—]: VeV = V. [x,y]i=p(xy—yx) and —IPl.v v xIPl.=p(xP).

Moreover T, V4 is the restricted enveloping algebra

TV

ToVy = .
227 by —yx =[xyl xP— x| x,y € V)
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Work in progress

As a consequence, in a work in progress with |. Goyvaerts and C. Menini,
we prove that there is an equivalence of categories A such that Ao P, = &
and Ho A = Up> where

IdBialg Id'Bialg

Bialg Bialg Bialg
/
A IdBiaIg A I /IdBialg A

T P TlilPl Bialg ng P

A
Uo 1 K4 | z Ui

Vec V;acl : Vécz

e
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As a consequence, in a work in progress with |. Goyvaerts and C. Menini,
we prove that there is an equivalence of categories A such that Ao P, = &

and Ho A = Up> where

; Idgial . Idgial .
Bialg = Bialg = Bialg
/
A IdBiaIg A I /IdBialg A
T P Tlilpl Bl}\a|g Tz P>
Yo : v |3Z Y2 vec
i 2

Vec Vec; :

Here Lie denotes either the category of Lie algebras or the category of
restricted Lie algebras depending on the characteristic, and % is the

corresponding universal enveloping algebra.
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Work in progress

As a consequence, in a work in progress with |. Goyvaerts and C. Menini,
we prove that there is an equivalence of categories A such that Ao P, = &
and Ho A = Up> where

IdBialg Id'Bialg

Bialg 2\8m — Bialg
A Al . A
: IdBialg IdBmIg :
: : . <~ :
T P T, lpl Bl}\a|g ng P>
Up,1 : u | z U2

Vec Vec; : V;acz

Here Lie denotes either the category of Lie algebras or the category of
restricted Lie algebras depending on the characteristic, and % is the
corresponding universal enveloping algebra.

Thus Vec; = Lie so that monadic decomposition leads to Lie.
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