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Introduction

A code is a subset of An where A is any alphabet.

Initially, A was a field, but now in general A can be a variety of
algebraic structures.

If A is a ring then we say that the code C is linear if C is s
submodule of Rn.

For non-commutative rings we say it is either left linear or right
linear depending on whether it is a left or right module.
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Inner-product

The ambient space is attached with the inner-product:

[v,w] =
∑

viwi

For commutative rings there is a unique orthogonal:

C⊥ = {v | [v,w] = 0, ∀w ∈ C}.
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Non-commutative orthogonals

For non-commutative rings we have two orthogonals:

L(C ) = {v ∈ Rn | [v, c] = 0, ∀c ∈ C}

R(C ) = {v ∈ Rn | [c, v] = 0,∀c ∈ C}.
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Let C be a code, then L(C ) is a left linear code and R(C ) is a
right linear code.
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Weight Enumerator

For a code over an alphabet A = {a0, a1, . . . , as−1}, the complete
weight enumerator is defined as:

cweC (xa0 , xa1 , . . . , xas−1) =
∑
c∈C

s−1∏
i=0

x
ni (c)
ai (1)

where there are ni (c) occurrences of ai in the vector c.

The Hamming weight enumerator of a code C of length n is
defined to be

WC (x , y) =
∑
c∈C

xn−wt(c)ywt(c),

where wt(c) = |{i | ci 6= 0}|.
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MacWilliams Relations

If R is a Frobenius ring then it has a generating character χ. Then
let T be the square matrix indexed by the elements of R.

Ta,b = χ(ab).



MacWilliams Relations

Theorem
(Generalized MacWilliams Relations) Let R be a Frobenius ring. If
C is a left submodule of Rn, then

cweC (x0, x1, . . . , xk) =
1

|R(C )|
cweR(C)(T t · (x0, x1, . . . , xk)).

If C is a right submodule of Rn, then

cweC (x0, x1, . . . , xk) =
1

|L(C )|
cweL(C)(T · (x0, x1, . . . , xk)).



MacWilliams Relations

Theorem
(Generalized MacWilliams Relations) Let R be a Frobenius ring.
For the Hamming weight enumerator we have the following. If C is
a left submodule of Rn, then

WC (x , y) =
1

|R(C )|
WR(C)(x + (|R| − 1)y , x − y)).

If C is a right submodule of Rn, then

WC (x , y) =
1

|L(C )|
WL(C)(x + (|R| − 1)y , x − y)).



Orthogonals

Lemma
If C is a left linear code then |R(C )||C | = |R|n. If C is a right
linear code then |L(C )||C | = |R|n. For commutative rings
|C ||C⊥| = |R|n.



Self-Dual

A code over a commutative ring is self-dual if C = C⊥.

A code over a non-commutative ring is self-dual if C = L(C ).
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Self-dual codes

Self-dual codes have connections to:

I Finite Designs

I Unimodular Lattices

I Invariant Theory



Direct Product

Lemma
Let R be a finite Frobenius ring. Let C be a self-dual code of
length n over R and D be a self-dual code of length m over R.
Then the direct product C × D is a self-dual code of length n + m
over R.



Commutative Case

Theorem
Let R be a finite Frobenius ring and n be a positive integer. Then

Rn = CRT (Rn
1 ,R

n
2 , . . . ,R

n
k ),

where each Ri is a local Frobenius ring.

Let R be a finite ring with the local rings Ri for 1 ≤ i ≤ k . Let Ci

be a code of length n over Ri for 1 ≤ i ≤ k , and let
C = CRT (C1,C2, . . . ,Ck).
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Commutative Case

Theorem
Let R be a finite Frobenius ring with a local Frobenius ring Ri for
1 ≤ i ≤ k. If Ci is a self-dual code over Ri , then
C = CRT (C1,C2, . . . ,Ck) is a self-dual code over R.



Existence of self-dual codes over Commutative Rings

Theorem
Let R be a finite Frobenius local ring with maximal ideal m and
nilpotency index e with the property that (mi )⊥ = me−i for
i = 1, . . . , e. If e is even, then there are self-dual codes over R of
all lengths.



Existence of self-dual codes over Commutative Rings

Theorem
Let R be a finite Frobenius local ring with maximal ideal m such
that char(|R/m) ≡ 1 (mod 4). Then there exist free self-dual
codes over R of all even lengths.



Existence of self-dual codes over Commutative Rings

Theorem
Let R be a finite Frobenius local ring with maximal ideal m such
that char(R/m) ≡ 3 (mod 4). Then there exist self-dual codes
over R of all lengths a multiple of 4.



Self-duality over non-commutative rings

Lemma
If C is a left linear code then L(R(C )) = C . If C is a right linear
code then R(L(C )) = C .



Self-duality over non-commutative rings

Theorem
If C ⊆ L(C ) then C ⊆ R(C ) and if C ⊆ R(C ) then C ⊆ L(C ).
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Theorem
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Self-duality over non-commutative rings

It follows immediately that if C is a self-dual code then C is both
left linear and right linear. That is, it is a bimodule.



Self-dual codes of length 1

Let R be a ring, the Jacobson radical J(R) consists of all
annihilators of simple left R-modules. The Jacobson radical can be
characterized as the intersection of all maximal right ideals.

For any ring R, we define the center of the ring Z (R) to be
{α | α ∈ R, αβ = βα,∀β ∈ R}.

The socle of a ring R, Soc(R), is defined as the sum of all the
minimal one sided ideals of the ring. For Frobenius rings, the sum
of all the minimal left ideals is equal to the sum of all the minimal
right ideals. In this case, the socle is equal the left annihilator of
the Jacobson radical.
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Self-dual codes of length 1

Theorem
Let R be a finite Frobenius ring with Jacobson radical J(R). All
self-dual codes of length 1 are two sided ideals contained in the
Jacobson radical of the ring. Then J(R) is a self-dual code if and
only if J(R) = Soc(R) and in this case there are no other self-dual
codes of length 1.



Existence of self-dual codes over non-commutative rings

Theorem
Let R be a finite ring such that there exists x and y in Z (R) with
x2 + y2 = 0 and annR(x , y) = {0}. Then there exists free self-dual
codes of all even lengths over R.



Existence of self-dual codes over non-commutative rings

Theorem
Let R be a finite ring such that there exists x , y and z in Z (R)
with x2 + y2 + z2 = 0 and annR(x , y , z) = {0}. Then there exists
free self-dual codes of all lengths congruent to 0 mod 4 over R.



Existence of self-dual codes over non-commutative rings

Theorem
Let R and A ⊆ Z (R) be finite Frobenius rings where R is a free
module over A. If C is a self-dual code over A then 〈C 〉L is a
self-dual code.



Existence of self-dual codes over non-commutative rings

Theorem
Let R be a finite Frobenius ring of characteristic k. If there exists
a free self-dual code of length n over Zk then there exists a free
self-dual code of length n over R.


