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Introduction

Given the class F , we denote

F⊥ = {N ; Ext≥1R (F,N) = 0 ∀F ∈ F},

⊥F = {N ; Ext≥1R (N,F ) = 0 ∀F ∈ F}.

A left F -resolution of an R-module M is a complex

X = · · · → X1 → X0 →M → 0,

such that Xi ∈ F and HomR(F,X) is an exact complex for every

F ∈ F . Dually, right F-resolutions are de�ned.
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Introduction

We say that M ∈ R−Mod is Gorenstein projective if M is a

syzygy of an exact complex of projectives X• which veri�es that

HomR(X•, Q) is also exact for every projective Q ∈ R−Mod.

We denote by GP (R) (resp. P (R)) the class of Gorenstein

projective (resp. projective) left R-modules.

It is clear that P (R) ⊆ GP (R)

De�nition

We call a class of left R-modules X projectively resolving if

P (R) ⊆ X , and for every short exact sequence

0→ X ′ → X → X ′′ → 0 with X ′′ ∈ X the conditions X ′ ∈ X and

X ∈ X are equivalent.
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Introduction

De�nition (Bennis, Oyonarte, Rozas)

A left R-module C is weakly Wakamatsu tilting (w-tilting for

short) if it has the following two properties:

1 Ext≥1R (C,C(I)) = 0 for every set I.

2 There exists an exact sequence of left R-modules

X : 0 −→ R
f0−→ C0

f1−→ C1
f2−→ C2

f3−→ · · ·

where, for every i ∈ N, Ci ∈ Add(C) and such that

HomR(−, E) leaves the sequence X exact whenever

E ∈ AddR(C).

If C satis�es 1. but perhaps not 2. then C will be said to be

Σ-self-orthogonal.
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GC-projective modules

De�nition

Given any C ∈ R-Mod, an R-module M is said to be GC-projective

if there exists an exact sequence of R-modules

X = · · · → P1 → P0 → A0 → A1 → · · ·

where the P ′is are all projective, Ai ∈ AddR(C) for every i ∈ N,

M ∼= Im(P0 → A0), and such that HomR(−, Q) leaves the

sequence X exact whenever Q ∈ AddR(C).
We use GCP (R) to denote the class of all GC-projective

R-modules.
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GC-projective modules

Proposition

Let C be an R-module. An R-module M is GC-projective if and

only if

1 M ∈ ⊥AddR(C).

2 There exists an exact sequence

X = 0→M → A0 → A1 → · · · , where (Ai)′s ∈ AddR(C),
such that HomR(−, Q) leaves the sequence X exact whenever

Q ∈ AddR(C).
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GC-projective modules

Proposition

Let C be an R-module. The following conditions are equivalent:

1 C ∈ GCP (R).

2 C is Σ-self-orthogonal.

3 AddR(C) ⊆ AddR(C)⊥.
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GC-projective modules

Also, under the condition C ∈ GCP (R), we have the following

characterization of GC-projective modules.

Proposition

Let C be a Σ-self-orthogonal R-module. Then an R-module M is

GC-projective if and only if there exists an exact sequence of

R-modules 0→M → A→ G→ 0 where A ∈ AddR(C) and G is

GC-projective.
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GC-projective modules

Proposition

Let C be a Σ-self-orthogonal R-module. Then, the following

conditions are equivalent:

1 C is w-tilting.

2 R ∈ GCP (R).

3 P (R) ⊆ GCP (R).

Therefore, when C is w-tilting every left GCP (R)-resolution is

exact.
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GC-projective modules

Theorem

1) Let C be any R-module. Then the class GCP (R) is closed

under direct sums and extensions.

2) Let C be a Σ-self-orthogonal R-module. Then the class

GCP (R) is closed under kernels of epimorphisms and under direct

summands.

3) An R-module C is w-tilting if and only if GCP (R) contains C
and it is projectively resolving.
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GC-projective modules

Corollary

Let C be a Σ-self-orthogonal R-module. Then, for every exact

sequence of R-modules

X = · · · → P1 → P0 → A0 → A1 → · · ·

where the Pi's are all projective and Ai ∈ AddR(C) for every

i ∈ N, if HomR(−, Q) leaves the sequence X exact whenever

Q ∈ AddR(C), then every Ker(Ai → Ai+1) is GC-projective.

If, in addition, C be a w-tilting R-module, then every

Im(Pi+1 → Pi) is also GC-projective.
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GC-projective modules

Corollary

Let C be a w-tilting R-module. The following conditions are

equivalent.

i) AddR(C) ⊆ GP (R)⊥.
ii) GP (R) ⊆ GCP (R).
In particular, if inj.dimR(C) <∞ or proj.dimR(C) <∞ then

GP (R) ⊆ GCP (R).

Proposition

If C is w-tilting then GP (R) = GCP (R) if and only if C is a

projective generator of R-Mod (that is, AddR(C) = P (R)).

J. R. García Rozas Department of MathematicsUniversity of AlmeríaGorenstein homological algebra relative to weakly Wakamatsu (co)tilting modules



GC-projective modules

For a class F ⊆ R−Mod, let F be the class of left R-modules

with �nite left F-dimension.

Proposition

Let C be a w-tilting R-module such that GP (R) ⊆ GCP (R) and

consider the assertions

1 P (R) = AddR(C) ∩ P (R).

2 GP (R) = GCP (R) ∩GP (R).

3 P (R) = GCP (R) ∩ P (R).

Then it always hold 1. ⇒ 2. ⇒ 3.
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Relations with Auslander and Bass classes

RCS , S = EndR(C).

AC(S) consists of all left S-modules M satisfying:

A1) TorS≥1(C,M) = 0,

A2) Ext≥1R (C,C ⊗S M) = 0,

A3) the canonical map µM : M → HomR(C,C ⊗S M) is an

isomorphism of S-modules.

BC(R) consists of all left R-modules N satisfying:

B1) Ext≥1R (C,N) = 0,

B2) TorS≥1(C,HomR(C,N)) = 0,

B3) the canonical map νN : C ⊗S HomR(C,N)→ N is an

isomorphism of R-modules.
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Relations with Auslander and Bass classes

If R is commutative and C is semidualizing, Proposition 3.6 in

Y. Geng and N. Ding, W-Gorenstein modules, J. Algebra 325
(2011), 132�146.

shows that

C −GP (R) = GCP (R) ∩ BC(R),

where C −GP (R) is the class of syzygies of exact,

HomR(C ⊗RQ,−)-exact and HomR(−, C ⊗RQ)-exact complexes

· · · → C ⊗R Q
i → C ⊗R Q

i+1 → · · ·

with Q,Qi ∈ P (R).
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Relations with Auslander and Bass classes

De�nition

A left R-module M is said to be faithful if:

HomR(M,N) = 0⇒ N = 0.
A left R-module M is self-small if

HomR(M,M (I)) ∼= HomR(M,M)(I) for every set I.

Theorem

If CS is faithful the following statements are equivalent.

i) RC is Σ-self-orthogonal and self-small.

ii) C −GP (R) = GCP (R) ∩ BC(R).
iii) AddR(C) ⊆ BC(R).
iv) P (S) ⊆ AC(S).
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GC-projective dimension

Through this section C will be a w-tilting module.

De�nition

A module M is said to have GC-projective dimension less than or

equal to n, GC−pd(M) ≤ n, if there is an exact sequence

0→ Gn → · · · → G1 → G0 →M → 0

with Gi ∈ GCP (R) for every i ∈ {0, ..., n}. If n is the least

nonnegative integer for which such a sequence exists then

GC−pd(M) = n, and if there is no such n then GC−pd(M) =∞.
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GC-projective dimension

Proposition

For an R-module M and a positive integer n ≥ 1, the following

assertions are equivalent:

GC−pdR(M) ≤ n.
There is 0→M → P → G→ 0, where G is GC-projective

and P admits an exact left AddR(C)-resolution of length n
(or, equivalently, there exists an exact sequence

0→ Gn → · · · → G0 → P → 0 with every Gi in AddR(C)).

There is 0→ P → G→M → 0, where G is GC-projective

and P admits an exact left AddR(C)-resolution of length

n− 1. ( Thus P ∈ GCP (R)⊥).
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GC-projective dimension

Corollary

Every module of �nite GC-projective dimension has a special

GC-precover.

As a consequence we see that when GC-pdR(M) is �nite, it can be

computed using left GCP (R)-resolutions of M .

Corollary

If M is of �nite GC-projective dimension then GC−pd(M) ≤ n if

and only if M has an (exact) left GCP (R)-resolution of length ≤ n.
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GC-projective dimension

Theorem

Let M be an R-module of �nite GC-projective dimension and

n ≥ 0 an integer number. The following conditions are equivalent:

1 GC−pdR(M) ≤ n.
2 ExtiR(M,X) = 0 for all i > n and all X ∈ AddR(C).

3 For every exact sequence of R-modules

0→ Kn → Gn−1 → · · · → G0 →M → 0, if each Gi is

GC-projective, then so is Kn.
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GC-projective dimension

It is now clear that the GC-projective dimension of a module can be

computed by means of the Ext functors in a similar manner to the

Gorenstein projective or the classical projective dimensions.

Corollary

If M is of �nite GC-projective dimension then

GC−pdR(M) =

sup{i ∈ N; ExtiR(M,X) 6= 0 for some X ∈ AddR(C)}

Proposition

Given a family of R-modules (Mi)i∈I , we have:

GC−pdR(⊕i∈IMi) = sup{GC−pdR(Mi) | i ∈ I}.
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PC-projective dimension

De�nition

A module M is said to have PC-projective dimension less than or

equal to n, PC−pd(M) ≤ n, if there is an exact sequence

0→ An → · · · → A1 → A0 →M → 0

with Ai ∈ AddR(C) for every i ∈ {0, ..., n}. If n is the least

nonnegative integer for which such a sequence exists then

PC−pd(M) = n, and if there is no such n then

PC−pd(M) =∞.

Proposition

Let C be any module. If M is GC-projective and

PC−pd(M) <∞ then M ∈ AddR(C).
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PC-projective dimension

Theorem

Let C be a Σ-self-orthogonal R-module. For an R-module M and

an integer number n ≥ 0 the following assertions are equivalent:

1. PC−pd(M) ≤ n.
2. There is an exact left AddR(C)-resolution of M of length n.
3. For every left AddR(C)-resolution

· · · → Y1
f1−→ Y0

f0−→M
f−1−→ 0

of M , Ker(fn−1) ∈ AddR(C) and the left AddR(C)-resolution
0→ Ker(fn−1)→ Yn−1 → · · · → Y1 → Y0 →M → 0 is exact.
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PC-projective dimension

Corollary

If C is a Σ-self-orthogonal R-module, then every R-module of �nite

PC-projective dimension has a special AddR(C)-precover.

Corollary

Let C be a w-tilting module and M any R-module. If M is of

�nite PC-projective dimension then M ∈ GCP (R)⊥ ∩AddR(C)⊥.
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PC-projective dimension

Theorem

Let C be a w-tilting R-module. For every R-module M ,

GC−pd(M) ≤PC−pd(M), such that the equality

PC−pd(M) = GC−pd(M) holds true whenever M has a �nite

PC-projective dimension.

Corollary

Let C be a w-tilting R-module. If M is of �nite PC-projective

dimension, then PC−pd(M) ≤ n if and only if Ext>n(M,X) = 0
for every X ∈ AddR(C).
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PC-projective dimension

De�nition

An R-module C is said to be faithfully Σ-self-orthogonal if it is a

Σ-self-orthogonal module such that, for every left R-module M , if

HomR(C,M) = 0 then M = 0.

Proposition

Every �nitely presented w-tilting module C over a commutative

ring R is faithfully Σ-self-orthogonal.
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PC-projective dimension

Theorem

Let C be a Σ-self-orthogonal R-module. The following assertions

are equivalent:

1 C is faithfully Σ-self-orthogonal.

2 If φ : I →M is an AddR(C)-precover with
K = Ker(φ) ∈ AddR(C)⊥, then φ is surjective and

M ∈ AddR(C)⊥.

3 If · · · → Y1
f1−→ Y0

f0−→M −→ 0 is a left AddR(C)-resolution
of M with Ker(fn) ∈ AddR(C)⊥, then the sequence

0→ Ker(fn)→ · · · → Y1 → Y0 →M → 0 is exact.

4 Every monic AddR(C)-precover φ : I →M of an R-module

M is an isomorphism.

5 For every R-module M and every n ∈ N, PC−pd(M) ≤ n if

and only if M admits a left AddR(C)-resolution of length n.
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PC-projective dimension

Corollary

Let C be a faithfully Σ-self-orthogonal R-module.

If PC−pd(M) ≤ n then every left AddR(C)-resolution of M is

exact.
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