Leavitt Path Algebras with at most countably many irreducible representations

Kulumani M. Rangaswamy (jointly with Pere Ara, Barcelona) University of Colorado at Colorado Springs

Spineto Conference June 16-20, 2014

Directed Graphs

A directed graph $E=\left(E^{0}, E^{1}, r, s\right)$ consists of a set E^{0} of vertices, a set E^{1} of edges and maps r, s from E^{1} to E^{0}. For each $e \in E^{1}$, say,
$\stackrel{\bullet}{\rightleftarrows}$
e and e^{*} is called the ghost edge with $s\left(e^{*}\right)=v$ and $r\left(e^{*}\right)=u$. A finite path α of length $n>0$ is a finite sequence of edges $\alpha=e_{1} e_{2} \cdots e_{n}$ with $r\left(e_{i}\right)=s\left(e_{i+1}\right)$ for all $i=1, \cdots, n-1$. In this case $\alpha^{*}=e_{n}^{*} \cdots e_{2}^{*} e_{1}^{*}$. A vertex u is called a sink if it emits no edges. If u is not a sink and emits finitely many edges, we say u is a regular vertex. If u emits infinitely many edges, we say u is an infinite emitter.

In the above diagram, v_{5} is an infinite emitter; v_{4} is a sink; v_{1}, v_{2}, v_{3} are regular vertices.

Leavitt path algebras

Let E be a directed graph and K be any field. The Leavitt path algebra $L_{K}(E)$ of the graph E with coefficients in K is the K-algerbra generated by a set $\left\{v: v \in E^{0}\right\}$ of pairwise orthogonal idempotents together with a set of variable $\left\{e, e^{*}: e \in E^{1}\right\}$ which satisfy the following conditions:
(1) $s(e) e=e=e r(e)$ for all $e \in E^{1}$.
(2) $r(e) e^{*}=e^{*}=e^{*} s(e)$ for all $e \in E^{1}$.
(3) (The "CK-1 relations") For all $e, f \in E^{1}, e^{*} e=r(e)$ and $e^{*} f=0$ if $e \neq f$.
(4) (The "CK-2 relations") For every regular vertex $v \in E^{0}$,

$$
v=\sum_{e \in E^{1}, s(e)=v} e e^{*} .
$$

Some Definitions

An closed path is a finite sequence of edges $c=e_{1} e_{2} \cdots e_{n}$ where $r\left(e_{n}\right)=s\left(e_{1}\right)$. In this case, $v=s\left(e_{1}\right)=r\left(e_{n}\right)$ is called the base of the closed path c.
; An example of a cycle is:

Some Results

If L has at most countably many non-isomorhic irreducible representations, we say L is CIRT.

- Proposition 1: If L is CIRT, then distinct cycles in E must be disjoint, that is have no common vertex.

Some Results

If L has at most countably many non-isomorhic irreducible representations, we say L is CIRT.

- Proposition 1: If L is CIRT, then distinct cycles in E must be disjoint, that is have no common vertex.
- Proposition 2: If L is CIRT and E contains cycles, then the K must be a countable field.

Some Results

If L has at most countably many non-isomorhic irreducible representations, we say L is CIRT.

- Proposition 1: If L is CIRT, then distinct cycles in E must be disjoint, that is have no common vertex.
- Proposition 2: If L is CIRT and E contains cycles, then the K must be a countable field.
- Definition: Suppose no two cycles in the graph E have a common vertex. Given two cycles c and c^{\prime}, define $c \geq c^{\prime}$ if there is a path from a vertex on c to a vertex on c^{\prime}. Because distinct cycles have no common vertex, it is clear that the relation \geq is anti-symmetric and hence is a partial order on the set of distinct cycles in E (where two cycles g, h are considerd distinct if $g^{0} \neq h^{0}$)

Some Results

If L has at most countably many non-isomorhic irreducible representations, we say L is CIRT.

- Proposition 1: If L is CIRT, then distinct cycles in E must be disjoint, that is have no common vertex.
- Proposition 2: If L is CIRT and E contains cycles, then the K must be a countable field.
- Definition: Suppose no two cycles in the graph E have a common vertex. Given two cycles c and c^{\prime}, define $c \geq c^{\prime}$ if there is a path from a vertex on c to a vertex on c^{\prime}. Because distinct cycles have no common vertex, it is clear that the relation \geq is anti-symmetric and hence is a partial order on the set of distinct cycles in E (where two cycles g, h are considerd distinct if $g^{0} \neq h^{0}$)
- Proposition 3: If L is CIRT, then every descending chain of cycles under partial order \geq in E must be finite.

Some Results

If L has at most countably many non-isomorhic irreducible representations, we say L is CIRT.

- Proposition 1: If L is CIRT, then distinct cycles in E must be disjoint, that is have no common vertex.
- Proposition 2: If L is CIRT and E contains cycles, then the K must be a countable field.
- Definition: Suppose no two cycles in the graph E have a common vertex. Given two cycles c and c^{\prime}, define $c \geq c^{\prime}$ if there is a path from a vertex on c to a vertex on c^{\prime}. Because distinct cycles have no common vertex, it is clear that the relation \geq is anti-symmetric and hence is a partial order on the set of distinct cycles in E (where two cycles g, h are considerd distinct if $g^{0} \neq h^{0}$)
- Proposition 3: If L is CIRT, then every descending chain of cycles under partial order \geq in E must be finite.
- The graph E contains cycles without exits.

Line Points

- Definition: (i) Let $v \in E^{0}$. Then the tree of v is $T(v)=\left\{u \in E^{0}\right.$: There is a path from v to $u\}$.

Line Points

- Definition : (i) Let $v \in E^{0}$. Then the tree of v is $T(v)=\left\{u \in E^{0}\right.$: There is a path from v to $u\}$.
-

(ii) A vertex w is a bifurcation vertex if w emits more than one edge • w

Line Points

- Definition : (i) Let $v \in E^{0}$. Then the tree of v is $T(v)=\left\{u \in E^{0}\right.$: There is a path from v to $u\}$.
-

(ii) A vertex w is a bifurcation vertex if w emits more than one edge • w
(iii) A vertex v is called a line point if $T(V)$ contains no bifurcation vertex and no cycles.

Line Points

- Definition: (i) Let $v \in E^{0}$. Then the tree of v is $T(v)=\left\{u \in E^{0}\right.$: There is a path from v to $u\}$.
(ii) A vertex w is a bifurcation vertex if w emits more than one edge • w
(iii) A vertex v is called a line point if $T(V)$ contains no bifurcation vertex and no cycles.

In other words, $T(v)=\bullet{ }_{v} \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \cdot \cdot$

Line Points

- Definition : (i) Let $v \in E^{0}$. Then the tree of v is $T(v)=\left\{u \in E^{0}\right.$: There is a path from v to $u\}$.
-

(ii) A vertex w is a bifurcation vertex if w emits more than one edge • w
(iii) A vertex v is called a line point if $T(V)$ contains no bifurcation vertex and no cycles.
$-$
In other words, $T(v)=\bullet_{v} \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \cdot \cdot$

- Proposition 4: (i) A vertex v is a line point $\Longleftrightarrow L v(v L)$ is a simple left (right) ideal of L.

Line Points

- Definition: (i) Let $v \in E^{0}$. Then the tree of v is $T(v)=\left\{u \in E^{0}\right.$: There is a path from v to $u\}$.
-

(ii) A vertex w is a bifurcation vertex if w emits more than one edge • w
(iii) A vertex v is called a line point if $T(V)$ contains no bifurcation vertex and no cycles.
.
In other words, $T(v)=\bullet{ }_{v} \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \cdot \cdot$

- Proposition 4: (i) A vertex v is a line point $\Longleftrightarrow L v(v L)$ is a simple left (right) ideal of L.
(ii) The ideal generated by all the line points in E is the $\operatorname{Soc}(L)$ of L.

Theorem

- Proposition 5: If L is CIRT, then the graph E contains line points or cycles without exits or both.

Theorem

- Proposition 5: If L is CIRT, then the graph E contains line points or cycles without exits or both.
- Structure Theorem: Let E be any graph and K be any field. Then TFAE for $L=L_{K}(E)$:

Theorem

- Proposition 5: If L is CIRT, then the graph E contains line points or cycles without exits or both.
- Structure Theorem: Let E be any graph and K be any field. Then TFAE for $L=L_{K}(E)$:
- (i) L is CIRT;

Theorem

- Proposition 5: If L is CIRT, then the graph E contains line points or cycles without exits or both.
- Structure Theorem: Let E be any graph and K be any field. Then TFAE for $L=L_{K}(E)$:
- (i) L is CIRT;
(ii) L is the union of a smooth well-ordered ascending chain consisting of graded ideals

Theorem

- Proposition 5: If L is CIRT, then the graph E contains line points or cycles without exits or both.
- Structure Theorem: Let E be any graph and K be any field. Then TFAE for $L=L_{K}(E)$:
- (i) L is CIRT;
(ii) L is the union of a smooth well-ordered ascending chain consisting of graded ideals

$$
\begin{equation*}
0<I_{1}<\cdots<I_{\alpha}<I_{\alpha+1}<\cdots \quad(\alpha<\tau) \tag{**}
\end{equation*}
$$

where, τ is a countable ordinal, for each $0 \leq \alpha<\tau, I_{\alpha+1} / I_{\alpha}$ is a direct sum of at most countably many matrix rings over K and/or over $K\left[x, x^{-1}\right]$. Moreover, K will be a countable field whenever E contains cycles.

When the graph has no cycles.

In the above Theorem, if the graph E is acyclic, then for every $\alpha<\tau$, $I_{\alpha+1} / I_{\alpha}$ is isomorphic to a direct sum of matrix rings over K and hence is a direct sum of simple modules. Thus the chain $(* *)$ becomes the socular chain for L, namely,

$$
0<I_{1}<\cdots<I_{\alpha}<I_{\alpha+1}<\cdots \quad(\alpha<\tau)
$$

where, for each $\alpha<\tau, I_{\alpha+1} / I_{\alpha} \cong \operatorname{Soc}\left(L / I_{\alpha}\right)$. Note that, in this case, there is no restriction on the cardinality of the field K. Also L becomes semi-artinian (that is, every non-zero left (right) R-module contains a simple submodule) and von-Neumann regular.

Finitely many non-isomorphic irreducible representations

- Question: What happens if L has only finitely many non-isomorphic simple modules?

Finitely many non-isomorphic irreducible representations

- Question: What happens if L has only finitely many non-isomorphic simple modules ?
- Theorem : Let E be an arbitrary graph and K be any field. Then the following are equivalent for the Leavitt path algebra $L=L_{K}(E)$:

Finitely many non-isomorphic irreducible representations

- Question: What happens if L has only finitely many non-isomorphic simple modules ?
- Theorem : Let E be an arbitrary graph and K be any field. Then the following are equivalent for the Leavitt path algebra $L=L_{K}(E)$:
- (i) L has at most finitely many non-isomorphic simple left/right L-modules;

Finitely many non-isomorphic irreducible representations

- Question: What happens if L has only finitely many non-isomorphic simple modules ?
- Theorem : Let E be an arbitrary graph and K be any field. Then the following are equivalent for the Leavitt path algebra $L=L_{K}(E)$:
- (i) L has at most finitely many non-isomorphic simple left/right L-modules;
- (ii) L is a semi-artinian von Neumann regular ring with finitely many two-sided ideals;

Finitely many non-isomorphic irreducible representations

- Question: What happens if L has only finitely many non-isomorphic simple modules?
- Theorem : Let E be an arbitrary graph and K be any field. Then the following are equivalent for the Leavitt path algebra $L=L_{K}(E)$:
- (i) L has at most finitely many non-isomorphic simple left/right L-modules;
- (ii) L is a semi-artinian von Neumann regular ring with finitely many two-sided ideals;
- (iii) L is a semi-artinian ring with finitely many two-sided ideals.

A Realization Theorem

- Remark: The last theorem shows that a Leavitt path algebra of finite irreducible representation type is von Neumann regular ring with finitely many ideals. So its ideal lattice will be a finite distributive lattice.

A Realization Theorem

- Remark: The last theorem shows that a Leavitt path algebra of finite irreducible representation type is von Neumann regular ring with finitely many ideals. So its ideal lattice will be a finite distributive lattice.
- Question: Which finite distributive lattice can occur as the lattice of all ideals in the Leavitt path algebra $L_{K}(E)$ of finite irreducible representation type?

A Realization Theorem

- Remark: The last theorem shows that a Leavitt path algebra of finite irreducible representation type is von Neumann regular ring with finitely many ideals. So its ideal lattice will be a finite distributive lattice.
- Question: Which finite distributive lattice can occur as the lattice of all ideals in the Leavitt path algebra $L_{K}(E)$ of finite irreducible representation type ?
- Answer: George Bergman proved that every finite distributive lattice can be represented as the lattice of ideals of a unital ultramatricial algebra. On the other hand, Raeburn showed that this unital ultramatricial algebra is Morita-equivalent to a Leavitt path algebra $L_{K}(E)$ of an acyclic graph. For this graph E, the conditions in Theorem (ii) necessarily hold. Consequently, every distributive lattice can be realized as the lattice of all ideals of a Leavitt path algebra of finite irreducible representation type.

Existence of isomorphism classes of simples

1. Let P_{1} be the graph $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \cdots \cdots$. Then $L_{K}\left(P_{1}\right)$ is a direct sum of isomorphic simple left/right ideals and thus all simple left/right modules over $L_{K}\left(P_{1}\right)$ are isomorphic.
2. Let P_{2} be the graph

where $\nwarrow \nwarrow \nwarrow \infty$ denotes that each of the infinitely many vertices $v_{2 n}$ $(n \geq 2)$ is connected to the vertex v_{11} by an edge. Now the line points in the graph P_{2} are the vertices $v_{11}, v_{12}, v_{13}, \cdots$ and they generate the socle S of P_{2} which is a direct sum of isomorphic (faithful) simple left/right modules. Also, $P_{2} / S \cong L_{K}\left(P_{1}\right)$ is a direct sum of isomorphic simple modules annihilated by the ideal S. Thus $L_{K}\left(P_{2}\right)$ has exactly two non-isomorphic simple modules.

Exactly three isomorphism classes of simples

3. Let P_{3} be the graph

isomorphism classes of simple modules

Let $P_{\omega}=\bigcup P_{n}$ be the "Pyramid" graph of length ω constructed $n \in \mathbb{N}$ inductively and represented pictorially as follows.

Exactly Omega +1 isomorphism classes of simple modules

The graph $P_{\omega+1}$ is obtained from the graph P_{ω} by adding a single vertex $v_{\omega+1}$ and connecting it by an edge to each of the vertices $v_{j 1}$ for $j<\omega$ in the graph P_{ω}. Specifically, $\left(P_{\omega+1}\right)^{0}=\left(P_{\omega}\right)^{0} \cup\left\{v_{\omega+1}\right\}$, $\left(P_{\omega+1}\right)^{1}=\left(P_{\omega}\right)^{1} \cup\left\{e_{\omega+1, j}: j<\omega\right\}$ where, for each $j, s\left(e_{\omega+1, j}\right)=v_{\omega+1}$ and $r\left(e_{\omega+1, j}\right)=v_{j 1}$. Clearly, $I_{\omega}=<P_{\omega}>\cong L_{K}\left(P_{\omega}\right)$ and $L_{K}\left(P_{\omega+1}\right) / I_{\omega} \cong K$ and so $L_{K}\left(P_{\omega+1}\right)$ will have $\omega+1$ distinct isomorphism classes of simple $L_{K}\left(P_{\omega+1}\right)$-modules.
For cardinal κ (finite or infinite), there exists a Leavitt path algebra having exactly κ distinct isomorphism classes of simple left/right modules.

