Generalized injectivity and approximations

Serap ŞAHINKAYA
(joint work with Jan TRLIFAJ)

Charles University in Prague
ASTA 2014

19 June, 2014
An R-module E is injective if, for every module B and every submodule A of B, every monomorphism $f : A \to B$ can be extended to map $g : B \to E$, that is the following diagram commutes:

\[
\begin{array}{ccc}
A & \to & B \\
\downarrow & & \downarrow \\
E & & E
\end{array}
\]

If an injective R-module E is an maximal essential extension of an R-module M, then E is said to be an injective envelope of M.
An R module E is injective if, for every module B and every submodule A of B, every monomorphism $f : A \hookrightarrow B$ can be extended to map $g : B \rightarrow E$, that is the following diagram commutes:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
E & \xleftarrow{g} & \\
\end{array}
\]
Definitions

- An \(R \) module \(E \) is *injective* if, for every module \(B \) and every submodule \(A \) of \(B \), every monomorphism \(f : A \hookrightarrow B \) can be extended to map \(g : B \to E \), that is the following diagram commutes.

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
E & & \end{array}
\]

- If an injective \(R \) module \(E \) is an maximal essential extension of an \(R \) module \(M \), then \(E \) is said to be an *injective envelope* of \(M \).
Definitions

A homomorphism \(g : M \rightarrow E \) is a \(C \)-preenvelope (or a left \(C \)-approximation) of a module \(M \), provided that \(E \in C \) and each diagram

\[
\begin{array}{ccc}
M & \xrightarrow{g} & E \\
\downarrow & & \downarrow \\
E' & & \end{array}
\]

can be completed by \(\alpha : E \rightarrow E' \) to a commutative diagram.

If moreover the diagram can be completed only by an automorphism \(\alpha \), we call \(g \) a \(C \)-envelope (or a minimal left \(C \)-approximation) of \(M \).

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ)

Generalized injectivity and approximations
Definitions

• A homomorphism \(g : M \to E \) is a \(\mathcal{C} \)-preenvelope (or a left \(\mathcal{C} \)-approximation) of a module \(M \), provided that \(E \in \mathcal{C} \) and each diagram

\[
\begin{array}{ccc}
M & \xrightarrow{g} & E \\
\downarrow{g'} & & \downarrow{\alpha} \\
E' & & \\
\end{array}
\]

with \(E' \in \mathcal{C} \) can be completed by \(\alpha : E \to E' \) to a commutative diagram.
Definitions

- A homomorphism $g : M \rightarrow E$ is a \mathcal{C}-preenvelope (or a left \mathcal{C}-approximation) of a module M, provided that $E \in \mathcal{C}$ and each diagram

\[
\begin{array}{ccc}
M & \xrightarrow{g} & E \\
\downarrow{g'} & & \downarrow{\alpha} \\
E' & & \\
\end{array}
\]

with $E' \in \mathcal{C}$ can be completed by $\alpha : E \rightarrow E'$ to a commutative diagram.

- If moreover the diagram can be completed only by an automorphism α, we call g a \mathcal{C}-envelope (or a minimal left \mathcal{C}-approximation) of M.

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ)
Definitions

A class $C \subseteq \text{Mod-}R$ is a preenveloping class, (enveloping class) provided that each module has a C-preenvelope (C-envelope). Dually, one can define the notions of a C-precover (= right C-approximation) and a C-cover (= a minimal right C-approximation) of a module M, and of a (pre)covering class of modules. A submodule A of a module B is a pure submodule, ($A \subseteq \ast B$ for short) if for each finitely presented module F, the functor $\text{Hom}_R(F, -)$ preserves exactness of the short exact sequence $0 \to A \to B \to B/A \to 0$. A C-preenvelope $f : M \to C$ of M is called special, provided that f is injective and $\text{Coker} f \in \perp C$.

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ) Generalized injectivity and approximations
Definitions

- A class $\mathcal{C} \subseteq \text{Mod-}R$ is a **preenveloping class** (enveloping class) provided that each module has a \mathcal{C}-preenvelope (\mathcal{C}-envelope).

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ) Generalized injectivity and approximations
Definitions

- A class $\mathcal{C} \subseteq \text{Mod-R}$ is a preenveloping class, (enveloping class) provided that each module has a \mathcal{C}-preenvelope (\mathcal{C}-envelope).
- Dually, one can define the notions of a \mathcal{C}-precover (=$\text{right } \mathcal{C}$-approximation) and a \mathcal{C}-cover (=$\text{a minimal right } \mathcal{C}$-approximation) of a module M, and of a (pre)covering class of modules.
Definitions

- A class $\mathcal{C} \subseteq \text{Mod-}R$ is a preenveloping class, (enveloping class) provided that each module has a \mathcal{C}-preenvelope (\mathcal{C}-envelope).

- Dually, one can define the notions of a \mathcal{C}-precover ($=$ right \mathcal{C}-approximation) and a \mathcal{C}-cover ($=$ a minimal right \mathcal{C}-approximation) of a module M, and of a (pre)covering class of modules.

- A submodule A of a module B is pure submodule, ($A \subseteq^* B$ for short) if for each finitely presented module F, the functor $\text{Hom}_R(F, -)$ preserves exactness of the short exact sequence $0 \to A \to B \to B/A \to 0$.

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ) Generalized injectivity and approximations
Definitions

- A class $\mathcal{C} \subseteq \text{Mod-}R$ is a preenveloping class, (enveloping class) provided that each module has a \mathcal{C}-preenvelope (\mathcal{C}-envelope).

- Dually, one can define the notions of a \mathcal{C}-precover (= right \mathcal{C}-approximation) and a \mathcal{C}-cover (= a minimal right \mathcal{C}-approximation) of a module M, and of a (pre)covering class of modules.

- A submodule A of a module B is pure submodule, ($A \subseteq^* B$ for short) if for each finitely presented module F, the functor $\text{Hom}_R(F, -)$ preserves exactness of the short exact sequence $0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0$.

- A \mathcal{C}-preenvelope $f : M \rightarrow C$ of M is called special, provided that f is injective and $\text{Coker} f \in \perp \mathcal{C}$.
Definitions

Modules that are injective with respect to pure embeddings are called pure-injective.

If $M(\lambda)$ is pure-injective for all cardinals λ, then M is called Σ-pure-injective.

M is fp-injective, provided that $\text{Ext}^1_R(F, M) = 0$ for each finitely presented left R-module F.

An R-module N is A-injective if, for every submodule X of A and any morphism $f: X \to A$ can be extended to map $g: A \to N$.

A module Q is called quasi-injective if it is Q-injective.
Definitions

- Modules that are injective with respect to pure embeddings are called *pure-injective*.
Definitions

- Modules that are injective with respect to pure embeddings are called *pure-injective*.
- If $M^{(\lambda)}$ is pure-injective for all cardinals λ, then M is called *Σ-pure-injective*.

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ)
Definitions

- Modules that are injective with respect to pure embeddings are called *pure-injective*.
- If $M^{(\lambda)}$ is pure-injective for all cardinals λ, then M is called *Σ-pure-injective*.
- M is *fp-injective*, provided that $\text{Ext}_R^1(F, M) = 0$ for each finitely presented left R-module F.
Definitions

- Modules that are injective with respect to pure embeddings are called \textit{pure-injective}.
- If $M^{(\lambda)}$ is pure-injective for all cardinals λ, then M is called \textit{Σ-pure-injective}.
- M is \textit{fp-injective}, provided that $\text{Ext}_R^1(F, M) = 0$ for each finitely presented left R-module F.
- An R module N is \textit{A-injective} if, for every submodule X of A and any morphism $f : X \hookrightarrow A$ can be extended to map $g : A \rightarrow N$.
Definitions

- Modules that are injective with respect to pure embeddings are called \textit{pure-injective}.
- If $M^{(\lambda)}$ is pure-injective for all cardinals λ, then M is called \textit{\Sigma-pure-injective}.
- M is \textit{fp-injective}, provided that $\Ext^1_R(F, M) = 0$ for each finitely presented left R-module F.
- An R module N is \textit{A-injective} if, for every submodule X of A and any morphism $f : X \rightarrow A$ can be extended to map $g : A \rightarrow N$.
- A module Q is called \textit{quasi-injective} if it is Q-injective.
Definitions

Let R be a ring and M a module. Then M is a C_1-module provided that every submodule of M is essential in a direct summand of M, a C_1-module can sometimes be called as CS or extending modules; M is a C_2-module provided that A is a direct summand in M whenever A is a submodule of M such that A is isomorphic to a direct summand in M; M is a C_3-module in case the following holds true: if A and B are direct summands in M and $A \cap B = 0$, then $A + B$ is a direct summand in M.

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ)
Definitions

Let R be a ring and M a module. Then

Let R be a ring and M a module. Then
Definitions

Let R be a ring and M a module. Then

- M is a C_1-module provided that every submodule of M is essential in a direct summand of M, C_1-module can sometimes be called as CS or extending modules;
Definitions

Let R be a ring and M a module. Then

- M is a $C1$-module provided that every submodule of M is essential in a direct summand of M, $C1$-module can sometimes be called as CS or extending modules;
- M is a $C2$-module provided that A is a direct summand in M whenever A is a submodule of M such that A isomorphic to a direct summand in M;
Definitions

Let \(R \) be a ring and \(M \) a module. Then

- \(M \) is a \textit{C1-module} provided that every submodule of \(M \) is essential in a direct summand of \(M \), \(C1 \)-module can sometimes be called as \textit{CS} or \textit{extending modules};

- \(M \) is a \textit{C2-module} provided that \(A \) is a direct summand in \(M \) whenever \(A \) is a submodule of \(M \) such that \(A \) isomorphic to a direct summand in \(M \);

- \(M \) is a \textit{C3-module} in case the following holds true: if \(A \) and \(B \) are direct summands in \(M \) and \(A \cap B = 0 \), then \(A + B \) is a direct summand in \(M \).
Definition

A module M is continuous, if M is both C_1 and C_2; M is quasi-continuous if M is both C_1 and C_3.

The following implications hold:

$\text{Injective} \implies \text{quasi-injective} \implies \text{continuous} \implies \text{quasi-continuous} \implies C_1.$

Notations

$C_i := \text{the class of all } C_i\text{-modules for } i = 1, 2, 3.$

$C_4 := \text{classes of all quasi-continuous modules},$

$C_5 := \text{classes of all continuous modules},$

$C_6 := \text{the classes of all quasi-injective modules}.$

Thus, we have $C_2 \subseteq C_3$ and $C_6 \subseteq C_5 = C_1 \cap C_2 \subseteq C_4 = C_1 \cap C_3 \subseteq C_3.$

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ)

Generalized injectivity and approximations
Definition

A module M is *continuous*, if M is both C1 and C2; M is *quasi-continuous* if M is both C1 and C3.
Definition

A module M is \textit{continuous}, if M is both C_1 and C_2; M is \textit{quasi-continuous} if M is both C_1 and C_3.

The following implications hold:
Definition

A module M is *continuous*, if M is both C_1 and C_2; M is *quasi-continuous* if M is both C_1 and C_3.

The following implications hold:

Injective \Rightarrow quasi-injective \Rightarrow continuous \Rightarrow quasi-continuous \Rightarrow C1.
Definition

A module M is \textit{continuous}, if M is both C_1 and C_2; M is \textit{quasi-continuous} if M is both C_1 and C_3.

The following implications hold:

Injective \Rightarrow quasi-injective \Rightarrow continuous \Rightarrow quasi-continuous \Rightarrow C_1.

Notations

$C_i :=$ the class of all C_i-modules for $i = 1, 2, 3$.
$C_4 :=$ classes of all quasi-continuous modules,
$C_5 :=$ classes of all continuous modules,
$C_6 :=$ the classes of all quasi-injective modules.
Definition

A module M is *continuous*, if M is both C1 and C2; M is *quasi-continuous* if M is both C1 and C3.

The following implications hold:

Injective \Rightarrow quasi-injective \Rightarrow continuous \Rightarrow quasi-continuous \Rightarrow C1.

Notations

$C_i :=$ the class of all C_i-modules for $i = 1, 2, 3$.

$C_4 :=$ classes of all quasi-continuous modules,

$C_5 :=$ classes of all continuous modules,

$C_6 :=$ the classes of all quasi-injective modules.

Thus, we have
Definition

A module M is *continuous*, if M is both C_1 and C_2; M is *quasi-continuous* if M is both C_1 and C_3.

The following implications hold:

Injective \Rightarrow quasi-injective \Rightarrow continuous \Rightarrow quasi-continuous \Rightarrow C_1.

Notations

$C_i :=$ the class of all C_i-modules for $i = 1, 2, 3$.

$C_4 :=$ classes of all quasi-continuous modules,

$C_5 :=$ classes of all continuous modules,

$C_6 :=$ the classes of all quasi-injective modules.

Thus, we have

$C_2 \subseteq C_3$ and $C_6 \subseteq C_5 = C_1 \cap C_2 \subseteq C_4 = C_1 \cap C_3 \subseteq C_3$.

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ)
Approximations of (Generalized) Injective Modules
Approximations of (Generalized) Injective Modules

- Every R-module has an injective envelope which is unique up to isomorphism. (see Enochs, E.E. and Jenda, O.M.G.: *Relative Homological Algebra*, Chapter 3)
Approximations of (Generalized) Injective Modules

- Every R-module has an injective envelope which is unique up to isomorphism. (see Enochs, E.E. and Jenda, O.M.G.: *Relative Homological Algebra*, Chapter 3)

- Let C be a class of pure-injective modules, such that C is closed under direct summands. Let $f \in \text{Hom}_R(M, C)$ be a C-preenvelope of M. Then there is a decomposition $C = D \oplus E$, such that $\text{Img} f \subseteq D$ and $f : M \to D$ is left minimal. In particular, $f : M \to D$ is a C-envelope of M. (see H. Krause, M. Saorin, On minimal approximations of modules, Contemp. Math. 229 (1998), 227236.)
Injective Modules and Their Generalizations
New Results on Generalized Injective Modules

Let R be a ring. Then every module has a special fp-injective preenvelope. (see G¨obel R., Trlifaj J., Approximations and Endomorphism Algebras of Modules, Chapter 6.)

Every module M has a minimal quasi-injective extension, which is unique up to isomorphism. (The quasi-injective hull is not the same as quasi-injective preenvelope) (see Mohamed S.H., M¨uller B.J. Continuous and Discrete Modules, Chapter 1.)
Let R be a ring. Then every module has a special fp-injective preenvelope. (see Göbel R., Trlifaj J., *Approximations and Endomorphism Algebras of Modules*, Chapter 6.)
● Let R be a ring. Then every module has a special fp-injective preenvelope. (see Göbel R., Trlifaj J., *Approximations and Endomorphism Algebras of Modules*, Chapter 6.)

● Every module M has a minimal quasi-injective extension, which is unique up to isomorphism. (The quasi-injective hull is not the same as quasi-injective preenvelope) (see Mohamed S.H., Müller B.J. *Continuous and Discrete Modules*, Chapter 1.)
Theorem 1

Let R be a ring and $1 < i \leq 6$. Then the following conditions are equivalent:

1. The class C_i is closed under finite direct sums.
2. C_i coincides with the class of all injective modules.
3. C_i is (pre)enveloping.
4. C_i is (pre)covering.

If these conditions are satisfied, then R is a right noetherian right V-ring; moreover, all semisimple modules are injective.
Theorem 1

Let R be a ring and $1 < i \leq 6$. Then the following conditions are equivalent:

1. The class C_i is closed under finite direct sums.
2. C_i coincides with the class of all injective modules.
3. C_i is (pre)enveloping.
4. C_i is (pre)covering.

If these conditions are satisfied, then R is a right noetherian right V-ring; moreover, all semisimple modules are injective.
Theorem 1

Let R be a ring and $1 < i \leq 6$. Then the following conditions are equivalent:

1. The class \mathcal{C}_i is closed under finite direct sums.

If these conditions are satisfied, then R is a right noetherian right V-ring; moreover, all semisimple modules are injective.
Theorem 1

Let \(R \) be a ring and \(1 < i \leq 6 \). Then the following conditions are equivalent:

1. The class \(C_i \) is closed under finite direct sums.
2. \(C_i \) coincides with the class of all injective modules.
Theorem 1

Let R be a ring and $1 < i \leq 6$. Then the following conditions are equivalent:

(1) The class C_i is closed under finite direct sums.
(2) C_i coincides with the class of all injective modules.
(3) C_i is (pre)enveloping.

If these conditions are satisfied, then R is a right noetherian right V-ring; moreover, all semisimple modules are injective.
Theorem 1

Let R be a ring and $1 < i \leq 6$. Then the following conditions are equivalent:

1. The class C_i is closed under finite direct sums.
2. C_i coincides with the class of all injective modules.
3. C_i is (pre)enveloping.
4. C_i is (pre) covering.

If these conditions are satisfied, then R is a right noetherian right V-ring; moreover, all semisimple modules are injective.
Theorem 1

Let R be a ring and $1 < i \leq 6$. Then the following conditions are equivalent:

1. The class C_i is closed under finite direct sums.
2. C_i coincides with the class of all injective modules.
3. C_i is (pre)enveloping.
4. C_i is (pre) covering.

If these conditions are satisfied, then R is a right noetherian right V-ring; moreover, all semisimple modules are injective.
Example

Note

Clearly, each semisimple ring R satisfies the condition of the Theorem 1 for all $1 \leq i \leq 6$.

Corollary

Let R be a ring and $i = 3$ or $i = 4$. Then the equivalent conditions of the Theorem 1 are satisfied, if and only if R is a semisimple ring.

Open Question

How about the structure of rings that satisfy the equivalent conditions of Theorem 1 for $i = 2, 5$?
Example

Note

Clearly, each semisimple ring R satisfies the condition of the Theorem 1 for all $1 \leq i \leq 6$.

Corollary

Let R be a ring and $i = 3$ or $i = 4$. Then the equivalent conditions of the Theorem 1 are satisfied, if and only if R is a semisimple ring.

Open Question

How about the structure of rings that satisfy the equivalent conditions of Theorem 1 for $i = 2, 5$?
Example

Note

Clearly, each semisimple ring R satisfies the condition of the Theorem 1 for all $1 \leq i \leq 6$.
Example

Note

Clearly, each semisimple ring R satisfies the condition of the Theorem 1 for all $1 \leq i \leq 6$.

Corollary

Let R be a ring and $i = 3$ or $i = 4$. Then the equivalent conditions of the Theorem 1 are satisfied, if and only if R is a semisimple ring.
Example

Note
Clearly, each semisimple ring R satisfies the condition of the Theorem 1 for all $1 \leq i \leq 6$.

Corollary
Let R be a ring and $i = 3$ or $i = 4$. Then the equivalent conditions of the Theorem 1 are satisfied, if and only if R is a semisimple ring.

Open Question
How about the structure of rings that satisfy the equivalent conditions of Theorem 1 for $i = 2, 5$?
Theorem 2

Let R be a ring such that either R is right noetherian or $\text{Soc}(R) = 0$. Then the following conditions are equivalent:

1. C_1 is (pre)enveloping.
2. C_1 consists of \sum-pure-injective modules and it is closed under direct products.

If these conditions are satisfied, then R is right artinian.
Theorem 2

Let R be a ring such that either R is right noetherian or $\text{Soc}(R_R) = 0$. Then the following conditions are equivalent:

1. C_1 is (pre)enveloping.
2. C_1 consists of \sum-pure-injective modules and it is closed under direct products.

If these conditions are satisfied, then R is right artinian.
Theorem 2

Let \(R \) be a ring such that either \(R \) is right noetherian or \(\text{Soc}(R_R) = 0 \). Then the following conditions are equivalent:

1. \(C_1 \) is (pre)enveloping.

If these conditions are satisfied, then \(R \) is right artinian.
Theorem 2

Let R be a ring such that either R is right noetherian or $\text{Soc}(R_R) = 0$. Then the following conditions are equivalent:

1. C_1 is (pre)enveloping.
2. C_1 consists of \sum-pure-injective modules and it is closed under direct products.

If these conditions are satisfied, then R is right artinian.
Theorem 2

Let R be a ring such that either R is right noetherian or $\text{Soc}(R_R) = 0$. Then the following conditions are equivalent:

1. C_1 is (pre)enveloping.
2. C_1 consists of \sum-pure-injective modules and it is closed under direct products.

If these conditions are satisfied, then R is right artinian.

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ)

Generalized injectivity and approximations
Theorem 3

Let R be a commutative noetherian ring, or a commutative domain. Then the following conditions are equivalent:

1. C_1 is (pre)enveloping.
2. R is an artinian serial ring with $J^2 = 0$.
3. $C_1 = \text{Mod-}R$.
Theorem 3

Let R be a commutative noetherian ring, or a commutative domain. Then the following conditions are equivalent:
Theorem 3

Let R be a commutative noetherian ring, or a commutative domain. Then the following conditions are equivalent:

1. C_1 is (pre)enveloping.
Theorem 3

Let R be a commutative noetherian ring, or a commutative domain. Then the following conditions are equivalent:

1. C_1 is (pre)enveloping.
2. R is an artinian serial ring with $J^2 = 0$.

Serap ŞAHINKAYA (joint work with Jan TRLIFAJ)

Generalized injectivity and approximations
Theorem 3

Let \(R \) be a commutative noetherian ring, or a commutative domain. Then the following conditions are equivalent:

1. \(C_1 \) is (pre)enveloping.
2. \(R \) is an artinian serial ring with \(J^2 = 0 \).
3. \(C_1 = \text{Mod-}R \),
Open Problem

The results, for the class of C1 modules, are proved for the domain case and the noetherian setting. Can one extend that results to arbitrary rings?
THANK YOU FOR YOUR ATTENTION