Cotilting modules over commutative noetherian rings

Jan Trlifaj

Univerzita Karlova, Praha

ASTA 2014, Spineto

June 16, 2014

Jan Trlifaj (Univerzita Karlova) Cotilting over commutative noetherian rings

ASTA 2014 1 / 19

Tilting modules

Let *R* be an associative ring with unit and $n < \omega$. A (right *R*-) module *T* is *n*-tilting provided that (T1) $pd_R(T) \le n$, (T2) $Ext_R^k(T, T^{(\kappa)}) = 0$ for all $k \ge 1$ and all κ , (T3) There is an exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ with $T_i \in Add T$ for all i < n.

The *n*-tilting class induced by T is $T^{\perp} = \{M \in \text{Mod-}R \mid \text{Ext}_{R}^{k}(T, M) = 0 \text{ for all } k \ge 1\}.$

The tilting modules T and T' are equivalent if $T^{\perp} = (T')^{\perp}$.

▲日▼ ▲□▼ ▲目▼ ▲目▼ ■ ● ●

Large tilting modules versus finite type

< ロ > < 同 > < 回 > < 回 > < 回

Large tilting modules versus finite type

If R is commutative, then all non-trivial tilting modules are large:

Lemma

Let R be a commutative ring.

- If $0 \neq T \in \text{mod}-R$ has projective dimension n, then $\text{Ext}_R^n(T, T) \neq 0$.
- All finitely generated tilting modules are projective.

Large tilting modules versus finite type

If R is commutative, then all non-trivial tilting modules are large:

Lemma

Let R be a commutative ring.

- If $0 \neq T \in \text{mod}-R$ has projective dimension n, then $\text{Ext}_R^n(T, T) \neq 0$.
- All finitely generated tilting modules are projective.

Theorem (finite type of tilting classes)

Let R be a ring, $n < \omega$, and T be a class of modules.

- Then T is n-tilting, iff there is a set S ⊆ mod-R consisting of modules of projective dimension ≤ n such that T = S[⊥].
- W.I.o.g., $R \in S$, and T is induced by an S-filtered tilting module T.

イロト 不得 とくまとう まし

Filtered modules

Let $S \subseteq Mod-R$. A module *M* is *S*-filtered provided there exists a chain of modules and monomorphisms

$$0 = M_0 \stackrel{\nu_0}{\hookrightarrow} M_1 \stackrel{\nu_1}{\hookrightarrow} \ldots \hookrightarrow M_\alpha \stackrel{\nu_\alpha}{\hookrightarrow} M_{\alpha+1} \stackrel{\nu_{\alpha+1}}{\hookrightarrow} \ldots \hookrightarrow M_{\sigma} = M$$

such that

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $Coker(\nu_{\alpha})$ is isomorphic to an element of S.

• • = • • = •

Filtered modules

Let $S \subseteq Mod-R$. A module *M* is *S*-filtered provided there exists a chain of modules and monomorphisms

$$0 = M_0 \stackrel{\nu_0}{\hookrightarrow} M_1 \stackrel{\nu_1}{\hookrightarrow} \ldots \hookrightarrow M_\alpha \stackrel{\nu_\alpha}{\hookrightarrow} M_{\alpha+1} \stackrel{\nu_{\alpha+1}}{\hookrightarrow} \ldots \hookrightarrow M_{\sigma} = M$$

such that

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $Coker(\nu_{\alpha})$ is isomorphic to an element of S.

Example

Let *R* be a Dedekind domain. Then the class \mathcal{D} of all divisible modules is 1-tilting (take $S = \{R/\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Spec}(R)\}$). \mathcal{D} is induced by the *S*-filtered tilting module

$$T_{div} = Q \oplus Q/R = Q \oplus \bigoplus_{\mathfrak{p} \in \mathrm{mSpec}(R)} E(R/\mathfrak{p}).$$

Definition

Let R be a ring and $n < \omega$. A left R-module C is *n*-cotilting provided (C1) id_R(C) $\leq n$.

- (C2) $\operatorname{Ext}_{R}^{k}(C^{\kappa}, C) = 0$ for all $k \geq 1$ and all cardinals κ .
- (C3) There is an exact sequence $0 \rightarrow C_n \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_0 \rightarrow W \rightarrow 0$, where $C_i \in \text{Prod}C$ for each $i \leq n$, and W an injective cogenerator.

The class ${}^{\perp}C = \{M \in R - \text{Mod} \mid \text{Ext}_R^k(M, C) = 0 \text{ for all } k \ge 1\}$ is the cotilting class induced by C.

The cotilting modules C and C' are equivalent if $^{\perp}C = ^{\perp}C'$.

Duality: formal and explicit

<ロ> (日) (日) (日) (日) (日)

Duality: formal and explicit

Let R be a commutative ring, $n \ge 0$, and T be an *n*-tilting R-module. Then the dual module $C = T^* = \text{Hom}_R(T, W)$ is an *n*-cotilting R-module.

Duality: formal and explicit

Let R be a commutative ring, $n \ge 0$, and T be an *n*-tilting R-module. Then the dual module $C = T^* = \text{Hom}_R(T, W)$ is an *n*-cotilting R-module.

Moreover:

If $S \subseteq \text{mod}-R$ consists of modules of projective dimension $\leq n$ such that $T^{\perp} = S^{\perp}$, then

 ${}^{\perp}\mathcal{C} = \{ \mathsf{N} \in \mathsf{R}\operatorname{-Mod} \mid \operatorname{Tor}_k^{\mathsf{R}}(S, \mathsf{N}) = 0 \text{ for all } k \geq 1 \text{ and } S \in \mathcal{S} \}$

is the dual cotilting class induced by C.

If T is S-filtered, then C is S^* -cofiltered.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Let $C \subseteq Mod-R$. A module M is C-cofiltered provided there exists a chain of modules and epimorphisms

$$M = M_{\sigma} \twoheadrightarrow \dots \xrightarrow{\pi_{\alpha+1}} M_{\alpha+1} \xrightarrow{\pi_{\alpha}} M_{\alpha} \twoheadrightarrow \dots \xrightarrow{\pi_1} M_1 \xrightarrow{\pi_0} M_0 = 0$$

such that

• $M_{\alpha} = \underset{\beta < \alpha}{\lim} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and • for each $\alpha < \sigma$, Ker (π_{α}) is isomorphic to an element of C.

< 同 > < 三 > < 三 > <

Let R be a Dedekind domain. Then the class \mathcal{F} of all torsion-free modules is the dual cotilting class induced by the 1-cotilting module

$$C_{tf} = (T_{div})^* \cong Q^{\kappa} \oplus \prod_{\mathfrak{p} \in \mathrm{mSpec}(R)} J_{\mathfrak{p}}.$$

< ∃ > <

Let R be a Dedekind domain. Then the class \mathcal{F} of all torsion-free modules is the dual cotilting class induced by the 1-cotilting module

$$C_{tf} = (T_{div})^* \cong Q^{\kappa} \oplus \prod_{\mathfrak{p} \in \mathrm{mSpec}(R)} J_{\mathfrak{p}}.$$

 C_{tf} is C-cofiltered, where $C = \{R/\mathfrak{p} \mid \mathfrak{p} \in \mathrm{mSpec}(R)\} \cup \{W\}$, and $W = \bigoplus_{\mathfrak{p} \in \mathrm{mSpec}(R)} E(R/\mathfrak{p})$ is the minimal injective cogenerator.

< 同 > < 三 > < 三 >

The commutative noetherian setting

Jan Trlifaj (Univerzita Karlova) Cotilting over commutative noetherian rings

・ロト ・聞ト ・ヨト ・ヨト

Theorem

Assume R is commutative and noetherian. Then each cotilting module is equivalent to the dual of a tilting one, hence each cotilting class is dual.

Theorem

Assume R is commutative and noetherian. Then each cotilting module is equivalent to the dual of a tilting one, hence each cotilting class is dual.

From now on, all rings will be commutative and noetherian.

・ロト ・ 日 ト ・ 日 ト ・ 日

A subset $P \subseteq \text{Spec}(R)$ is closed under generalization provided that (P, \subseteq) is a lower subset in $(\text{Spec}(R), \subseteq)$.

A subset $P \subseteq \text{Spec}(R)$ is closed under generalization provided that (P, \subseteq) is a lower subset in $(\text{Spec}(R), \subseteq)$.

Theorem (1-dimensional case)

A subset $P \subseteq \text{Spec}(R)$ is closed under generalization provided that (P, \subseteq) is a lower subset in $(\text{Spec}(R), \subseteq)$.

Theorem (1-dimensional case)

There is a 1-1 correspondence between

- (i) the 1-cotilting classes C in Mod-R,
- (ii) the subsets P of Spec(R) containing Ass(R) and closed under generalization,
- (iii) the 1-tilting classes T in Mod-R.

A subset $P \subseteq \text{Spec}(R)$ is closed under generalization provided that (P, \subseteq) is a lower subset in $(\text{Spec}(R), \subseteq)$.

Theorem (1-dimensional case)

There is a 1-1 correspondence between

- (i) the 1-cotilting classes C in Mod-R,
- (ii) the subsets P of Spec(R) containing Ass(R) and closed under generalization,
- (iii) the 1-tilting classes T in Mod-R.

It is given by the inverse assignments

$$\mathcal{C} \mapsto \operatorname{Ass}(\mathcal{C}) \text{ and } P \mapsto \{M \in Mod-R \mid \operatorname{Ass}(M) \subseteq P\}$$

and by $P \mapsto \mathcal{T} = \bigcap_{\mathfrak{q} \in \operatorname{Spec}(R) \setminus P} \operatorname{Tr}(R/\mathfrak{q})^{\perp}$

where Tr denotes the Auslander-Bridger transpose.

Characteristic sequences

Definition

A sequence $\mathcal{P} = (P_0, \dots, P_{n-1})$ of subsets of $\operatorname{Spec}(R)$ is called characteristic (of length *n* in $\operatorname{Spec}(R)$) provided that

(i) P_i is closed under generalization for all i < n,

(ii)
$$P_0 \subseteq P_1 \subseteq \cdots \subseteq P_{n-1}$$
, and

(iii) $\operatorname{Ass}(\Omega^{-i}(R)) \subseteq P_i$ for all i < n.

.

Characteristic sequences

Definition

A sequence $\mathcal{P} = (P_0, \dots, P_{n-1})$ of subsets of $\operatorname{Spec}(R)$ is called characteristic (of length *n* in $\operatorname{Spec}(R)$) provided that

(i) P_i is closed under generalization for all i < n,

(ii)
$$P_0 \subseteq P_1 \subseteq \cdots \subseteq P_{n-1}$$
, and

(iii) $\operatorname{Ass}(\Omega^{-i}(R)) \subseteq P_i$ for all i < n.

For each characteristic sequence $\mathcal{P},$ we define the class of modules

$$\mathcal{C}_{\mathcal{P}} = \{ M \in \mathsf{Mod}\text{-}R \mid \mathrm{Ass}(\Omega^{-i}(M)) \subseteq P_i \text{ for all } i < n \}$$

A B F A B F

Characteristic sequences

Definition

A sequence $\mathcal{P} = (P_0, \dots, P_{n-1})$ of subsets of $\operatorname{Spec}(R)$ is called characteristic (of length *n* in $\operatorname{Spec}(R)$) provided that

(i) P_i is closed under generalization for all i < n,

(ii)
$$P_0 \subseteq P_1 \subseteq \cdots \subseteq P_{n-1}$$
, and

(iii) $\operatorname{Ass}(\Omega^{-i}(R)) \subseteq P_i$ for all i < n.

For each characteristic sequence $\mathcal{P},$ we define the class of modules

$$\mathcal{C}_{\mathcal{P}} = \{ M \in \mathsf{Mod-}R \mid \mathrm{Ass}(\Omega^{-i}(M)) \subseteq P_i \text{ for all } i < n \}$$

Lemma (localization of characteristic sequences)

If $\mathcal{P} = (P_0, \ldots, P_{n-1})$ is characteristic in $\operatorname{Spec}(R)$ and $\mathfrak{m} \in \operatorname{mSpec}(R)$, then the sequence $\mathcal{P}_{\mathfrak{m}} = ((P_0)_{\mathfrak{m}}, \ldots, (P_{n-1})_{\mathfrak{m}})$ is characteristic in $\operatorname{Spec}(R_{\mathfrak{m}})$. Here, $(P_i)_{\mathfrak{m}} = \{\mathfrak{p}_{\mathfrak{m}} \mid \mathfrak{p} \subseteq \mathfrak{m} \text{ and } \mathfrak{p} \in P_i\}$.

Classification of *n*-cotilting classes

・ロト ・聞ト ・ヨト ・ヨト

Classification of *n*-cotilting classes

Theorem

Let $n \ge 1$, and $\mathcal{P} = (P_0, \dots, P_{n-1})$ be a characteristic sequence. Then $\mathcal{C}_{\mathcal{P}}$ is an n-cotilting class, and the assignments

 $\mathcal{C} \mapsto (\operatorname{Ass}(\mathcal{C}_0), \dots, \operatorname{Ass}(\mathcal{C}_{n-1}))$

and

$$\mathcal{P} = (P_0, \ldots, P_{n-1}) \mapsto \mathcal{C}_{\mathcal{P}}$$

are inverse bijections.

Lemma

Let C be an n-cotilting module with the induced class C. For each $i \leq n$, let $C_i = {}^{\perp}\Omega^{-i}(C)$. Then C_i is an (n - i)-cotilting class.

- - 4 周 ト - 4 日 ト - 日

A complete classification

Theorem

Let $n \ge 1$. Then there are bijections between:

(i) the characteristic sequences of length n in Spec(R),

(ii) n-tilting classes T,

(iii) n-cotilting classes C.

A characteristic sequence (P_0, \ldots, P_{n-1}) corresponds to the n-tilting class

$$\mathcal{T} = \{ M \in \text{Mod}-R \mid Tor_i^R(R/\mathfrak{p}, M) = 0 \,\forall i < n \,\forall \mathfrak{p} \notin P_i \} = \\ \{ M \in \text{Mod}-R \mid Ext_R^1(\text{Tr}(\Omega^{(i)}(R/\mathfrak{p})), M) = 0 \,\forall i < n \,\forall \mathfrak{p} \notin P_i \} \}$$

and the n-cotilting class

$$\mathcal{C} = \{ M \in \mathrm{Mod} - R \mid \mathsf{Ext}_R^i(R/\mathfrak{p}, M) = 0 \, \forall i < n \, \forall \mathfrak{p} \notin P_i \} = \{ M \in \mathrm{Mod} - R \mid \mathit{Tor}_1^R(\mathrm{Tr}(\Omega^i(R/\mathfrak{p})), M) = 0 \, \forall i < n \, \forall \mathfrak{p} \notin P_i \}.$$

Jan Trlifaj (Univerzita Karlova) Cotilting over commutative noetherian rings

<ロ> (日) (日) (日) (日) (日)

Definition

A cotilting module C is minimal provided that C is a direct summand in each cotilting module equivalent to C.

→ ∃ →

Definition

A cotilting module C is minimal provided that C is a direct summand in each cotilting module equivalent to C.

Lemma (uniqueness)

If C and C' are minimal cotilting modules such that C is equivalent to C', then $C \cong C'$.

Definition

A cotilting module C is minimal provided that C is a direct summand in each cotilting module equivalent to C.

Lemma (uniqueness)

If C and C' are minimal cotilting modules such that C is equivalent to C', then $C \cong C'$.

Example

Let $C = \bigoplus_{\mathfrak{m} \in \operatorname{mSpec}(R)} E(R/\mathfrak{m})$. Then C is a minimal 0-cotilting module (= minimal injective cogenerator).

• • = • • = •

Definition

A cotilting module C is minimal provided that C is a direct summand in each cotilting module equivalent to C.

Lemma (uniqueness)

If C and C' are minimal cotilting modules such that C is equivalent to C', then $C \cong C'$.

Example

Let $C = \bigoplus_{\mathfrak{m} \in \operatorname{mSpec}(R)} E(R/\mathfrak{m})$. Then C is a minimal 0-cotilting module (= minimal injective cogenerator).

Theorem (existence)

Let C be an n-cotilting class. Then there is a minimal n-cotilting module C inducing C.

Compatible families of characteristic sequences

Jan Trlifaj (Univerzita Karlova) Cotilting over commutative noetherian rings

• • • • • • • • • • • •

Compatible families of characteristic sequences

For $\mathfrak{p} \in \operatorname{Spec}(R_{\mathfrak{m}})$, let $\widehat{\mathfrak{p}}$ denote the prime ideal of R such that $\widehat{\mathfrak{p}} \subseteq \mathfrak{m}$ and $(\widehat{\mathfrak{p}})_{\mathfrak{m}} = \mathfrak{p}$. Similarly, we define \widehat{P} for $P \subseteq \operatorname{Spec}(R_{\mathfrak{m}})$.

For $\mathfrak{p} \in \operatorname{Spec}(R_{\mathfrak{m}})$, let $\widehat{\mathfrak{p}}$ denote the prime ideal of R such that $\widehat{\mathfrak{p}} \subseteq \mathfrak{m}$ and $(\widehat{\mathfrak{p}})_{\mathfrak{m}} = \mathfrak{p}$. Similarly, we define \widehat{P} for $P \subseteq \operatorname{Spec}(R_{\mathfrak{m}})$.

Definition

Let $n < \omega$. Then \mathfrak{P} is a compatible family of characteristic sequences provided $\mathfrak{P} = (\mathcal{P}(\mathfrak{m}) \mid \mathfrak{m} \in \mathrm{mSpec}(R))$, where for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, For $\mathfrak{p} \in \operatorname{Spec}(R_{\mathfrak{m}})$, let $\widehat{\mathfrak{p}}$ denote the prime ideal of R such that $\widehat{\mathfrak{p}} \subseteq \mathfrak{m}$ and $(\widehat{\mathfrak{p}})_{\mathfrak{m}} = \mathfrak{p}$. Similarly, we define \widehat{P} for $P \subseteq \operatorname{Spec}(R_{\mathfrak{m}})$.

Definition

Let $n < \omega$. Then \mathfrak{P} is a compatible family of characteristic sequences provided $\mathfrak{P} = (\mathcal{P}(\mathfrak{m}) \mid \mathfrak{m} \in \mathrm{mSpec}(R))$, where for each $\mathfrak{m} \in \mathrm{mSpec}(R)$,

\$\mathcal{P}(m) = (P_{0,m}, \ldots, P_{n-1,m})\$ is a characteristic sequence in Spec(\$R_m\$), and

For $\mathfrak{p} \in \operatorname{Spec}(R_{\mathfrak{m}})$, let $\widehat{\mathfrak{p}}$ denote the prime ideal of R such that $\widehat{\mathfrak{p}} \subseteq \mathfrak{m}$ and $(\widehat{\mathfrak{p}})_{\mathfrak{m}} = \mathfrak{p}$. Similarly, we define \widehat{P} for $P \subseteq \operatorname{Spec}(R_{\mathfrak{m}})$.

Definition

Let $n < \omega$. Then \mathfrak{P} is a compatible family of characteristic sequences provided $\mathfrak{P} = (\mathcal{P}(\mathfrak{m}) \mid \mathfrak{m} \in \mathrm{mSpec}(R))$, where for each $\mathfrak{m} \in \mathrm{mSpec}(R)$,

- \$\mathcal{P}(m) = (P_{0,m}, \ldots, P_{n-1,m})\$ is a characteristic sequence in Spec(\$R_m\$), and
- $\widehat{P_{i,\mathfrak{m}}}$ and $\widehat{P_{i,\mathfrak{m}'}}$ contain the same prime ideals from the set $\{\mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \subseteq \mathfrak{m} \cap \mathfrak{m}'\}$, for all $\mathfrak{m}, \mathfrak{m}' \in \operatorname{mSpec}(R)$ and i < n.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Jan Trlifaj (Univerzita Karlova) Cotilting over commutative noetherian rings

<ロ> (日) (日) (日) (日) (日)

Theorem

• Let T be an n-tilting R-module with characteristic sequence \mathcal{P} . Then for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $T_\mathfrak{m}$ is an n-tilting $R_\mathfrak{m}$ -module with characteristic sequence $\mathcal{P}_\mathfrak{m}$.

→ ∃ →

Theorem

 Let T be an n-tilting R-module with characteristic sequence P. Then for each m ∈ mSpec(R), T_m is an n-tilting R_m-module with characteristic sequence P_m. Moreover, 𝔅 = (P_m | m ∈ mSpec(R)) is a compatible family of characteristic sequences.

Theorem

- Let T be an n-tilting R-module with characteristic sequence P. Then for each m ∈ mSpec(R), T_m is an n-tilting R_m-module with characteristic sequence P_m. Moreover, 𝔅 = (P_m | m ∈ mSpec(R)) is a compatible family of characteristic sequences.
- Conversely, assume that for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $T(\mathfrak{m})$ is an *n*-tilting $R_{\mathfrak{m}}$ -module with characteristic sequence $\mathcal{P}(\mathfrak{m})$, and the family $(\mathcal{P}(\mathfrak{m}) \mid \mathfrak{m} \in \mathrm{mSpec}(R))$ is compatible.

• • = • • = •

Theorem

- Let T be an n-tilting R-module with characteristic sequence P. Then for each m ∈ mSpec(R), T_m is an n-tilting R_m-module with characteristic sequence P_m. Moreover, 𝔅 = (P_m | m ∈ mSpec(R)) is a compatible family of characteristic sequences.
- Conversely, assume that for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $T(\mathfrak{m})$ is an n-tilting $R_\mathfrak{m}$ -module with characteristic sequence $\mathcal{P}(\mathfrak{m})$, and the family $(\mathcal{P}(\mathfrak{m}) \mid \mathfrak{m} \in \mathrm{mSpec}(R))$ is compatible. Then there exists a unique tilting R-module T such that $T_\mathfrak{m}$ is equivalent to $T(\mathfrak{m})$ for each $\mathfrak{m} \in \mathrm{mSpec}(R)$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Theorem

- Let T be an n-tilting R-module with characteristic sequence P. Then for each m ∈ mSpec(R), T_m is an n-tilting R_m-module with characteristic sequence P_m. Moreover, 𝔅 = (P_m | m ∈ mSpec(R)) is a compatible family of characteristic sequences.
- Conversely, assume that for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $T(\mathfrak{m})$ is an n-tilting $R_\mathfrak{m}$ -module with characteristic sequence $\mathcal{P}(\mathfrak{m})$, and the family $(\mathcal{P}(\mathfrak{m}) \mid \mathfrak{m} \in \mathrm{mSpec}(R))$ is compatible. Then there exists a unique tilting R-module T such that $T_\mathfrak{m}$ is equivalent to $T(\mathfrak{m})$ for each $\mathfrak{m} \in \mathrm{mSpec}(R)$.

Open problem

How to recover T from the family $(T(\mathfrak{m}) | \mathfrak{m} \in \operatorname{mSpec}(R))$?

Jan Trlifaj (Univerzita Karlova) Cotilting over commutative noetherian rings

イロト イポト イヨト イヨト

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A warning

$C = \bigoplus_{\mathfrak{m} \in \operatorname{mSpec}(R)} E(R/\mathfrak{m}) \text{ localizes to 0 at any } \mathfrak{p} \notin \operatorname{mSpec}(R).$

A warning

$$C = \bigoplus_{\mathfrak{m} \in \mathrm{mSpec}(R)} E(R/\mathfrak{m})$$
 localizes to 0 at any $\mathfrak{p} \notin \mathrm{mSpec}(R)$.

Definition

Let R be a commutative ring, M an R-module, and $\mathfrak{m} \in \mathrm{mSpec}(R)$. Denote by $M^{\mathfrak{m}}$ the $R_{\mathfrak{m}}$ -module $\mathrm{Hom}_{R}(R_{\mathfrak{m}}, M)$;

• • = • • =

A warning

$$C = \bigoplus_{\mathfrak{m} \in \mathrm{mSpec}(R)} E(R/\mathfrak{m})$$
 localizes to 0 at any $\mathfrak{p} \notin \mathrm{mSpec}(R)$.

Definition

Let R be a commutative ring, M an R-module, and $\mathfrak{m} \in \mathrm{mSpec}(R)$. Denote by $M^{\mathfrak{m}}$ the $R_{\mathfrak{m}}$ -module $\mathrm{Hom}_{R}(R_{\mathfrak{m}}, M)$; it is called the colocalization of M at \mathfrak{m} .

→ Ξ →

A warning

$$C = \bigoplus_{\mathfrak{m} \in \mathrm{mSpec}(R)} E(R/\mathfrak{m})$$
 localizes to 0 at any $\mathfrak{p} \notin \mathrm{mSpec}(R)$.

Definition

Let R be a commutative ring, M an R-module, and $\mathfrak{m} \in \mathrm{mSpec}(R)$. Denote by $M^{\mathfrak{m}}$ the $R_{\mathfrak{m}}$ -module $\mathrm{Hom}_{R}(R_{\mathfrak{m}}, M)$; it is called the colocalization of M at \mathfrak{m} .

Properties

• Unlike localization, the colocalization is only left exact in general.

A warning

$$C = \bigoplus_{\mathfrak{m} \in \mathrm{mSpec}(R)} E(R/\mathfrak{m})$$
 localizes to 0 at any $\mathfrak{p} \notin \mathrm{mSpec}(R)$.

Definition

Let R be a commutative ring, M an R-module, and $\mathfrak{m} \in \mathrm{mSpec}(R)$. Denote by $M^{\mathfrak{m}}$ the $R_{\mathfrak{m}}$ -module $\mathrm{Hom}_{R}(R_{\mathfrak{m}}, M)$; it is called the colocalization of M at \mathfrak{m} .

Properties

- Unlike localization, the colocalization is only left exact in general.
- Colocalization commutes with inverse limits, and it is exact on short exact sequences with pure-injective kernels.

A warning

$$C = \bigoplus_{\mathfrak{m} \in \mathrm{mSpec}(R)} E(R/\mathfrak{m})$$
 localizes to 0 at any $\mathfrak{p} \notin \mathrm{mSpec}(R)$.

Definition

Let R be a commutative ring, M an R-module, and $\mathfrak{m} \in \mathrm{mSpec}(R)$. Denote by $M^{\mathfrak{m}}$ the $R_{\mathfrak{m}}$ -module $\mathrm{Hom}_{R}(R_{\mathfrak{m}}, M)$; it is called the colocalization of M at \mathfrak{m} .

Properties

- Unlike localization, the colocalization is only left exact in general.
- Colocalization commutes with inverse limits, and it is exact on short exact sequences with pure-injective kernels.
- The colocalization of an S^* -cofiltered cotilting R-module is an $(S^*)^{\mathfrak{m}}$ -cofiltered cotilting $R_{\mathfrak{m}}$ -module, and $(S^*)^{\mathfrak{m}} = (S_{\mathfrak{m}})^*$.

Jan Trlifaj (Univerzita Karlova) Cotilting over commutative noetherian rings

・ロト ・聞ト ・ヨト ・ヨト

Theorem

• Let C be an n-cotilting R-module with characteristic sequence \mathcal{P} .

Theorem

• Let C be an n-cotilting R-module with characteristic sequence \mathcal{P} .

(Recall that $P_i = \operatorname{Ass}(^{\perp}\Omega^{-i}(C))$ for all i < n.)

Theorem

• Let C be an n-cotilting R-module with characteristic sequence \mathcal{P} .

(Recall that $P_i = \operatorname{Ass}(^{\perp}\Omega^{-i}(C))$ for all i < n.)

Then for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $C^{\mathfrak{m}}$ is an *n*-cotilting $R_{\mathfrak{m}}$ -module with characteristic sequence $\mathcal{P}_{\mathfrak{m}}$.

Theorem

• Let C be an n-cotilting R-module with characteristic sequence \mathcal{P} .

(Recall that $P_i = \operatorname{Ass}(^{\perp}\Omega^{-i}(C))$ for all i < n.)

Then for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $C^{\mathfrak{m}}$ is an *n*-cotilting $R_{\mathfrak{m}}$ -module with characteristic sequence $\mathcal{P}_{\mathfrak{m}}$. Moreover, $\mathfrak{P} = (\mathcal{P}_{\mathfrak{m}} \mid \mathfrak{m} \in \mathrm{mSpec}(R))$ is a compatible family of characteristic sequences.

Theorem

• Let C be an n-cotilting R-module with characteristic sequence \mathcal{P} .

(Recall that $P_i = \operatorname{Ass}(^{\perp}\Omega^{-i}(C))$ for all i < n.)

Then for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $C^{\mathfrak{m}}$ is an *n*-cotilting $R_{\mathfrak{m}}$ -module with characteristic sequence $\mathcal{P}_{\mathfrak{m}}$. Moreover, $\mathfrak{P} = (\mathcal{P}_{\mathfrak{m}} \mid \mathfrak{m} \in \mathrm{mSpec}(R))$ is a compatible family of characteristic sequences.

• Conversely, assume that for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $C(\mathfrak{m})$ is an *n*-cotilting $R_{\mathfrak{m}}$ -module with characteristic sequence $\mathcal{P}(\mathfrak{m})$, and the family $(\mathcal{P}(\mathfrak{m}) \mid \mathfrak{m} \in \mathrm{mSpec}(R))$ is compatible.

Theorem

• Let C be an n-cotilting R-module with characteristic sequence \mathcal{P} .

(Recall that $P_i = \operatorname{Ass}(^{\perp}\Omega^{-i}(C))$ for all i < n.)

Then for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $C^{\mathfrak{m}}$ is an *n*-cotilting $R_{\mathfrak{m}}$ -module with characteristic sequence $\mathcal{P}_{\mathfrak{m}}$. Moreover, $\mathfrak{P} = (\mathcal{P}_{\mathfrak{m}} \mid \mathfrak{m} \in \mathrm{mSpec}(R))$ is a compatible family of characteristic sequences.

 Conversely, assume that for each m ∈ mSpec(R), C(m) is an n-cotilting R_m-module with characteristic sequence P(m), and the family (P(m) | m ∈ mSpec(R)) is compatible. Then there is a unique cotilting R-module C such that C^m is equivalent to C(m) for each m ∈ mSpec(R).

Theorem

• Let C be an n-cotilting R-module with characteristic sequence \mathcal{P} .

(Recall that $P_i = \operatorname{Ass}(^{\perp}\Omega^{-i}(C))$ for all i < n.)

Then for each $\mathfrak{m} \in \mathrm{mSpec}(R)$, $C^{\mathfrak{m}}$ is an n-cotilting $R_{\mathfrak{m}}$ -module with characteristic sequence $\mathcal{P}_{\mathfrak{m}}$. Moreover, $\mathfrak{P} = (\mathcal{P}_{\mathfrak{m}} \mid \mathfrak{m} \in \mathrm{mSpec}(R))$ is a compatible family of characteristic sequences.

 Conversely, assume that for each m ∈ mSpec(R), C(m) is an n-cotilting R_m-module with characteristic sequence P(m), and the family (P(m) | m ∈ mSpec(R)) is compatible. Then there is a unique cotilting R-module C such that C^m is equivalent to C(m) for each m ∈ mSpec(R).

Moreover, we can easily recover C as $C = \prod_{\mathfrak{m} \in \mathrm{mSpec}(R)} C(\mathfrak{m})$.

- L.Angeleri Hügel, D.Pospíšil, J.Šťovíček, J.T., Tilting, cotilting, and spectra of commutative noetherian rings, Trans. Amer. Math. Soc. 366(2014), 3487-3517.
- J.Šťovíček, J.T., D.Herbera, *Cotilting modules over commutative noetherian rings*, J. Pure Appl. Algebra 218(2014), 1696–1711.
- J.T., S.Şahinkaya, *Colocalization and cotilting for commutative noetherian rings*, J. Algebra 408(2014), 28–41.