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Brattka and Weihrauch [2, Section 4] compared several natural repre-
sentations of the space £ of compact subsets of Euclidean space, which in-
duce computability notions that are now well studied and generalized [1, 4].
One of the representations, -, is based on the fact that compact sets are
bounded and closed: a §7,-name of K € J# consists of a bound on K (i.e.,
a finite set of rational balls whose union contains K) together with an infi-
nite list enumerating basic sets (rational balls) contained in the complement
of K. Another representation, dcover, i8S based on the characterization of
compact sets using covers: a dcover-name of K € J# enumerates a set of
finitely many basic sets that covers K. These representations are shown to
be computably equivalent.

We discuss possible ways to refine their argument to polynomial-time
computability. To make the representations meaningful in the time-bounded
context, we need to replace enumeration by recognition: that is, instead of
an infinite list of basic sets or covers, we consider a predicate that roughly
tells us whether a given set intersects K, or whether given sets cover K.
This leads to the following representations of J¢":

e A §y-name of K € % is a pair (w, D) of a bound w € £* on K and
a predicate D C X* such that for any rational ball B, we have B € D
if K intersects B, and B ¢ D if K does not intersect 2B, the ball with
the same centre and twice the radius as B.

o A deover-name of K € . is a pair (w,C) of a bound w € X* on K and
a predicate C' C X* such that for any finite list | = (B, ..., Bgx_1) of
rational balls, we have | € C if K C By U---U By_1, and | ¢ C if
KgQB()U---UQkal.

Note that we are using “soft” recognition: the expected behaviour of the
predicates C' and D is unspecified on some inputs. Computing a 3(1/-name
of K can be thought of as drawing K on a computer screen with various
precision, and was the notion used in the study of complexity of some fractal
sets [5, 3]. We show that ) » and 5cover are polynomial-time equivalent.
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The computable equivalence of 5} and deover (as well as some other rep-

resentations) can be generalized to computable metric spaces satisfying the
properties called nice closed balls and effective covering [1, Theorem 4.10].
Our argument for polynomial-time equivalence seems to rely on more spe-
cial properties of Euclidean spaces, and it remains open whether similar
generalization is possible.
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