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Abstract

We give a direct proof that the hereditarily total functionals definable in van Oosten’s model
for sequential functionals of finite type coincide with the Kleene/Kreisel continuous functionals.

1 Introduction

In a remarkable paper [Lon07], Longley proves that, when restricted to hereditarily total functionals
over N, many classes of higher-order functionals characterized by a “realizability-style” construction
result in either the Kleene-Kreisel continuous functionals C (or its recursive substructure RC) or
the hereditarily effective operations HEO. His approach is quite general and utilizes typed partial
combinatory algebras (TPCAs) in an essential way. In particular (in an earlier version of the paper
appearing as [Lon04], he notes that in the case of van Oosten’s algebra B [vO99], a direct proof
“would probably be feasible but rather tiresome.” In this paper, we verify Longley’s observation
by giving such a direct proof via simulations between realizers for the two classes of functionals.
Why do we bother with such a proof? Our ultimate goal is to understand the efficiency of such
simulations. At type-level two, [BK02] considers a version of Ershov’s presentation [Ers72, Ers74] of
C as the extensional collapse of the Scott-continous (partial) functionals P. With this presentation,
there is a natural complexity measure — certificate size — associated with realizers for continuous
functionals, while for sequential functionals there is also measure, corresponding to the standard
notion of decision-tree depth. Extending a technique of Blum [BI87, HH90, Tar89], it it shown that
sequential realizers can simulate continuous realizers with quadratic overhead. The results of this
paper, which give an inefficient simulation, may be viewed as a first step towards generalizing the
result of [BK02] to all finite types.

Preliminaries. We assume the existence of surjective tuple coding functions 〈·, . . . , ·〉k : Nk → N
and a surjective sequence coding function 〈·〉 : N∗ → N. We will typcially drop the subscript
on tupling functions when it is clear from the contexts. Right now we are not worried about
quantitative aspects (e.g. bounds or efficient computability) of coding functions, but may need
to revisit this later on. It does seem that surjectivity is important for some of our proofs. Also,
we typically use length and projection functions implicitly in a pattern-matching fashion. We
do sometimes use the sequence-length function lh which has the property that lh(〈〉) = 0 and
lh(〈u0, . . . , u`〉) = ` + 1, as well as a sequence selection function (·)i which has the property that
(〈u0, . . . , u`〉) = ui for 0 ≤ i ≤ ` (and is some default value for i not in the range.)
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2 Continuous and sequential functionals of finite type

We first recall Kleene’s [Kle59] definition of countable functionals via the method of associates. For
sets X,Y , let X → Y denote the set of all functions from X to Y . For f : N → N, and n ≥ 0, let
f(n) denote 〈f(0), . . . , f(n)〉.

Definition 2.1. For each type level k ≥ 0, Ct(k) is the set of countable functionals of type level k and
Ass(k) is the set of associates of type level k. For each F ∈ Ct(k), there is a set Ass(F ) ⊆ Ass(k+1),
the associates of F . For all k, Ass(k) =

⋃
F∈Ct(k) Ass(F ). We have Ass(0) = Ct(0) = N, and

Ass(1) = Ct(1) = N → N. For k = 0, 1 and F ∈ Ct(k), Ass(F ) = F . For k > 1, we have
F : Ct(k) → N is in Ct(k + 1) if Ass(G) 6= ∅, where α ∈ Ass(G) iff for all G ∈ Ct(k) and all
β ∈ Ass(G), there is an n ≥ 0 such that

1. For all m < n, α(β(m)) = 0 (note that is always the case that α(〈〉) = 0.)

2. For all m ≥ n, α(β(m)) = F (G) + 1.

In case there is an n for which (1) and (2) hold for α, β, we write α • β to denote F (G).

The countable functionals identify a subclass of higher-order functionals whose properties may
be characterized in terms of ordinary (type-one) functions. This in turn allows for a very simple
model of computation on higher-order inputs.

In [vO99], van Oosten provides a model of hereditarily sequential functionals, which is also based
on type-one function application. As the name implies, in this model, associates may be viewed
as sequential strategies, corresponding more closely to familiar notions of oracle computation. To
begin, we review van Oosten’s definition of a dialogue between partial functions.

Definition 2.2. An encoding u = 〈u0, . . . , un−1〉 of a sequence from N∗ is a dialogue between
g, f : N⇀ N if for all i, 0 ≤ i ≤ n− 1, there is a j such that g(u<i) = 2j + 1 and f(j) = ui, where
u<i = 〈u0, . . . , ui−1〉. The application g|f is defined with value y (written g|f = y,) if there is a
dialogue u between g and f such that g(u) = 2y. If g(u<i) = 2j + 1 we will say that g queries f at
j. If g(u) = 2y, we will say that g answers y. For a given g and f , we do not rule out the possibility
that there is no dialogue between g and f (e.g., g may never answer, or may reach a point where
it does not have a query.)

While this definition allows the definition of higher-order partial functionals, in this paper we
are restricting attention to hereditarily total functionals. We now have the following

Definition 2.3. For each type level k ≥ 0, Seq(k) is the set of (hereditarily total) functionals of type
level k and Sass(k) is the set of sequential associates of type level k. For each F ∈ Seq(k), there is
a set Sass(F ) ⊆ Sass(k + 1), the sequential associates of F . For all k, Sass(k) =

⋃
F∈Seq(k) Sass(F ).

We have Sass(0) = Seq(0) = N, and Sass(1) = Seq(1) = N → N. For k = 0, 1 and F ∈ Seq(k),
Sass(F ) = F . For k > 1, we have F : Seq(k)→ N is in Seq(k+1) if Sass(F ) 6= ∅, where σ ∈ Sass(F )
iff for all G ∈ Seq(k) and all τ ∈ Sass(G), it is the case that σ|τ = F (G).

3 The Equivalence

Our goal is to prove that for all k ≥ 0, Ct(k) = Seq(k). To do so, we work directly with associates,
as follows:

2



Theorem 3.1. For k ≥ 0 and all α ∈ Ass(k + 1), β ∈ Ass(k), σ ∈ Sass(k + 1) and τ ∈ Sass(k),
there are σc ∈ Ass(k + 1), τ c ∈ Ass(k), αs ∈ Sass(k + 1) and βs ∈ Sass(k) such that

1. αs|τ = α • τ c

2. σc • β = σ|βs
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