
Some steps toward program extraction in a

type-theoretical interpretation of IFP

Ulrich Berger1, Sewon Park2, Holger Thies2, and Hideki Tsuiki2

1Swansea University, United Kingdom
2Kyoto University, Japan

IFP (Intuitionistic Fixed Point Logic) [BPT20, BT21] extends intuitionis-
tic first-order logic with strictly positive inductive and coinductive definitions.
Sorts are classical and computational content can be attached by defining predi-
cates over the sorts with intuitionistic disjunctions and inductive or coinductive
definitions. For example, we can introduce an axiomatic sort for the real num-
bers and assume any classically valid disjunction-free sentence. Over the sort,
predicates can be coinductively defined allowing to reason over various infinite
representations of real numbers and computations over them.

IFP’s domain-theoretic realizability interpretation allows partial realizers.
Its program extraction, which yields possibly nonterminating programs, hence
is well-suited for extracting inherently partial representations such as infinite
Gray code [Tsu02].

However, the term language of IFP does not allow the construction of func-
tions. To define a new function, the function needs to be axiomatized by ex-
tending the term language with the function symbol and the set of axioms with
valid sentences describing the function.

As an alternative approach, we present an extension of IFP with lambda
calculus by embedding it in a dependent type theory. Hence, not only new
function terms but also new sorts, such as (classical) function spaces, can be
defined following type-theoretical constructions. We further extend the under-
lying (proof-erased) untyped lambda calculus’s reduction rules [Let02] to reflect
IFP’s realizability interpretation.

To this end, we implement a shallow embedding of IFP in the Coq proof
assistant. We use Coq’s Prop as a universe of classical types where we introduce
axiomatic sorts such as R : Prop for the set of real numbers. As in the original
IFP, classically valid sentences can be introduced in Prop including the law of
trichotomy. R-valued functions can be defined as a lambda term using the term
constructions of the type theory; e.g., as R is in Prop, the law of trichotomy can
be used to create even some discontinuous R-valued functions.

IFP’s inductive and coinductive definitions are provided by axiomatic con-
stants µ and ν of appropriate types. Corresponding proof rules for induction,
closure, coinduction, and coclosure are axiomatized as constants Ind, Cl, CoInd,
and CoCl.

Using Coq’s type checking engine for IFP formal proofs, we rely on MetaCoq,
a Coq’s meta-programming plugin [SAB+20], for extracting programs from IFP

1



proofs and simulating the extracted programs. More precisely, using MetaCoq’s
Erasure plugin, from a Coq term t we can obtain a term of untyped lambda
calculus λ�, where the noncomputational Prop parts and type expressions in
t’s construction get erased by � [SBF+19]. In our case, using this “quoting”
and erasing yields λIFP := λ�,Ind,Cl,CoInd,CoCl, an untyped lambda calculus with
additional constructs �, Ind, Cl, CoInd, and CoCl.

We define reduction for λIFP which extends naturally the reduction of un-
typed lambda calculus with the intended computational meanings of the four
additional IFP constructs.

As λIFP itself is an inductive data in MetaCoq, we implement the reduction as
a function in MetaCoq such that we can use Coq’s reduction engine to compute
the reduction of λIFP. Thus, our Coq implementation allows the users to make
an extended IFP proof, extract the computational content of it, and simulate
the computation, all in Coq.

We demonstrate the expressiveness of our axiomatization by implementing
some of the standard examples of IFP such as the translation of the signed-digit
representation to infinite Gray code [BT21, Section 5].

The implementation can be found in https://github.com/holgerthies/

ifp-coq.

References

[BPT20] Ulrich Berger, Olga Petrovska, and Hideki Tsuiki. Prawf: An in-
teractive proof system for program extraction. In Conference on
Computability in Europe, pages 137–148. Springer, 2020.

[BT21] Ulrich Berger and Hideki Tsuiki. Intuitionistic fixed point logic. An-
nals of Pure and Applied Logic, 172(3):102903, 2021.

[Let02] Pierre Letouzey. A new extraction for Coq. In International Work-
shop on Types for Proofs and Programs, pages 200–219. Springer,
2002.

[SAB+20] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen,
Yannick Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau,
and Théo Winterhalter. The metacoq project. Journal of automated
reasoning, 64(5):947–999, 2020.

[SBF+19] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau,
and Théo Winterhalter. Coq coq correct! verification of type check-
ing and erasure for coq, in coq. Proceedings of the ACM on Program-
ming Languages, 4(POPL):1–28, 2019.

[Tsu02] Hideki Tsuiki. Real number computation through Gray code embed-
ding. Theoretical Computer Science, 284(2):467–485, 2002.

2

https://github.com/holgerthies/ifp-coq
https://github.com/holgerthies/ifp-coq

