Spread representation of point-free real numbers
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Brouwer’s quest for continuum as infinitely proceeding sequences led him to
introduce the notion of spread. A spread is a certain subset of Baire space NY
from which intended mathematical objects are obtained as its continuous image
(cf. Heyting [3, 3.1.2]). In particular, the real numbers can be obtained as a
continuous image of the ternary spread [3, Section 3.3]. Using this representation
of real numbers, together with the intuitionistic principles such as fan theorem
and the continuity principle,! Brouwer showed that every real-valued function
on the unit interval is uniform continuous [2].

In this talk, we take another look at the spread representation of real num-
bers from the view point of point-free topology [5]. Point-free topology can be
seen as a constructive basis of Brouwer’s mathematics without assuming intu-
itionistic principles such as fan theorem and the continuity principle; thus, the
argument in point-free topology can be carried out constructively in the sense of
Bishop’s constructive mathematics [1]. We see that the notion of real numbers
by the spread representation is geometric, so they can be naturally understood
as points of certain point-free topology. This gives rise to a new notion of point-
free real numbers. With respect to this notion, the Heine-Borel theorem and
the uniform continuity of real-valued functions on [0, 1] follow. In addition, ap-
proximate versions of the intermediate value theorem and Brouwer’s fixed-point
theorem can be naturally formulated in this point-free setting, which provide
point-free and choice free proofs of these theorems (cf. Kawai [4]).
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IThe fan theorem is classically equivalent to the weak Kénig’s lemma. The continuity
principle says that every function on real numbers is point-wise continuous.



