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Distributed Optimisation

Distributed optimisation

Ingredients:

• Distributed system
I nodes can: 1) process information locally, 2)

communicate with neighbours
I e.g. co-operative robots, wireless sensor

networks, smart grids, ...

• Problem
I minimise the sum of local costs fi

min
xi

N∑
i=1

fi(xi)

s.t. xi = xj if i, j neighbours

where xi is the state of node i

i

j
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Distributed Optimisation

Distributed optimisation (cont’d)

Distributed consensus optimisation

1 perform local computations (e.g. minimise fi)

2 exchange the results with neighbours (e.g. receive xj)

3 incorporate information received (updating xi)

I Proposed algorithms: gradient, Newton-Raphson, ADMM, ...

Issues:
• Faulty communications

I packet loss, noise, ...

• Asynchronous operations
I no clock synchronisation

• etc.
I noise, switching communication topology, delays, ...
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Operator theory

Operator theory

Operator (or mapping):
T : H→ H,

with H Hilbert space (here: H = Rn)

Types of operators:

• non-expansive ‖T z − T w‖ ≤ ‖z −w‖ ∀z,w ∈ H
• contractive ‖T z − T w‖ ≤ ρ ‖z −w‖, ρ ∈ (0, 1) ∀z,w ∈ H
• averaged T z = (1− α)z + αRz, R non-expansive, α ∈ (0, 1)
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Operator theory

Operator theory (cont’d)

Objective: finding the fixed point(s) of T with an iterative algorithm

I i.e. fix(T ) := {z̄ ∈ H | z̄ = T z̄}

Fixed point algorithms:

• Banach-Picard : for T contractive

z(k + 1) = T z(k) k ∈ N

⇒ linear convergence to the unique fixed point

• Krasnosel’skĭı-Mann : for T non-expansive, α ∈ (0, 1)

z(k + 1) = (1− α)z(k) + αT z(k) k ∈ N

⇒ O(1/
√
k) convergence to one fixed point
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Operator theory

Affine operators

T : Rn → Rn is affine if
T z = Tz + u

T ∈ Rn×n and u ∈ Rn

Properties:

• fix(T ) 6= ∅ iff u ∈ im(I − T )

• distribution eigenvalues of T

1

i

1− α

α

• convergence rate: largest eigenvalues strictly inside unit circle
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Operator theory

Convex optimisation

Operator theory for convex optimisation:

min
z
f(z)

f : Rn → R ∪ {+∞} a closed, proper and convex function

I Idea: design an operator with: fix(T ) = minima of f

For example proximal operator (ρ > 0):

proxρf (z) = arg min
w

{
f(w) +

1

2ρ
‖w − z‖2

}
or reflective operator: reflρf (z) = 2 proxρf (z)− z
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Operator theory

Splitting operators

Given the problem
min
z
{f(z) + g(z)}

f, g : Rn → R ∪ {+∞} closed, proper and convex functions

I directly computing proxf+g may be too difficult!

but we can exploit its structure with splitting operators:

• smaller computations

• applied to dual: ADMM, gradient, Newton-Raphson

• distributed optimisation: prove convergence with non-idealities

For example Peaceman-Rachford:

TPR = reflρg ◦ reflρf
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Robust & Asynchronous ADMM

ADMM

Given the problem

min
x,y
{f(x) + g(y)}

s.t. Ax + By = c

f, g : Rn → R ∪ {+∞} closed, proper and convex functions

we define the augmented Lagrangian

L(x,y;w) = f(x) + g(y)− 〈w,Ax + By − c〉+ρ

2
‖Ax + By − c‖2

where Lagrange multipliers w and penalty ρ > 0
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Robust & Asynchronous ADMM

ADMM (cont’d)

Given the problem

min
x,y
{f(x) + g(y)}

s.t. Ax + By = c

f, g : Rn → R ∪ {+∞} closed, proper and convex functions

the (relaxed) ADMM is (α ∈ (0, 1)):

y(k + 1) = arg min
y

{
L(x(k),y;w(k))+

+ρ(2α− 1)〈By,Ax(k) + By(k)− c〉
}

w(k + 1) = w(k)−
(
Ax(k) + By(k + 1)− c

)
+

−ρ(2α− 1)
(
Ax(k) + By(k)− c

)
x(k + 1) = arg min

x
L(x,y(k);w(k))

13 / 29



Robust & Asynchronous ADMM

ADMM as splitting operator

Alternatively, given the (Fenchel) dual problem

min
w
{df (w) + dg(w)}

applying the Krasnosel’skĭı-Mann to the Peaceman-Rachford operator

TPR = reflρg ◦ reflρf

i.e.
z(k + 1) = (1− α)z(k) + α reflρg

(
reflρf (z(k))

)
I is equivalent to the (relaxed) ADMM
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Robust & Asynchronous ADMM

ADMM for distributed optimisation

We can rewrite the consensus constraints

xi = xj if i, j neighbours

as
xi = yij , xj = yji, yij = yji if i, j neighbours

or equivalently
Ax + y = 000, y = Py

where P permutation matrix that swaps yij with yji
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Robust & Asynchronous ADMM

ADMM for distributed optimisation (cont’d)

Thus

min
xi

N∑
i=1

fi(xi)

s.t. xi = xj if i, j neighbours

becomes

min
x,y

{
N∑
i=1

fi(xi) + ι(I−P )(y)

}
s.t. Ax + y = 000

ι(I−P )(y) =

{
0 if y = Py

+∞ otherwise

I and we can apply the ADMM
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Robust & Asynchronous ADMM

ADMM for distributed optimisation (cont’d)

The distributed ADMM is given by

xi(k) = arg min
xi

fi(xi)− 〈xi,∑
j∈N

zji(k)〉+
ρ

2
|Ni| ‖xi‖2


zij(k + 1) = (1− α)zij(k)− αzji(k) + 2αρxi(k)

where
Ni = {j s.t. j neighbour of i}
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Robust & Asynchronous ADMM

Convergence

Assumptions

There is an equal packet loss probability p on each link.
Each node performs an update with probability u.
Packet loss and update events are independent.

Proposition (convergence)

The states of the nodes converge almost surely to the optimal solution of
the distributed optimisation problem, i.e.

lim
k→∞

xi(k) = x∗ ∀i.

I Proof: exploit convergence of Peaceman-Rachford when only a
subset of co-ordinates is updated.
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Robust & Asynchronous ADMM

Linear convergence

Assumption

The local costs fi are strongly convex.

Thorem (Linear convergence)

There exists a neighbourhood of x∗ s.t. any initial condition inside it
converges linearly, in mean square, i.e.

E
[
‖xi(k)− x∗‖2

]
≤ CλkM

C ∈ R and λM = maxλ∈Λ(Σ) |λ| < 1

I Σ depends on packet loss & update probabilities, graph, local costs
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Robust & Asynchronous ADMM

Sketch of proof

• the robust & asynchronous ADMM can be rewritten as

x(k) = QA>z(k) + r

z(k + 1) = Tz(k) + u + o(x(k)− x∗)

where Q, r depend on graph and local costs

• since x∗ is unique we can prove ker(I − T ) ⊂ ker(A>)

• moreover, the dual update is affine, hence we can write

T = T1 + T<1

where T1 depends on eigenvectors relative to eigenvalues in 1
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Robust & Asynchronous ADMM

Sketch of proof (cont’d)

• then the primal error is

x(k)− x∗ = QA>T<1(z(k)− z̄) + o(‖x(k)− x∗‖)

z̄ ∈ fix(T ·+u)

• accounting for the random updates and taking the norm

E
[
‖x(k)− x∗‖2

]
≤ C ‖Σ‖k + o(‖x(k)− x∗‖)

with Σ having all eigenvalues inside the unitary circle
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Numerical Results

Setup

Simulations on

• random graph N = 25 nodes

• packet loss probability p and update probability u

• 100 Monte Carlo iterations
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Numerical Results

Varying α
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Numerical Results

Varying packet loss
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Numerical Results

Stability regions
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Conclusion

Conclusion

Recap

• distributed optimisation with operator theory

• robust and asynchronous ADMM

• linear convergence

Future work

• ADMM with other non-idealities (e.g. noise)

• extend results to gradient method

• general convergence of Krasnosel’skĭı-Mann with non-idealities
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Conclusion

Thank you for your attention!
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